CAPLIN

Caplin Trader 1.5

How To Create And Use
Element Renderers

April 2010

CONFIDENTIAL

Caplin Trader 1.5

How To Create And Use Element Renderers Contents
Contents
1 o (=Y i Vo = 7S 1
1.1 What this dOCUMENT CONTAINS. ..ottt e e e e e 1
About Caplin document formats ... 1
1.2 Who should read this dOCUMENT................ooiiiiie e 1
1.3 Related dOCUMENES.............ooeiiiie ettt st 1
1.4 TypographiCal CONVENTIONS.ttt e e e e e e e eeeaes 2
1.5 FEEADACK.o et 2
1.6 ACKNOWIEAGMENES.o et e e e e ee e e eee e s 3
2 Introduction to the Element Renderer Framework...........cciiieciiiiimiececissnrre s s s secssssss e s seecnns 4
2.1 Schematic view of an Element RENAEIET..............ooo i 6
3 Defining an Element Renderer in XIML....... . sssssssssssssne e e s s s sssmss e s s ssssssssssmmsnsnnns 7
3.1 Composite Element Renderer XML definition..................cccooviiiiiie e 12
4 Customizing Element RENAErers..........ccccoiiiiiiiiiiicsier e ssm s s mn s s 14
4.1 Modifying the XML definitiON...........ooeeiii e 14
Adding a Decimal FOrmatter ... 14
F e [o 1 aTo = T F=] T 4 = PRSP 15
4.2 Writing your oWn JavaSCript ClasSES..........ocooei oo 15
Creating @ New FOrMAtercuuiiii e 15
Creating @ NEW STYIET ... e e et e e e e enteeea e 16
Creating @ NEW HaNAIETccooieeee e e e 17
5 Using Element Renderers in your application...........ccccceeiiiniiciiiimmnnieseer e 18
5.1 Using an Element Rendererin @ Grid..................ccooooiriieeciecee e 18
5.2 Using an Element Renderer elswhere in the application...................ccoooioiee oo 19
Creating an instance of the Element Rendererccccoiiiiiiiiii e 19
Binding an instance of the Element Renderer ..o 20
DiSPIayiNg VAIUES ...ttt e e e e e e e e e e e e e e e e e 21
6 Glossary of terms and aCrONYMS........cccceeeriiimrrrmnsrres s 24

© Caplin Systems Ltd. 2010 CONFIDENTIAL i

Caplin Trader 1.5
How To Create And Use Element Renderers Preface

1 Preface

1.1 What this document contains

This document describes how to create and use Element Renderers in a Caplin Trader application
(version 1.5).

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages ((HTML files), which you can read on-line using a web browser. To read the web version
of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (. CHM file), which is an HTML format contained in a single file.
To read a .CHM file just open it — no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files
You can only read . CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at

http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for software developers who want to create Element Renderers in Caplin
Trader.

1.3 Related documents

Caplin Trader: Element Renderer Configuration XML Reference

Describes the XML-based configuration that defines Element Renderers in a Caplin Trader
application.

Caplin Trader: Grid XML Configuration Reference

Describes the XML-based configuration that defines the layout and functionality of Grids in a Caplin
Trader application.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 1

http://support.microsoft.com/kb/896054/

Caplin Trader 1.5
How To Create And Use Element Renderers Preface

Caplin Trader: APl Reference

The API reference documentation provided with Caplin Trader. The classes and interfaces of this API
allow you to extend the capabilities of Caplin Trader.

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name
aParameter Parameter or variable name
/AFolder/Afile.txt File names, folders and directories

Some code: Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input — things you type at the computer keyboard
XYZ Product Overview Document name

* Information bullet point

[

Action bullet point — an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.

Use these points to find out where to get more help on a topic.

Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 2

https://support.caplin.com/documentfeedback/?product=Caplin Trader 1.5&doctitle=How To Create And Use Element Renderers&date=April 2010&release=1

Caplin Trader 1.5
How To Create And Use Element Renderers Preface

1.6 Acknowledgments
Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.
Adobe Flex is a trademark of Adobe Systems Incorporated in the United States and/or other countries.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
Java and JavaScript are trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Silverlight is a trademark of Microsoft Corporation in the United States and other countries.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 3

Caplin Trader 1.5
How To Create And Use Element Renderers Introduction to the Element Renderer Framework

2

Introduction to the Element Renderer
Framework

Caplin Trader uses Element Renderers to render data within display components such as Grids, Trees,
Trade Tickets and Trade Tiles. An Element Renderer instance binds data from a model to a visual control
on the screen. This data may be real-time prices or static information from a variety of sources. An
Element Renderer configuration is defined using XML definitions, and instances are created by the
Element Renderer Framework at runtime, as required by the display components.

Element Renderers allow you to specify the format (for example, number of decimal places) and style (for
example, underlined or bold) of the data that is rendered in a control. In this way the visual appearance of
the rendered data can reflect the state of the data, so that an end user can readily determine how reliable
a price is (for example, whether a price is current or stale, or if a price has just been updated).

