

Caplin Integration Suite 6.0
How To Create A Platform Java Blade

December 2012

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Contents

Contents
1 Preface .. 1

1.1 What this document contains .. 1
About Caplin document formats .. 1

1.2 Who should read this document .. 1
1.3 Related documents .. 1
1.4 Typographical conventions .. 2
1.5 Feedback ... 3
1.6 Acknowledgments ... 3

2 About the Caplin Integration Suite Toolkit .. 4
2.1 What is the Caplin Integration Suite Toolkit? .. 4
2.2 Supported blade types ... 4
2.3 Installing the plugin and the command line utility .. 5

3 Creating a blade ... 6
3.1 Wizard step 1: .. 8
3.2 Wizard step 2: .. 9
3.3 Wizard step 3: .. 11
3.4 Blade file structure ... 13

4 Running your blade from Eclipse ... 15
4.1 Changing the blade’s run configuration ... 17
4.2 Creating a new run configuration... 19
4.3 Debugging the blade ... 20

5 Exporting your blade as a kit .. 21
5.1 To export an Adapter blade: .. 21
5.2 To export a Config blade: .. 23

6 Creating a blade from the command line ... 24
6.1 Command for creating a new blade project ... 25
6.2 Command for building a blade ... 27
6.3 Command for running a blade ... 28
6.4 Command for exporting an existing blade project ... 30

7 Glossary of terms and acronyms ... 32

© Caplin Systems Ltd. 2012 i

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Preface

1 Preface

1.1 What this document contains
This document explains how to create new Java®-based Caplin Platform blades, using the
Caplin Integration Suite Toolkit.

If you develop your blades using the EclipseTM IDE, read sections 2, 3, 4, and 5.

If you do not use Eclipse, you will need to use the Toolkit’s command line utility instead;
see sections 2.1, 2.2, and 6.

About Caplin document formats

This document is supplied in Portable document format (.PDF file), which you can read on-line using
a suitable PDF reader such as Adobe Reader®. The document is formatted as a printable manual;
you can print it from the PDF reader.

1.2 Who should read this document
This document is intended for developers. Before reading it, you should be familiar with the concepts
and terms that are introduced in the following documents.

♦ Caplin Platform Overview (all sections)
♦ Caplin Platform: Deployment Framework Overview (all sections)
♦ Caplin DataSource Overview (all sections)
♦ Caplin Liberator Administration Guide (Overview section)

1.3 Related documents
♦ Caplin Platform Overview

A technical overview of the Caplin Platform.
♦ Caplin Platform: Deployment Framework Overview

Explains the concept of the Caplin Platform Deployment Framework, including Caplin Platform
blades and how they are deployed.

♦ Caplin Liberator Administration Guide

Describes the Caplin Liberator server and its place within the Caplin Platform.
It includes configuration reference information and a list of Liberator log and debug messages.

♦ Caplin DataSource: Overview

A technical overview of Caplin DataSource.

© Caplin Systems Ltd. 2012 1

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Preface

♦ DataSource For C Configuration Syntax Reference

Describes the syntax of the language that is used to configure DataSource applications (such as
Integration Adapters) that use .conf configuration files.

1.4 Typographical conventions
The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders, and directories

Some code; Program output and script examples

The value=10 attribute is... Script fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

Glossary term Items that appear in the “Glossary of terms and acronyms”

XYZ Product Overview Document name

♦ Information bullet point

 Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation
of the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

© Caplin Systems Ltd. 2012 2

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Preface

1.5 Feedback
Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Please email your feedback to documentation@caplin.com.

1.6 Acknowledgments
Adobe Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Java is a trademark or registered trademark of Oracle® Corporation in the U.S. and other countries.

Eclipse is a trademark of Eclipse Foundation, Inc.

© Caplin Systems Ltd. 2012 3

mailto:documentation@caplin.com

Caplin Integration Suite 6.0
How To Create A Platform Java Blade About the Caplin Integration Suite Toolkit

2 About the Caplin Integration Suite Toolkit

2.1 What is the Caplin Integration Suite Toolkit?
The Caplin Integration Suite Toolkit provides the ability to create and export Caplin Platform blades
that drop in to the Caplin Platform Deployment Framework.

