
How To Add

April 2011

C O N F I D E N T I A L

Caplin Trader 2.2

 Localization Support

i

How To Add Localization Support

© Caplin Systems Ltd. 2011

Contents

CONFIDENTIAL

Caplin Trader 2.2

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 2Related documents1.3

.. 2Typographical conventions1.4

.. 3Feedback1.5

.. 3Acknowledgments1.6

.. 4Introduction2

.. 4How Localization Works2.1

.. 5Assumptions and restrictions3

.. 6Adding localization support to an application4

.. 6Localization properties files4.1

.. 6Location of properties files

.. 8Content of properties files

.. 9Date and number properties

.. 10Defining localizable items in JavaScript4.2

.. 10Displaying strings

.. 11Displaying strings with named variables

.. 12Displaying dates

.. 14Displaying time

.. 16Displaying numbers

.. 19Displaying numbers using a formatter class

.. 20Parsing numbers

.. 23Defining localizable items in Configuration XML4.3

.. 23XML that defines static text

.. 25Defining localizable items in the application database4.4

.. 25Re-loading the application database

.. 26Identifying the XML that is held in the application database

.. 27Defining localizable items in HTML4.5

.. 28Ensuring a good quality translation5

.. 29Tools for implementing localization support6

ii

How To Add Localization Support

© Caplin Systems Ltd. 2011

Contents

CONFIDENTIAL

Caplin Trader 2.2

.. 30Glossary of terms and acronyms7

Preface

1© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

1 Preface

1.1 What this document contains

As supplied, Caplin Trader builds English language applications by default. This document explains how
to code a Caplin Trader application so that it can subsequently be localized to other languages and local
preferences (locales). It includes coding guidelines to help minimize problems and errors in the translation
process.

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for Technical Managers and Software Developers who need to implement
support for localization within a Caplin Trader application.

http://support.microsoft.com/kb/896054/

Preface

2© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

1.3 Related documents

Caplin Trader: Localization Overview And Concepts

Gives an overview of localization within Caplin Trader. It covers localization concepts, how support
for localization is built in to Caplin Trader, and how Caplin Trader applications are localized.

Caplin Trader: How To Localize Your Application

Explains how to localize a Caplin Trader application to display text in a different language and display
dates, times, number formats, and other items according to local preferences.

Caplin Trader: API Reference

The API reference documentation provided with Caplin Trader. The classes and interfaces of this API
allow you to extend the capabilities of Caplin Trader.

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

Glossary term Items that appear in the “Glossary of terms and acronyms”

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

 Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

Preface

3© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

1.6 Acknowledgments

Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Java is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. or other countries.

https://support.caplin.com/documentfeedback/?product=Caplin Trader 2.2&doctitle=How To Add Localization Support&date=April 2011&release=1

Introduction

4© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

2 Introduction

Applications written using the Caplin Trader framework, release 2.2 and later, are capable of displaying
text to the end-user in a language other than English (the default language), with numbers and dates
formatted for the displayed language. This is called localizing the application.

There are two stages to localizing a Caplin Trader application:

1. Write the application in a way that supports localization. This involves placing localization keys in
the application code instead of the text that is displayed to the end-user. When the application runs,
the Caplin Trader framework substitutes these localization keys with text in the required language.

2. Prepare properties files that contain language translations for each localization key. It is this
translated (localized) text that the Caplin Trader framework displays to the end-user at run time. A set
of properties files must be created for each language or locale that your application supports.

This document describes the first stage in this process: how to write an application that supports
localization. The document Caplin Trader: How To Localize Your Application describes the second
stage: how to localize an application for a particular locale.

For an overview of localization concepts, see the document Caplin Trader: Localization Overview And
Concepts.

2.1 How Localization Works

I18nBundle is a Java servlet that resides on the application server, and runs when the server receives a
browser request for the Caplin Trader application. Its function is to return the localization properties that
map localization keys to the localized text that is displayed in the browser.

I18N bundles localization properties for the
requested locale

Assumptions and restrictions

5© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

3 Assumptions and restrictions

The Caplin Trader framework

The installed Caplin Trader framework must be at release 2.2 or later, and Caplin Trader applications that
support localization must be built using this framework.

File paths referred to in this document

For convenience, this document assumes that the Caplin Trader framework, Caplin Trader blades code,
and your application code are held in a software repository, and installed to the following directory on a
Windows PC:

X:\scm_root\NovoBank (where X is the drive mapping)

It also assumes that your application is based on the Reference Implementation of Caplin Trader, which is
supplied with the Caplin Trader installation kit.

Locale identifiers

In Caplin Trader each locale is defined by a locale identifier, such as:

en_US American English

en_GB British variant of English

fr_FR Standard French

fr_CA Canadian variant of French

cz_CZ Czech

Locale identifiers are of the form:

<language-code>_<country>

where:

<language-code> follows the ISO 639.1 standard for 2 letter language codes.