Element Renderers also allow you to specify event handlers that respond to events on a control (for
example, to open a trade ticket when an end user clicks on an indicative price). Finally, Element Renderers
allow you to specify input controls that accept data entered into the control by the end user.

Here is an example of a grid that is displaying indicative prices for four FX currency pairs.

MajorMajor mENEX|
ELRLSD 1.5554 1.5672
LISDapy 102,17 102.18
GEPUSD o0t 0074
LISDCHF 1.0000 1.0002

Grid displaying indicative prices for FX currency pairs.

In the example above, three columns are displayed in the grid. The fields of the Currency column are text

controls displaying currency pairs, while the fields of the Best Bid and Best Ask columns are text controls
displaying indicative "Best Bid" and "Best Ask" prices for these currency pairs.

The Element Renderer for the text controls in the Best Bid and Best Ask columns is configured to:
Render stale prices with a strike through.

Flash prices with a green background for half a second when the indicative price increases.
Flash prices with a red background for half a second when the indicative price decreases.

The prices in the first two rows of this grid are current, the prices in the third row are stale (strike through),
and the prices in the fourth row are in the process of being updated (they have a green background
because the price has just increased).

The Element Renderer in this example is also configured to open a trade ticket for a currency pair when
the end user clicks the indicative price for that currency pair.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 4

Caplin Trader 1.5
How To Create And Use Element Renderers Introduction to the Element Renderer Framework

E MajorMajor

Best Ask

Amount Settlement

| usp 500,000 15 May 2000 [

Trade ticket opens when the end user clicks an
indicative price

An Element Renderer is always defined in XML, and the Caplin Trader framework is supplied with ready
made formatters, stylers, parsers, and event handlers that you can use in your Element Renderer XML
configuration. There is also a well defined JavaScript API (see the Caplin Trader: APl Reference), with
suitable extension points, that allow you to create your own formatters, stylers, parsers, and event
handlers (see Glossary of terms and acronyms| 24 for a description of these terms).

At present you can only easily apply Element Renderers in Grids, but in future releases of Caplin Trader
they will be easier to integrate into Trade Tickets, Trade Tiles, and custom display components.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 5

Caplin Trader 1.5
How To Create And Use Element Renderers Introduction to the Element Renderer Framework

2.1 Schematic view of an Element Renderer

The following diagram shows the component parts of a typical Element Renderer.

Data (machine format)

BidPrice: 1.178323
tradable: true

update callback

Renderer
Formatter

Formatter

= Transforms _

Styler

transforms

downstream
swiojsuety
weaJsysdn

Styler |

Control

screen mouse / keyboard

1.1783

Display (user friendly format)

A typical Element Renderer

The four downstream transforms in this example (two formatters and two stylers) transform a price in
machine format to a format suitable for displaying on the screen. The two upstream transforms (parsers)
would typically transform data entered by the end user (such as a date) to a format suited to machine
processing. The control handler responds to mouse and keyboard events, such as when the end user
clicks a displayed price.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 6

Caplin Trader 1.5
How To Create And Use Element Renderers Defining an Element Renderer in XML

3

Defining an Element Renderer in XML

When you define an Element Renderer in XML, you specify the JavaScript classes that the Caplin Trader
framework uses to construct each instance of the Element Renderer. You can either write your own
custom Element Renderer JavaScript classes, or use one or more of the Element Renderer JavaScript
classes provided with the Caplin Trader framework.

The example below shows a typical Element Renderer XML definition.

Tip: The document Caplin Trader: Element Renderer Configuration XML Reference fully
describes the XML that you can use to define an Element Renderer, and lists the Element
Renderer JavaScript classes that are provided with the Caplin Trader framework.

XML that defines an Element Renderer

<rendererDefinitions>

<renderer type="fx-price">
<control type="caplin.control.basic.TextControl">
<handler name="mybank.element.handler.TradeOnClickHandler"/>
</control>
<downstream>
<transform name="caplin.element.formatter.NullValueFormatter">
<attribute name="nullValue" value=""/>
</transform>
<transform name="caplin.element.formatter.DecimalFormatter">
<attribute name="DP" value="${DP} default="4" />
</transform>
<transform name="caplin.element.styler.FlashStyler"
<attribute name="duration" value="500" />
<attribute name="color-up" value="#286221" />
<attribute name="color-down" value="#841819" />
<attribute name="backgroundColor-up" value="#cdefbd" />
<attribute name="backgroundColor-down" value="#feb3aa" />
</transform>
<transform name="mybank.element.styler.PriceStyler"
<attribute name="recordStatus" value="${RTTP.RECORD STATUS}" />
<attribute name="tradableState" value="${TRADABLE}" />
<attribute name="class-tradable" value="tradablePrices" />
<attribute name="class-stale" value="stale" />
<attribute name="class-tradablestale" value="tradablestale" />
</transform>
</downstream>
</renderer>
</rendererDefinitions>

In this configuration, the Element Renderer transforms downstream data by applying a null value formatter,
a decimal formatter, a flash styler, and a price styler to the rendered data. Downstream data is data that is
entered into a control by the application (such as data from a Liberator server), while upstream data is data
that is entered into a control by the end user.