You can create a blade from within the EclipseTM IDE by first installing a plugin from the Toolkit
(the Caplin Integration Suite for Eclipse plugin) and then using the plugin’s Caplin Integration Adapter
project wizard. The plugin also allows you to run and debug a blade project when you develop using
Eclipse.

Alternatively, you can use a command line utility (via the java –jar … command) to create blades,
and to export blades, as explained in section 6.

Note: In the rest of this document the term “blade” means “Caplin Platform blade”.

For information about the Caplin Platform Deployment Framework see the document
Caplin Platform Deployment Framework Overview.

2.2 Supported blade types
The Caplin Integration Suite Toolkit supports the following types of blade:

♦ Adapter blades written in Java.

An Adapter blade connects to, and supplies data to, a Caplin Liberator or Caplin Transformer.
It consists of an Integration Adapter (an executable binary file), DataSource configuration, and
core component configuration. The Integration Adapter must be written in Java, using one or
more of the Caplin Integration Suite’s Java APIs.

♦ Config blades

A Config blade enables a feature purely through configuration of existing Caplin Platform
components.

The Caplin Platform Deployment Framework comes with several built-in blades of this type.
For more information, see the Caplin Platform Deployment Framework Overview.

© Caplin Systems Ltd. 2012 4

Caplin Integration Suite 6.0
How To Create A Platform Java Blade About the Caplin Integration Suite Toolkit

2.3 Installing the plugin and the command line utility
Before you can create new Caplin Platform blades using Eclipse, you must install the Caplin
Integration Suite plugin.

 You can obtain the plugin from the Caplin website at http://www.caplin.com/developer/eclipse.

Tip: For information on how to install Eclipse plugins, refer to the documentation that came with
your Eclipse distribution.

 The command line utility described in section 6 “Creating a blade from the command line” is in the
tools directory of the unzipped Caplin Integration Suite.

© Caplin Systems Ltd. 2012 5

http://www.caplin.com/developer/eclipse

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

3 Creating a blade
You create a blade project from Eclipse using the Caplin Integration Adapter Blade project wizard.

 From Eclipse’s New Project dialog (File > New > Project…), select the Caplin node,
followed by the node called Integration Adapter Blade Project.

© Caplin Systems Ltd. 2012 6

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

 Select Next.
The Caplin Integration Adapter project wizard starts.

© Caplin Systems Ltd. 2012 7

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

3.1 Wizard step 1:

 Enter a project name

This is the name of the blade that is to be created. The name is also used in Java class names,
so it must conform to Java naming standards.

The Use default location box is automatically checked when the wizard dialog is displayed.
The blade is therefore created in the location shown in the grayed-out Location box.

 To change the blade location, uncheck the Use default location box, and either enter
a file path in the Location box or browse to the desired location.

 You can optionally provide a Java package name for the generated blade Java classes.
If you do not provide one, the classes are placed in the default (unnamed) package.

© Caplin Systems Ltd. 2012 8

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

 You can optionally add the new project to an Eclipse working set.
Consult your Eclipse documentation for information about Eclipse working sets.

 Select Next to move to step 2 of the wizard.

3.2 Wizard step 2:

 First, make sure that the Caplin Integration Suite has been unzipped to a suitable location
 in the file system.

For example, the location could be a folder called caplin-integration-suite-[version]-[build],
which was created by unzipping a Caplin Integration Suite kit of the same name.

© Caplin Systems Ltd. 2012 9

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

 In the wizard, enter the location of the unzipped Caplin Integration Suite, either as a file path, or
by browsing to the location.

The wizard reports an error if the required contents of the suite are missing.
 In the API section of the wizard, select which Caplin Integration APIs to include in the project.
These are presented as Pricing Integration API, Trading Integration API, Permissioning
Integration API, and Alerts Integration API, and you can select one or more to create a blade.

Your selections determine which libraries are included in your blade project, how the blade is
configured, and which source files are created.