<country> follows the ISO 3166 standard for 2 letter country codes.

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://www.iso.org/iso/english_country_names_and_code_elements
http://www.iso.org/iso/english_country_names_and_code_elements

Adding localization support to an application

6© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

4 Adding localization support to an application

Before a Caplin Trader application can be localized for a particular locale, the application code must be
written in a way that supports localization. This applies to both existing and new applications.

4.1 Localization properties files

Localization properties files group together the localization properties for a particular locale. Each
localization property sets the value of a localization key, and there is a set of properties files for each
supported locale. Localization properties define the following:

The localized text that is displayed on the screen to the end-user.

Date formats.

Number formats.

The Caplin Trader framework ships with properties files for the English language:

Filename Content

en.properties Localization properties for the American variant of the English language.

en_GB.properties Localization properties for the British variant of the English language.

Your installed version of the Caplin Trader framework may have properties files for other locales (see the
release notes for further details).

Character Encoding

Localization properties files must be UTF-8 encoded, and must not have any Byte-Order Mark (BOM)
start bytes.

Location of properties files

The Caplin Trader framework

Localization properties files are shipped with the following software modules of the Caplin Trader
framework.

Framework libraries

Blades

Caplinx (the code for the Reference Implementation of Caplin Trader)

By convention, properties files are located in subdirectories of the software module, and the path to each
file takes the general form:

 .../i18n/en/en.properties.

For example, if Caplin Trader blades code is checked in to a repository at:

Novobank/1.0/blades

then the American English properties file for blades-common software is located at:

Novobank/1.0/blades/blades-common/i18n/en/en.properties

Adding localization support to an application

7© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

The properties files supplied with the Caplin Trader framework must not be modified or deleted. When you
localize your application, you must provide localizations for the properties defined in these files
(see Caplin Trader: How To Localize Your Application for further information).

Application properties files

When you create a properties file for a new or existing Caplin Trader application, it must be stored in a file
path that does not get overridden when the Caplin Trader framework is upgraded.

For example, if your application code is checked in to a repository at:

Novobank/1.0/novotrader/novox

then the recommended location of English properties files is:

Novobank/1.0/novotrader/novox/i18n/en

This ensures that your properties files do not get overridden when you build your application or upgrade
the Caplin Trader framework.

Adding localization support to an application

8© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Content of properties files

Localization properties files can contain any of the following:

Lines that define localization properties (one property per line)

Comment lines

Blank lines

A comment line must start with the # character and can contain any text.

Example comment line

This is a comment.
A comment can contain white space, and punctuation such as - , and !

Lines that define localization properties use the following notation:

Syntax of a localization property

<localization_key> = <localization_value>

In the notation shown above, <localization_key> is the name of the key and
<localization_value> the value assigned to the key. Note that the space before and after the = sign
is optional.

The name of a localization key can be assigned to a namespace.

Example of a namespaced localization key

novox.layout.name.foreign_exchange=Foreign Exchange

In this case, the localization key is in the novox.layout.name namespace. When you create keys for
your own application, you should place each key in a unique namespace (such as novox). This ensures
that localization keys in your application do not have the same name as localization keys supplied with the
Caplin Trader framework.

The value of a localization key can be any string of characters, including white space and punctuation. In
the example above, the value of the key is set to Foreign Exchange.

Using variables in a key value

The value of a key can specify one or more variables, by enclosing the name of each variable inside []
characters.

Example localization value that takes variables

novox.account.message=Your account has [amount] dollars available.

In the example above, the value of the key specifies the named variable amount.

When a localization key takes named variables, the application code that uses the key must provide a
value for each named variable (see Defining localizable items in JavaScript).10

Adding localization support to an application

9© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Note: Variables cannot be used when the localization key is referred to in XML or HTML templates.

Adding a leading or trailing space to a key value

To add a leading or trailing white space to a key value, escape the space with a \ character. The following
example adds a leading space to a key value.

Localization key value with leading space

novox.example.message=\ This text has a leading space.

Splitting key values over more than one line in the properties file

To split a key value over more than one line, add a space followed by the \ character at the end of the line
where the line splits.

Splitting a key value over two lines

novox.example.message=This text value \
is split over two lines.

Line splits only affect the text in the properties file, and not how the text is displayed on the screen.

Date and number properties

Properties files are shipped with the Caplin Trader framework that define localization keys and English
settings (American and British) for the following date and number properties:

Long and short month names (for example ct.i18n.date.month.january=January)

Long and short day names (for example ct.i18n.date.month.monday=Monday)

Long and short date formats (for example ct.i18n.date.format=d-m-Y)

Time format separator (as in 04:30)

Decimal radix character (as in 4.2)

Number grouping separator (as in 3,200,000)

Number multipliers (as when 5k represents 5,000)

Localization keys for date and number properties can be used in your application code. If you localize your
application for a locale that is not already supported by the Caplin Trader framework, the English values of
these keys must be translated for that new locale.

Adding localization support to an application

10© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

4.2 Defining localizable items in JavaScript

The caplin.i18n.Translator class of the Caplin Trader API allows you to define items in JavaScript that
support localization. The way you define these items depends on the item you want to localize.

Generally speaking, exceptions, global system errors, and logs do not require localization support. On
the other hand, if an exception is displayed to the end-user then the exception text must be coded in a way
that supports localization.

Take for example an input validation system that throws an exception if a user enters a word into a number
field. If that exception is caught by a display manager that displays the exception to the end-user, the
exception text must be coded in a way that supports localization.

Classes in the caplin.element.formatter and caplin.element.parser namespaces also support
localization. These classes are normally part of element renderers and configured in XML, but you can call
these classes from the JavaScript code of your application.

Displaying strings

The global JavaScript function ct.i18n() returns the localized value of a localization key. This allows
you to place localization keys in your JavaScript code instead of the text that is displayed on the screen.

The following example shows how JavaScript code that displays text in an alert box can be modified to
support localization. Although the code in this example is simple, the same process can be applied to code
that uses the classes and methods of the Caplin Trader API to display text to the end-user.

Here is the example JavaScript code that must be modified to support localization.

Alert code to be modified

alert("An error occurred, please try again later.");

To add localization support to this code, first create a property that sets the value of a localization key to
the alert text you want to display, and save this to the American English version of your application
properties file (en.properties).

Create a localization property in en.properties

novox.error.message=An error occurred, please try again later.

You can now use this localization key in the JavaScript code that displays the alert message.

Alert code that supports localization

alert(ct.i18n("novox.error.message"));

The JavaScript code for the alert message now supports localization. For example, if the application is
later localized for Spanish and es_ES is the current locale, the code shown above will display the alert
message in Spanish.

For further information about the ct.i18n() function, see the description of the caplin.i18n.Translator
class in the Caplin Trader API Reference document.

Adding localization support to an application

11© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Displaying strings with named variables

The global JavaScript function ct.i18n() returns the localized value of a localization key when the string
value of the key specifies named variables. In this case the ct.i18n() function must be passed two
arguments:

The name of the localization key.

A JavaScript object containing the name and value of each named variable.

The following example shows how JavaScript code that displays text in an alert box can be modified to
support localization.

Alert code to be modified

var amount=20000;
alert("Your account has " + amount + " dollars available.");

To add localization support to this code, first create a property that sets the value of a localization key to
the alert text you want to display, and save this to the American English version of your application
properties file (en.properties).

Create a localization property

novox.funds.message=Your account has [amount] dollars available.

When the value of a localization key specifies a named variable, the name of the variable must be placed
inside [] characters. In this case the name of the variable is amount.

You can now use this localization key in the JavaScript code that displays the alert message.

Alert code that supports localization

alert(ct.i18n("novox.funds.message", {amount: 20000}));

Because the value of the localization key specifies a named variable, the name and value of this variable
must be passed to the ct.i18n() function as a JavaScript object. In this case the name of the variable
is amount and its value is 20000, so the object passed in is {amount: 20000}.

The JavaScript code for the alert message now supports localization. For example, if the application is
later localized for Spanish and es_ES is the current locale, the code shown above will display the alert
message in Spanish.

If the name and value of the amount variable are not passed to the ct.i18n() function, the [amount]
characters are treated as plain text and not as a reference to a variable.

Omitting the name and value of the variable

alert(ct.i18n("novox.funds.message"));

In this case the text of the alert message is the literal string
"Your account has [amount] dollars available.".

For further information about the ct.i18n() function, see the description of the caplin.i18n.Translator
class in the Caplin Trader API Reference document.

Adding localization support to an application

12© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Displaying dates

The formatDate() method of the caplin.i18n.Translator class formats a date to the pattern specified
by a date format string.

If a date format string is not passed in as an argument to this method, the date is formatted to a pattern
specified by the localization key ct.i18n.date.format.

The following example shows how JavaScript code that displays a date in an alert box can be modified to
support localization using this method.

Alert code to be modified

alert(new Date());

The alert displayed on the screen would look like the following:

To add localization support for this alert, place the code new Date() inside a call to the formatDate()
method.

Because a localization key that defines the date format string is supplied with the Caplin Trader framework
(ct.i18n.date.format), there is no need to pass a date format string to the
formatDate() method.

Alert code that supports localization

alert(caplin.i18n.getTranslator().formatDate(new Date()));

The JavaScript code for the alert message now supports localization. For example, if the application is
later localized for Spanish and es_ES is the current locale, the code shown above will display the alert
message using the Spanish value of the date format string.

Because the American English property for the ct.i18n.date.format key sets the date format string to
 m-d-Y, the alert message would look like the following if en_US was the current locale:

For further information about the formatDate() method of the caplin.i18n.Translator class, see the
Caplin Trader API Reference document.