 If you have selected Pricing Integration API, you have the option to configure whether the
Integration Adapter will connect to Transformer or to the Liberator:
select the link Configure Pricing…

By default a Pricing Adapter will connect to Transformer to enable data filtering.

 Select Finish to create the blade.

© Caplin Systems Ltd. 2012 10

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

3.3 Wizard step 3:
 If at step 2 you selected Trading Integration API, or Trading Integration API
and Pricing Integration API, the wizard prompts for an Asset Class as shown below.

A valid Asset Class must only contain alpha-numeric characters; for example, FX.

If you also selected Pricing Integration API, the subject prefix for received prices is derived from
the asset class by adding a slash (‘/’) prefix and suffix. For example, if the entered asset class is
FX, the derived subject prefix is /FX/

© Caplin Systems Ltd. 2012 11

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

 If at step 2 you selected Pricing Integration API, but not Trading Integration API, the wizard
prompts for a Subject Prefix instead.

A valid Subject Prefix must only contain alphanumeric characters. It must begin with a slash
character (‘/’) and should end with a slash; for example, /FX/

© Caplin Systems Ltd. 2012 12

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

3.4 Blade file structure
The following picture of Eclipse’s Package Explorer shows the file structure of the newly created
blade project resulting from the example Wizard settings shown in the previous section.

© Caplin Systems Ltd. 2012 13

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade

The blade files are located under a directory that has the name of the blade. In the example, this
directory is MyBlade, marked red in the picture of Eclipse Package Explorer.

The src subdirectory contains a Java package in which the source code files are located. In the
example, the package is com.novobank.java.platformblade, marked green in the picture of
Eclipse Package Explorer, and the path of the corresponding subdirectory is
com/novobank/java/platformblade/.

Java source files

The Java source files created in this package are:
♦ <BladeName>.java

This file contains a main class and instantiates the providers used by your blade.

In the example, this file is MyBlade.java.

♦ The provider code stubs awaiting implementation.

There is a Java source file for each provider, with a name of the form
<BladeName><AdapterType>Adapter.java

In the example, there is just a single trading provider, whose code stub is in
MyBladeTradingAdapter.java.

Blade component configuration

The configuration for the blade components is located in subdirectories of <BladeName>/Blade

In the example (marked blue in the picture of Eclipse Package Explorer):
♦ The field definitions for the blade are in MyBlade/Blade/blade_config/fields.conf
♦ The DataSource configuration is in MyBlade/Blade/DataSource/etc/
♦ The Liberator configuration is in MyBlade/Blade/Liberator/etc/

The global_config subdirectory (marked purple in the picture) contains configuration files that
are used when the blade is connected to a remote host at run time (see section 4 “Running your
blade from Eclipse”.)

© Caplin Systems Ltd. 2012 14

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Running your blade from Eclipse

4 Running your blade from Eclipse
Caplin Platform blades are Java projects. However to run your blade in Eclipse, you need to use the
Caplin blade launcher.

Before running the blade:

An Adapter blade will usually connect to a Liberator or Transformer.
To ensure that the Liberator or Transformer is aware of the Adapter blade:

 Export the blade as a Config blade (see section 5.2)
 Deploy the exported Config blade to the Caplin Deployment Framework on the machine where
the Liberator/Transformer is located (it could of course be the machine where you are developing
the blade).

The hostnames configuration on your development machine (the machine where the blade is to run)
must point to the correct location of the Liberator/Transformer:

 Edit the hostnames in <BladeName>/global_config/hosts.conf as required.

For example, edit MyBlade/global_config/hosts.conf

Note: If you omit these steps, when you run the blade, it will attempt to connect
to the Liberator or Transformer but will fail to do so.

To run the blade using the Caplin blade launcher:

 From the Run Configurations dialog in Eclipse (Run > Run Configurations), select the Caplin
blade run configuration specific to your blade project.

The run configuration for your blade has a name of the form
<BladeName> Configuration.

For example, MyBlade Configuration.

© Caplin Systems Ltd. 2012 15

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Running your blade from Eclipse

 Then select Run.