Adding localization support to an application

13© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Displaying part of a date

The formatDate() method of the caplin.i18n.Translator class formats a date to the pattern specified
by a date format string argument. For example, when F is passed in as the date format string, the method
returns the month part of the date (as defined by the localization property for that month).

The following example displays the localized name of the current month in an alert box.

Alert code that supports localization

alert(caplin.i18n.getTranslator().formatDate(new Date(), "F"));

For example, if English is the current locale and the current month is March, the formatDate() method
returns the value defined by the localization key ct.i18n.date.month.march. In this case the alert
message would look like the following:

The same approach can be applied to short month abbreviations, and long and short day names, by
passing in the appropriate date format string argument.

Format string Localization key that determines the
localized value

Description

F ct.i18n.date.month.<month-name> Long month name (such as March)

M ct.i18n.date.month.short.<month-name> Short month name (such as Mar)

l ct.i18n.date.day.<day-name> Long day name (such as Monday)

D ct.i18n.date.day.short.<day-name> Short day name (such as Mon)

For further information about the formatDate() method of the caplin.i18n.Translator class, and the
permitted format string arguments, see the Caplin Trader API Reference document.

Adding localization support to an application

14© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Displaying time

The formatTime() method of the caplin.i18n.Translator class uses a time format separator to format a
number as time. Because the time format separator is defined by a localization key, the formatTime()
method already supports localization.

Localization key and English value Description

ct.i18n.time.format.separator=: The time format separator (as in 10:22)

The following example shows a number being passed to the formatTime() method. In this case the
returned value is displayed in an alert box.

Formatting a number as an amount

alert(caplin.i18n.getTranslator().formatTime(104619));

Because the current locale is American English, the formatTime() method uses : as the time format
separator. The alert displayed on the screen would look like the following:

The formatTime() method also formats numbers containing four numerical characters (such as 1046,
which would be formatted as 10:46). The method throws an exception if the number passed in contains
more than six digits, or contains characters that are not numerical.

For further information about the formatTime() method of the caplin.i18n.Translator class, see the
Caplin Trader API Reference document.

Adding localization support to an application

15© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Displaying the current time

The formatDate() method of the caplin.i18n.Translator class formats a date to the pattern specified
by a date format string argument, and can be used to display the current time.

The following example shows JavaScript code that uses this method to display the current time in an alert
box.

Displaying the current time in an alert box

alert(caplin.i18n.getTranslator().formatDate(new Date(), "g:i a"));

In this example, the formatDate() method is passed a format string that is constructed from the
following format characters:

Format string characters

Character Description

g The 12-hour format of the hour, without leading zeros.

i The minutes past the hour, with leading zeros.

: The character that separates hours from minutes.

a The lowercase 12-hour clock notation (am or pm).

The alert displayed on the screen would look like the following:

To add localization support to this code, replace the : format character in the date format string with the
localized time format separator. The localized time format separator is returned by the global ct.i18n()
function when it is passed the localization key ct.i18n.time.format.separator.

Alert code that supports localization

var localizedTimeFormatSeparator = ct.i18n("ct.i18n.time.format.separator");
var timeFormatString = "g" + localizedTimeFormatSeparator + "i a";
alert(caplin.i18n.getTranslator().formatDate(new Date(), timeFormatString));

The JavaScript code for the alert message now supports localization.

For further information about the formatDate() method of the caplin.i18n.Translator class, the
permitted format string arguments, and the global ct.i18n() function, see the Caplin Trader API
Reference document.

Adding localization support to an application

16© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Displaying numbers

The formatNumber() method of the caplin.i18n.Translator class formats a number using the following
localization keys:

Localization key and English value Description

ct.i18n.decimal.radix.character=. Decimal radix character (as in 4.2)

ct.i18n.number.grouping.separator=, Number grouping separator (as in 3,200,000)

The following example shows how JavaScript code that displays a number in an alert box can be modified
to support localization using this method.

Alert code to be modified

alert(4012.5);

The alert displayed on the screen would look like the following:

To add localization support for this alert, place the number 4012.5 inside a call to the formatNumber()
method.

Alert code that supports localization

alert(caplin.i18n.getTranslator().formatNumber(4012.5));

The JavaScript code for the alert message now supports localization. For example, if the application is
later localized for Spanish and es_ES is the current locale, the code shown above will display the alert
message using the Spanish radix character and grouping separator.

The alert message would look like the following if English was the current locale:

For further information about the formatNumber() method of the caplin.i18n.Translator class, see the
Caplin Trader API Reference document.

Adding localization support to an application

17© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Setting the number grouping separator to a space

Some locales use white space as the number grouping separator (as in 22 359). To set a space
character as the number grouping separator, escape the space with the \ character in the property that
defines the number grouping separator.

Setting a key value to white space

ct.i18n.number.grouping.separator=\<white space character>

In the example above, <white space character> represents the space character.

For further information, see the document Caplin Trader: How To Localize Your Application.

Customized number formatting

Sometimes it is necessary to customize the way that a number is formatted.

The following example shows how JavaScript code that displays a floating point number, but that has no
number grouping separators, can be modified to support localization.

Alert code to be modified

alert(123456.78);

The alert displayed on the screen would look like the following:

To add localization support for this alert, replace the decimal point with the localized decimal radix
character.

Alert code that supports localization

var number = 1234567.98
var localNumber =
 (number + "").replace(".", ct.i18n("ct.i18n.decimal.radix.character"));
alert(localNumber);

Adding localization support to an application

18© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

The JavaScript code for the alert message now supports localization. For example, if the application is
later localized for Spanish and es_ES is the current locale, the alert message would look like the following:

This example also assumes ct.i18n.decimal.radix.character=, in the Spanish properties file

(es.properties).

For further information about the ct.i18n() function, see the description of the caplin.i18n.Translator
class in the Caplin Trader API Reference document.

Adding localization support to an application

19© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Displaying numbers using a formatter class

Classes of the Caplin Trader API that format numbers are called by the Caplin Trader framework when
they are part of an element renderer that renders data in display component. Element renderers are
configured in XML, but you can also call formatter classes from the JavaScript code in your application.

Displaying amounts

The format() method of the caplin.element.formatter.AmountFormatter class formats a number as
an amount with a trailing amount suffix that represents either a thousands, millions, or billions multiplier.
Because amount suffixes are defined by localization properties, the format() method already supports
localization.

Amount suffixes

Localization key and English value Description

ct.element.number.formatting.amount.
suffix.short.thousands=K

The amount suffix that represents one thousand
(for example 5K = 5,000).

ct.element.number.formatting.amount.
suffix.short.millions=M

The amount suffix that represents one million (for
example 5M = 5,000,000).

ct.element.number.formatting.amount.
suffix.short.billions=B

The amount suffix that represents one billion (for
example 5B = 5,000,000,000).

The following example shows a number being passed to the format() method when English is the
current locale. The formatted number in this example is displayed in an alert box.

Formatting a number as an amount

alert(caplin.element.formatter.AmountFormatter.format(12340, {}));

Because English is the current locale, the format() method returns a floating point number and the K
amount token suffix (the amount token representing the one thousand multiplier).

The alert displayed on the screen would look like the following:

If the number passed to the format() method is less than one thousand, the number is returned without
an amount token suffix.

For further information about the caplin.element.formatter.AmountFormatter class, see the Caplin
Trader API Reference document.

Adding localization support to an application

20© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Parsing numbers

Classes of the Caplin Trader API that parse numbers are called by the Caplin Trader framework when an
end-user enters data into the input control of a display component. Input controls use element renderers
that are configured in XML, but you can also call parser classes from the JavaScript code in your
application.

Parsing floating point numbers

The parse() method of the caplin.element.parser.ThousandsParser removes the number grouping
separator from a floating point number. Because the number grouping separator and decimal radix
character are defined by localization properties, the parse() method already supports localization.

Localization key Description

ct.i18n.decimal.radix.character Decimal radix character (as in 4.2)

ct.i18n.number.grouping.separator Number grouping separator (as in 3,200,000)

The following example shows a floating point number being passed to the parse() method when English
is the current locale.

Parsing a floating point number

caplin.element.parser.ThousandsParser.parse("5,000,000.0", {});

Because English is the current locale, the parse() method removes the ',' character and returns the
number 5000000.0.

If the number passed to the parse method contains the wrong number grouping separator or the wrong
decimal radix character for the current locale, the number is returned unchanged.

For further information about the caplin.element.parser.ThousandsParser class, see the Caplin Trader
API Reference document.

Adding localization support to an application

21© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Parsing amount suffixes - the AmountParser class

The parse() method of the caplin.element.parser.AmountParser returns a number if it is passed in a
number and an amount suffix. Because amount suffixes are defined by localization properties, the parse
() method already supports localization.

Amount token suffixes

Localization key and English value Description

ct.element.number.formatting.amount.
suffix.short.thousands=K

The amount suffix that represents one thousand
(for example 5K = 5,000).

ct.element.number.formatting.amount.
suffix.short.millions=M

The amount suffix that represents one million (for
example 5M = 5,000,000).

ct.element.number.formatting.amount.
suffix.short.billions=B

The amount suffix that represents one billion (for
example 5B = 5,000,000,000).

Amount suffixes are not case sensitive.

The following example shows a number with an amount token suffix being passed to the parse() method
when English is the current locale.

Parsing a number that has an amount token suffix

caplin.element.parser.AmountParser.parse("5K", {});

Because English is the current locale, the parse() method multiplies 5 by one thousand (the multiplier for
the amount token K), and returns the number 5000.

If the amount passed to the parse() method contains an invalid amount token, or if the prefix to the
amount token is not a number, null is returned. When you localize your application you can set different
values for these localization keys, but you cannot add new keys or change the multiplier value of these
keys.

For further information about the caplin.element.parser.AmountParser class, see the Caplin Trader API
Reference document.