Tip: During the run, log files are created in your blade’s DataSource/var directory.
System output is written to the Eclipse console.

© Caplin Systems Ltd. 2012 16

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Running your blade from Eclipse

4.1 Changing the blade’s run configuration

The Arguments tab of Eclipse’s Run Configurations dialog shows pre-configured Program
arguments that specify the location of configuration files for the blade:

© Caplin Systems Ltd. 2012 17

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Running your blade from Eclipse

 Typically, you should not alter the program arguments automatically entered for you in the
provided launcher, because the locations of these files must conform to the Caplin Platform
Deployment Framework’s expectation of a blade’s directory structure. However, you may define
additional program arguments required by your own code.

© Caplin Systems Ltd. 2012 18

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Running your blade from Eclipse

4.2 Creating a new run configuration
If a run configuration does not exist for your blade you can create one as follows:

 Right click on any file within your blade project and select Run As > Run Configurations…
 In the Run Configurations dialog, right click on the Caplin Blade icon and select New.

© Caplin Systems Ltd. 2012 19

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Running your blade from Eclipse

Eclipse creates a run configuration specific to your blade. You should name the run configuration so
it is distinct from others that you create.

Tip: If you check out an existing blade project from a source code management system, there
will probably be no run configuration defined for it, and you will have to create one.

4.3 Debugging the blade
Debugging your blade in Eclipse works in a similar way to running it:

 From the Debug Configurations dialog in Eclipse (Run> Debug Configurations), select the
Caplin blade run configuration specific to your blade project.

 Then select Debug.

© Caplin Systems Ltd. 2012 20

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Exporting your blade as a kit

5 Exporting your blade as a kit
To create a deployment blade that can be deployed to the Caplin Platform Deployment Framework,
you must export your blade project using the Caplin Blade Export Wizard. Deploy the resulting kit by
following the instructions in the document Caplin Platform: Deployment Framework Overview.

5.1 To export an Adapter blade:
1. Select any file within your blade project.

2. Right click and select Export.

3. In the Export dialog, navigate to Caplin and select Caplin Platform Blade.

4. Select Next.

© Caplin Systems Ltd. 2012 21

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Exporting your blade as a kit

The Export Caplin Platform Blade wizard is displayed:

5. In the Export Location box enter (or browse to) the path of the directory where
the blade is to be exported to.

6. Ensure the Export option Complete integration adapter blade is selected.

7. Select Finish.

The blade is exported as a Zip archive.

© Caplin Systems Ltd. 2012 22

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Exporting your blade as a kit

5.2 To export a Config blade:
1. Select any file within your blade project in the navigator pane.

2. Right click and select Export.

3. In the Export dialog, navigate to navigate to Caplin and select Caplin Platform Blade.

4. Select Next.

5. In the Export Location box enter (or browse to) the path of the directory where
the blade is to be exported to.

6. Ensure the Export option Configuration only blade is selected.

7. Select Finish.

The blade is exported as a Zip archive containing configuration for Liberator
and/or Transformer as appropriate.

© Caplin Systems Ltd. 2012 23

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade from the command line

6 Creating a blade from the command line
The Caplin Integration Suite Toolkit can be used at the command line to create a new blade project.
The command creates the directory tree, and generates blade configuration and source files.

The command line utility allows you to:
♦ Create a new blade project (create command – see section 6.1).
♦ Build a blade project on your development machine (build command – see section 6.2).
♦ Run a blade project on your development machine (run command – see section 6.3).
♦ Export an existing blade project as a Caplin Platform blade so it can be deployed to the Caplin

Deployment Framework (export command – see section 6.4).

Tip: The command line utility is located in the tools directory of the unzipped
Caplin Integration Suite.

 To run the Toolkit’s command line utility, enter a command string of the form:

java –jar cis-blade-toolkit_<ver>.<build_id>.jar <command> <arguments>

For example:

java –jar cis-blade-toolkit_5.0.0.230420.jar create <arguments>

Sections 6.1 to 6.4 detail the <arguments> applicable to each command, and show
example commands.