Adding localization support to an application

22© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Parsing amount suffixes - the LocalisedAmountParser class

The parse() method of the caplin.element.parser.LocalisedAmountParser returns a number if it is
passed in a number and an amount suffix. Because amount suffixes are defined by localization properties,
the parse method already supports localization.

Amount token multiplier suffixes

Localization key and English value Description

ct.element.number.formatting.multiplier.
k=1000

The multiplier when k or K is the amount suffix (for
example 5k = 5 x 1000).

ct.element.number.formatting.multiplier.
m=1000000

The multiplier when m or M is the amount suffix
(for example 5m = 5 x 1000000).

ct.element.number.formatting.multiplier.
b=1000000000

The multiplier when b or B is the amount suffix (for
example 5b = 5 x 1000000000).

The following example shows a number and amount suffix being passed to the parse() method when
English is the current locale.

Parsing a number that has an amount token multiplier

caplin.element.parser.LocalisedAmountParser.parse("5M");

Because English is the current locale, the parse() method multiplies 5 by one million (the multiplier when
the amount suffix is m or M), and returns the number 5000000.

If the amount passed to the parse() method contains an invalid amount suffix, or if the prefix to the
amount suffix is not a number, null is returned.

When you localize your application you can set different multiplier values for these keys, and add new keys
that have other multiplier values. This is useful for languages that use different amount suffixes and
multipliers.

For further information about the caplin.element.parser.LocalisedAmountParser class, see the Caplin
Trader API Reference document.

Adding localization support to an application

23© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

4.3 Defining localizable items in Configuration XML

The display components of a Caplin Trader application display information to the end-user, and allow the
end-user to interact with the application (for example, by clicking a button or entering a number). The
information that is displayed on the screen may be in the form of text, dates, or numbers.

Most display components (such as grids and tiles) are configured in XML, as is the layout of these
components on the screen. Before you can localize the application, you must make sure that the
configuration XML supports localization.

XML that defines static text

Configuration XML can contain static text that is displayed on the screen to the end-user. To add
localization support to this XML, you must replace this static text with localization tokens. Each
localization token identifies a localization key, and when the Caplin Trader framework parses the
configuration XML, it replaces each localization token that it finds with the localized value of the
localization key, which is the text that is displayed on the screen.

The following example shows how XML that configures a grid display component can be modified to
support localization. Here is what the grid looks like on the screen:

A Grid displaying prices for currency
pairs

The rows of the grid contain prices for currency pairs. While this part of the grid is configured in XML, it
does not need to be modified, as the information you see on the screen is generated dynamically at run
time.

The static text displayed in the column headers (Currency, Bid, and Ask), and the text that identifies the

name of the grid (Major), is also defined in XML. It is this XML that must be modified, by replacing the
static text with localization tokens.

Here is what the XML that must be modified looks like for the Currency column:

XML to be modified (Currency column)

<column id="description"
fields="InstrumentDescription"
displayName="Currency"
width="80"
mandatory="true"
primaryFieldType="text"/>

The displayName attribute of the <column> tag sets the header text of the column. In this case the
header text is set to 'Currency'.

Adding localization support to an application

24© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

To add localization support to this code, first create a property that sets the value of a localization key to
the text that you want as the column header, and save this to the American English version of your
application properties file (en.properties).

Create a localization property

novox.column.header.currency=Currency

To create a localization token from this localization key, place the name of the localization key inside curly
braces {} that are prefixed by the @ character. This localization token can now be used in the XML that

defines the header text for the Currency column.

XML that supports localization (Currency column)

<column id="description"
fields="InstrumentDescription"
displayName="@{novox.column.header.currency}"
width="80"
mandatory="true"
primaryFieldType="text"/>

The XML configuration for the Currency column header text now supports localization. For example, if the
application is later localized for Spanish and es_ES is the current locale, the header text of the Currency
column will be displayed in Spanish.

In a similar manner, localization tokens also need to be created and inserted in the configuration XML for

the static text of the Bid and Ask columns headers, and for the text that identifies the name of the grid (

Major).

When creating a new application, or when modifying an existing application, you must make sure that the
configuration XML supports localization, by replacing the static text that is displayed on the screen with
localization tokens, as shown in the example above.

Tip: Take care not to create localization tokens for XML attributes that do not define displayable text.
For example, primaryFieldType="text" in the example above does not need to be
support localization.

Adding localization support to an application

25© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

4.4 Defining localizable items in the application database

When a Caplin Trader application is first built, XML from source layout configuration files is loaded into an
application database. When the Caplin Trader application runs in a browser, it is the XML held in the
database that is served by the application server, and not the XML in the source layout configuration files.
XML is served in this way so that end-users can save the custom layouts they create.

If you are converting an existing application to support localization, there are two ways to modify the XML
held in the application database:

1. Re-load the application database with XML that has already been modified to support localization
(see Defining localizable items in Configuration XML).

2. Modify the XML held in the database to support localization, by replacing the static text that is displayed
on the screen with localization tokens.

Advantages and Disadvantages of each option

Option 1: The advantage of re-loading the database is that it is easy to implement (you simply run an ant
task). The disadvantage is that the custom layouts saved by end-users will be lost.

Option 2: The advantage of modifying the XML held in the database is that the custom layouts saved by
end-users will be preserved. The disadvantage is that you will have to find a way of doing this for the
particular database you are using (there is no ant task that you can run).

The following instructions assume that your application code and build files are installed to the following
directory on a Windows PC:

X:\scm_root\NovoBank\1.0\novotrader (where X: is the drive mapping)

This directory also contains the top level build.xml file for your application.

Re-loading the application database

To reload the application database:

Open a command prompt window.

Navigate to the directory that contains the top level build.xml file for your application.

(for example, X:\scm_root\NovoBank\1.0\novotrader)

Run the command ant webcentric-reset

The application database will now be re-loaded with XML from the source layout configuration files.

Note: Re-loading the application database destroys custom layouts that end-users have saved.

23

Adding localization support to an application

26© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Identifying the XML that is held in the application database

If your application is based on the Reference Implementation of Caplin Trader, XML from the following
layout configuration files is loaded into the application database when the application is first built:

Source of the XML held in the application database

Source file Description

caplintrader.xml Contains the text headers, labels and captions that
are used by layout elements, and text for the
dialogs that are available in the application.

<XXX>_Layout.xml
(where <XXX> is a unique identifier for a layout)

Contains caption text for the panels used in a
particular layout (such as the panels used by the
default FX and FI layouts). Panels contain display
components, such as grids and charts.

The files in the table above can be found in sub directories of NovoBank\1.0\novotrader\build\xml.

Adding localization support to an application

27© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

4.5 Defining localizable items in HTML

HTML templates can be used to construct display components, or to modify the appearance of display
components according to the theme selected by the end-user. HTML templates are used in:

The Reference Implementation of Caplin Trader

Caplin supplied blades

The HTML templates provided with the Caplin Trader installation kit already support localization. If your
application uses custom HTML templates, you will need to add localization support to these templates for
any text that is displayed on the screen.

The following example shows how HTML can be modified to support localization. Here is what the HTML
that must be modified looks like:

HTML to be modified

<dt>Near Date:</dt>

In this case the text Near Date: is enclosed by <dt></dt> tags, which means that it is an item in a list.

To add localization support to this HTML, you must replace this text with a localization token. The
localization token identifies a localization key, and when the Caplin Trader framework parses the HTML, it
replaces each localization token that it finds with the localized value of the localization key (the text that is
displayed on the screen).

First create a property that sets the value of a localization key to the text you want to display, and save this
to the American English version of your application properties file (en.properties).

Create a localization property

novox.theme.fx.ticket.near_date=Near Date:

To create a localization token from this localization key, place the name of the localization key inside curly
braces {} that are prefixed by the @ character. This localization token can now be placed inside the
<dt></dt> tags in the HTML.

HTML that supports localization

<dt>@{novox.theme.fx.ticket.near_date}</dt>

The HTML now supports localization. For example, if the application is later localized for Spanish and
es_ES is the current locale, the text will be displayed in Spanish.

Ensuring a good quality translation

28© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

5 Ensuring a good quality translation

When you add localization support to your application, you need to be careful about the way variables are
used in localization property definitions (see Displaying strings with named variables). The following
examples show some of the problems that can arise when variables are used in this way.

Consider the string:

"The duration is [interval] hours."

When the variable "interval" is 1, the substitution is grammatically incorrect:

"The duration is 1 hours."

It is not easy to correct the grammar in this case, and situations like this should be avoided if at all
possible. In other situations the English text may be grammatically correct, but when the application is
localized for another locale, the translated text may not make sense.

Consider the string:

"Open the [object]"

In English the definite article 'the' is the same no matter what the object is, but in many languages (such as
German) this is not the case:

English German translation Comment

Open the door Öffnen Sie die Tür The definite article "die" is correct.

Open the suitcase Öffnen Sie den Koffer
The definite article "die" would be
grammatically incorrect.

This problem is easily fixed (once you are aware of it), by changing the scope of the substitution:

"Open [theobject]"

In this case the variable now includes the definite article, but more subtle problems may arise that are not
found until translation time, when localizing the application for a different locale.

Recommendation for variable substitution

Do not use variables in text strings unless the variable is a proper noun (names of people, places, and so
on). If this rule is adopted, problems with variable substitution will be avoided.

11

Tools for implementing localization support

29© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

6 Tools for implementing localization support

Caplin supplies a number of reporting tools that identify the localization keys used in your application.
While these reporting tools are primarily designed to help you localize your application for a new locale,
you will also find them useful when adding localization support to your application.

For further information about these reporting tools, see the document Caplin Trader: How To Localize
Your Application.