Additionally:

 To display basic usage instructions for the command line utility, type:

java -jar cis-blade-toolkit_<ver>.<build_id>.jar help

For example:

java -jar cis-blade-toolkit_5.0.0.230420.jar help

 For detailed help about each command, type:
java -jar cis-blade-toolkit_<ver>.<build_id>.jar help <command>

For example:
java -jar cis-blade-toolkit_<ver>.<build_id>.jar help create

© Caplin Systems Ltd. 2012 24

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade from the command line

6.1 Command for creating a new blade project

Tip: If the blade is to be developed in Eclipse, it is recommended that you create the blade
project using the Caplin Integration Adapter project wizard, as described in section 3 of this
document.

Command: create

Argument Required/Optional Description
-n

--name

Required The name of the Java blade
(and hence the name of its main class).

-k

--kit

Required Path to the unzipped Caplin Integration Suite kit.

-d

--directory

Optional The location of the blade project.
By default, the project structure is created in the current
working directory.

-p

--package

Optional The package containing the source code.
For example: com.novobank.adapter

-i

--include

Required The Caplin Integration APIs to include.
The selection can be one or more of pricing, trading,
alerts, or permissioning, separated by spaces.

-s Optional,
but see Description

Subject Prefix or Asset Class

If pricing is among the API selections, but not trading
you must specify a Subject Prefix. A valid Subject Prefix
must only contain alphanumeric characters. It must begin
with a slash and should end with a slash; for example,
/FX/

If trading is among the API selections, you must specify
an Asset Class. A valid Asset Class must only contain
alpha-numeric characters; for example, FX

If both trading and pricing are amongst the API
selections, you must specify an Asset Class, as defined
above. In this case, the subject prefix for received prices
is derived from the asset class by adding a slash (‘/’)
prefix and suffix. For example, if the entered asset class is
FX, the derived subject prefix is /FX/

© Caplin Systems Ltd. 2012 25

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade from the command line

© Caplin Systems Ltd. 2012 26

Argument Required/Optional Description
-L Optional Ensures that the Integration Adapter connects directly to

the Liberator. Use this argument when pricing is
specified in the –i argument.

Example: Create a new pricing and trading blade from scratch:

java –jar cis-blade-toolkit_5.0.0.<build_id>.jar create ^
–n MyBlade –k ../../CaplinIntegrationSuite/ -d NewDirectory ^
–i pricing –s /FX/ –p com.novobank.adapter

This example creates a pricing-only blade called MyBlade that uses the integration libraries from the
given CaplinIntegrationSuite. The blade project is created in a subdirectory called
NewDirectory within the current working directory.

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade from the command line

6.2 Command for building a blade
Command: build <blade-name>

The build command allows you to build a blade that can run on your development machine. The
command generates the configuration files necessary for running the blade locally. The only
argument required is the name of the blade, which can include its path.

Compilation errors are output to the command line.

Argument Required/Optional Description
-cp

-classpath

Optional The class-path.
By default the builder uses all jars it finds in
Blade/Datasource/lib to create a class-path (in
addition to the class-path defined by the environment,
if any). This argument can be used to override the
default with the jars in the specified class-path.

build command example:

java –jar cis-blade-toolkit_<ver>.<build_id>.jar build <blade-name>

© Caplin Systems Ltd. 2012 27

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade from the command line

6.3 Command for running a blade
Command: run <blade-name>

This command runs the blade on your development machine once you have built it.

Before running the blade:

An Adapter blade will usually connect to a Liberator or Transformer.
To ensure that the Liberator or Transformer is aware of the Adapter blade:

 Export the blade as a Config blade (see the export command in section 6.4)
 Deploy the exported Config blade to the Caplin Deployment Framework on the machine where
the Liberator/Transformer is located (it could of course be the machine where you are developing
the blade).

The hostnames configuration on your development machine (the machine where the blade is to run)
must point to the correct location of the Liberator/Transformer:

 Edit the hostnames in <BladeName>/global_config/hosts.conf as required.

For example, edit MyBlade/global_config/hosts.conf

Note: If you omit these steps, when you run the blade, it will attempt to connect
to the Liberator or Transformer but will fail to do so.

run command details

The only argument required to run is the name of the blade. If the blade is not in the current working
directory, use the –d or –directory argument to specify its path.

While the blade is running you can stop it at any time by pressing the key combination Control+C
(shown as ^C in the command example below).

Any runtime errors are output to the command line.

Argument Required/Optional Description
-cp

-classpath

Optional The class-path.
By default the runner uses all jars it finds in
Blade/Datasource/lib to create a class-path (in
addition to the class-path defined by the environment,
if any). This argument can be used to override the
default with the jars in the specified class-path.

-d

--directory

Optional The path to the blade.
If no path is specified, the blade is assumed to be in
the current working directory.

© Caplin Systems Ltd. 2012 28

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade from the command line

© Caplin Systems Ltd. 2012 29

Argument Required/Optional Description
-m

--mainclass

Optional The name of the blade’s main class.
If the blade’s main-class name has been changed
since you created the blade project, you must supply
this argument.

The default is <blade-name>DataSource.

run command example:

java –jar cis-blade-toolkit_<ver>.<build_id>.jar run <blade-name> ^
-d C:\Projects

 <blade-name> blade is running (^C to exit)

^C

 <blade-name> blade is shutting down

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade from the command line

6.4 Command for exporting an existing blade project
Command: export

Argument Required/Optional Description
-n

--blade-name

Required The blade name.

-p

--class-path

Required A class path string that specifies the jars of any
libraries used by the blade that are not in the Caplin
Integration Suite.

Separate the individual jar paths by spaces, and
enclose the whole string in quotes ("…").
Include this argument, if you want to invoke the
exported jar with the command java –jar

-A

--compiled-
classes

Optional The path to the compiled Java classes.
The default is the bin directory in the root directory of
the project.

-o

--output

Optional The output location of the archive.
The default is the current working directory.

--config-only Optional Export a Config blade.

Note: Before exporting your project as a blade you must first compile the blade application’s
source code, otherwise the export operation will fail. For information on building your blade,
see section 6.2.

Tip: The export command expects the compiled classes to be in the bin directory within the root
directory of the project. However, if they have been created in a different location, you can
use the –A (or --compiled-classes) argument to tell the export command where to find
them.

© Caplin Systems Ltd. 2012 30

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Creating a blade from the command line

Export command example usage:

java –jar cis-blade-toolkit_<ver>.<build_id>.jar export X:\CaplinBlades\

This example exports a blade called MyPricingAdapter located in X:\CaplinBlades\

© Caplin Systems Ltd. 2012 31

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Glossary of terms and acronyms

7 Glossary of terms and acronyms
This section contains a glossary of terms, abbreviations, and acronyms used in this document.

Term Definition

Adapter blade A blade for the Caplin Platform that consists of an
Integration Adapter and associated configuration.

Alerts Integration API An integration API that allows you to send alert notifications
into the Caplin Platform from other systems.

Blade A re-usable software module containing the code and
resources needed to implement a business feature.
In this document the term blade specifically means a Caplin
Platform blade.

Blade toolkit A set of commands to create, build and export Caplin
Platform blades. See sections 3, 4, 5, and 6 of this document.

Caplin Integration Suite (CIS) A set of APIs and tools for creating adapters that integrate the
Caplin Platform with external systems. It includes the blade
toolkit.

Caplin Liberator A financial internet hub that delivers data and messages in
real time to and from subscribers over any network.

Caplin Platform An integrated suite of software that supports the services and
distribution capabilities needed for web trading. It consists of
Caplin Liberator, Caplin Transformer, Caplin KeyMaster,
Caplin Director, and Caplin Management Console.

Caplin Platform blade A blade designed for use with the Caplin Platform. A Caplin
Platform blade can be an Adapter blade, Config blade, or
Service blade.

Caplin Platform Deployment
Framework

A configuration and deployment environment for the Caplin
Platform that supports Caplin Platform blades.