Glossary of terms and acronyms

30© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

7 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms relating to localization support in
Caplin trader applications.

Term Definition

Blade A business component that provides domain specific functionality in
a Caplin Trader application. Each Caplin Trader blade
implements a small, well-defined set of closely related functions.

Byte-Order Mark (BOM) The Byte-Order Mark (BOM) is a Unicode character used to signal
the byte order of a text file or stream. Byte order has no meaning in
UTF-8, so a Byte-Order Mark only serves to identify a file or text
stream as UTF-8 encoded, or to identify that it was converted from
another format that has a Byte-Order Mark.

In Caplin Trader, localization properties files, though encoded in
UTF-8, must not contain Byte-Order Marks.

[Definition adapted from Wikipedia contributors, "Byte order mark,"
Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/
Byte_order_mark (accessed April 6, 2011)]

Caplin Trader A web application framework for constructing browser-based
financial trading applications.

Caplin Trader application A browser-based client application that has been built using
Caplin Trader.

i18n Abbreviation for internationalization (“i<18chars>n”).

Internationalization An alternative term for the process of adding localization support
to a software application.

L10n Abbreviation for localization (“L<10chars>n”).

Locale The aggregate of a software user's language, country, and any
special variant preferences that the user wants to see in their user
interface (such as particular date formats and number formats).
Such an aggregate is uniquely identified by a locale identifier.

Locale identifier The unique identification of a locale.

In Caplin Trader, locale identifiers are of the form:
<language-code>_<country>
For example: en_US (American English) or en_GB (British English).

Key In this document, this term is short for localization key.

Localization The process of implementing a particular locale within a software
application. This typically involves:

Translating text that appears on screen, and in reports and
logs, into the language of the locale.

Defining the formats of dates, numbers, currencies, and so on,
according to the requirements of the locale.

Localization key The string of characters that identifies a particular localization
property. For example: blade.fxtile.buy

A localization key can belong to a localization namespace.

For more information, see the document Caplin Trader:
Localization Overview And Concepts.

http://en.wikipedia.org/wiki/Byte_order_mark
http://en.wikipedia.org/wiki/Byte_order_mark

Glossary of terms and acronyms

31© Caplin Systems Ltd. 2011

How To Add Localization Support

CONFIDENTIAL

Caplin Trader 2.2

Term Definition

Localization namespace A namespace convention and standard used for localization keys
that partitions the keys according the particular areas of a Caplin
Trader application they apply to.

For more information, see the document Caplin Trader:
Localization Overview And Concepts.

Localization property A localization key and the value of that key in a given locale.
A localization property has the general form:
<keyname>=<value>
For example: blade.fxtile.buy=Buy

For more information, see the document Caplin Trader:
Localization Overview And Concepts.

Localization properties file A file containing a set of localization properties for a given locale.
Also called (when in context) a “properties file”.

Localization properties files are UTF-8 encoded,
with no Byte-Order Mark.

Localization support The functions and features within a software application that allow it
to (easily) support multiple locales. The software can then be
localized to actually implement a given locale or locales
(see localization).

Localization token A marker embedded in the Caplin Trader software that indicates
that an item, such as text, a date, or a number, must be localized.
The marker takes the form @{localization-key}.

When the software is converted to a given locale
(see localization), the token is replaced with the corresponding
text, date format, number format, and so on, for that locale.

Each localization token identifies a localization key.

Also called (when in context) a “token”.

For more information, see the document Caplin Trader:
Localization Overview And Concepts.

Properties file In this document, this term is short for localization properties file.

Token In this document, this term is short for localization token.

Unicode A computing industry standard for the consistent encoding,
representation, and handling of text expressed in most of the
world's writing systems.

[Wikipedia contributors, "Unicode," Wikipedia, The Free
Encyclopedia, http://en.wikipedia.org/wiki/Unicode (accessed April
6, 2011).]

The Unicode standard is maintained by the Unicode Consortium
(see http://unicode.org).

UTF-8 A way of encoding Unicode using multi-byte characters. The
localization properties files used in Caplin Trader applications
must be UTF-8 encoded.

http://en.wikipedia.org/wiki/Unicode
http://unicode.org

© Caplin Systems Ltd. 2011

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Trader 2.2: How To Add Localization Support, April 2011, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	Introduction
	How Localization Works

	Assumptions and restrictions
	Adding localization support to an application
	Localization properties files
	Location of properties files
	Content of properties files
	Date and number properties

	Defining localizable items in JavaScript
	Displaying strings
	Displaying strings with named variables
	Displaying dates
	Displaying time
	Displaying numbers
	Displaying numbers using a formatter class
	Parsing numbers

	Defining localizable items in Configuration XML
	XML that defines static text

	Defining localizable items in the application database
	Re-loading the application database
	Identifying the XML that is held in the application database

	Defining localizable items in HTML

	Ensuring a good quality translation
	Tools for implementing localization support
	Glossary of terms and acronyms