Caplin Transformer An event-driven, real-time data transformation engine
optimised for web trading services. These services are
implemented in Transformer Modules.

Config blade A Caplin Platform blade that enables a feature through
configuration.

© Caplin Systems Ltd. 2012 32

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Glossary of terms and acronyms

© Caplin Systems Ltd. 2012 33

Term Definition

DataSource DataSource is the messaging infrastructure used by the Caplin
Platform and Integration Adapters.

In some older documents DataSource is also used as a
synonym (but non-preferred term) for DataSource
application.

DataSource API An API that allows server applications (including Integration
Adapters) to communicate with the Caplin Platform.

DataSource application An application that uses the DataSource API.
Caplin Liberator, Caplin Transformer, and Integration
Adapters are all DataSource applications.

Eclipse An integrated software development environment (IDE) that
supports Java.
For more information about Eclipse, see www.eclipse.org

Integration Adapter A server application that allows an external system to
communicate with the Caplin Platform. An Integration Adapter
is a DataSource application and is created using the Caplin
Integration Suite.

Liberator Short for Caplin Liberator.

Liberator Auth Module A software module in Caplin Liberator that performs
authentication and permissioning functions.

Permissioning The process of determining the access rights that an end-user
has to resources, such as data and functionality.
Also known as “authorization”.

Permissioning Integration API An API for sending permissioning information to the Caplin
Platform. The Permissioning Integration API is part of the
Caplin Integration Suite.

Pricing Integration API An API for sending pricing information to the Caplin Platform.
The Pricing Integration API is part of the Caplin Integration
Suite.

Service blade A blade for the Caplin Platform that includes a Transformer
module or a Liberator Auth module.

Trade model The definition of a particular trading workflow. It specifies all
the states that a trade can be in, and the transitions between
those states.

http://www.eclipse.org/

Caplin Integration Suite 6.0
How To Create A Platform Java Blade Glossary of terms and acronyms

© Caplin Systems Ltd. 2012 34

Term Definition

Trading Integration API An API for creating an Integration Adapter for trade
messages that intelligently manages the Trade model for each
trade. The Trading Integration API is part of the Caplin
Integration Suite.

Transformer Short for Caplin Transformer.

Transformer Module A software module in Caplin Transformer that implements a
service. For example, the Refiner module provides a Container
filtering and sorting service.

Caplin Integration Suite 6.0: How To Create A Platform Java Blade, December 2012, Release 1

© Caplin Systems Ltd. 2012

Contact Us
Caplin Systems Ltd

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

www.caplin.com

 The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of this
publication may be reproduced or transmitted in any
form or by any means without the written
authorization of an Officer of Caplin Systems Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not permitted
to use any Mark without the prior written consent of
Caplin or the owner of that Mark.

This publication is provided "as is" without warranty of
any kind, either express or implied, including, but not
limited to, warranties of merchantability, fitness for a
particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to the
information herein; these changes will be
incorporated in new editions of this publication. Caplin
Systems Limited may make improvements and/or
changes in the product(s) and/or the program(s)
described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

	1 Preface
	1.1 What this document contains
	About Caplin document formats

	1.2 Who should read this document
	1.3 Related documents
	1.4 Typographical conventions
	1.5 Feedback
	1.6 Acknowledgments

	2 About the Caplin Integration Suite Toolkit
	2.1 What is the Caplin Integration Suite Toolkit?
	2.2 Supported blade types
	2.3 Installing the plugin and the command line utility

	3 Creating a blade
	3.1 Wizard step 1:
	3.2 Wizard step 2:
	3.3 Wizard step 3:
	3.4 Blade file structure

	4 Running your blade from Eclipse
	4.1 Changing the blade’s run configuration
	4.2 Creating a new run configuration
	4.3 Debugging the blade

	5 Exporting your blade as a kit
	5.1 To export an Adapter blade:
	5.2 To export a Config blade:

	6 Creating a blade from the command line
	6.1 Command for creating a new blade project
	6.2 Command for building a blade
	6.3 Command for running a blade
	6.4 Command for exporting an existing blade project

	7 Glossary of terms and acronyms