This renderer does not need to transform upstream data because the text control (caplin.control.
basic.TextControl) only displays downstream data, and does not accept data entered by the end
user.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 7

Caplin Trader 1.5
How To Create And Use Element Renderers Defining an Element Renderer in XML

An explanation of the example XML configuration
Here is an explanation of what the example XML configuration contains and how this relates to what the
end user sees on the screen.

<rendererDefinitions> starts the renderer definitions.

<rendererDefinitions>
<renderer type="fx-price">

</renderer>
</rendererDefinitions>

In this case only one renderer is defined (type="fx-price"). The defined type can be used by your
application to render data on the screen (see Using Element Renderers in_your application|1€3). The
defined type can also be referred to in the definition of a composite renderer (see Composite Element
Renderer XML definition)| 12,

<renderer> contains the definition of a single renderer.

<renderer type="fx-price">
<control type="caplin.control.basic.TextControl">

</control>
<downstream>

</downstream>
</renderer>

In this case the renderer consists of a <control> and the <downstream> transforms that transform the
data rendered in the control.

<control> identifies the type of control in which data is rendered.

<control type="caplin.control.basic.TextControl">
<handler name="mybank.element.handler.TradeOnClickHandler"/>
</control>

The type attribute identifies the fully qualified name of the JavaScript class that creates the control. In this
case the control is a text control, which simply displays data on the screen (for example, indicative
instrument prices in the cells of a grid column).

The <handler> tag identifies the fully qualified name of the JavaScript class that responds to events on
the text control. In this case a custom handler opens a trade ticket (mybank.element.handler.
TradeOnClickHandler) if the end user clicks on a displayed price.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 8

Caplin Trader 1.5
How To Create And Use Element Renderers Defining an Element Renderer in XML

<downstream> contains the downstream transforms that are applied to data in the control.

<downstream>
<transform ...>

</transform>
</downstream>

Downstream transforms are applied to data provided by the application (such as data from a Liberator
server).

<transform> defines a single transform that can be applied to data in a control.

<transform name="caplin.element.formatter.NullValueFormatter">
<attribute name="nullvValue" value=""/>
</transform>
<transform name="caplin.element.formatter.DecimalFormatter">
<attribute name="DP" value="${DP} default="4" />
</transform>
<transform name="caplin.element.styler.FlashStyler"
<attribute name="duration" value="500" />
<attribute name="color-up" value="#286221" />
<attribute name="color-down" value="#841819" />
<attribute name="backgroundColor-up" value="#cdefbd" />
<attribute name="backgroundColor-down" value="#feb3aa" />
</transform>
<transform name="mybank.element.styler.PriceStyler"
<attribute name="recordStatus" value="${RTTP.RECORD STATUS}" />
<attribute name="tradableState" value="${TRADABLE}" />
<attribute name="class-tradable" value="tradablePrices" />
<attribute name="class-stale" value="stale" />
<attribute name="class-tradablestale" value="tradablestale" />
</transform>

The name attribute of the <transform> tag identifies the fully qualified name of the JavaScript class that
transforms the data in the control. Each <transform> also contains one or more child <attribute>
tags, each containing name/value pairs that configure the properties of the transform.

In this case four transforms are defined.
1.<transform name="caplin.element.formatter.NullValueFormatter">

A framework JavaScript class formatter that defines how null values are displayed. The formatter is
configured by name/value pairs as shown in the table below.

Formatter configuration Description

(NullValueFormatter)

<attribut? name="nullValue" In this case null values are not displayed (value="").
value="" />

2. <transform name="caplin.element.styler.DecimalFormatter">

A framework JavaScript class formatter that formats a value to a specified number of decimal places. The
formatter is configured by name/value pairs as shown in the table below.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 9

Caplin Trader 1.5
How To Create And Use Element Renderers

Defining an Element Renderer in XML

Formatter configuration
(DecimalFormatter)

Description

<attribute name="DP" value="${DP}"
default="4" />

In this case values are rendered to the number of
decimal places specified by the DP field. If this field has
no value, then the number of decimal places is "4"
(default="4").

Note that a value is obtained from a field if value is
defined using the notation value="${FIELD NAME}".

3. <transform name="caplin.element.styler.FlashStyler">

A framework JavaScript class styler that gives the appearance of a flashing value when the price increases
or decreases. The styler is configured by name/value pairs as shown in the table below.

Styler configuration (FlashStyler)

Description

<attribute name="duration"
value="500" />

The number of milliseconds for which the appearance of
the displayed value changes.

<attribute name="color-up"
value="#286221" />

The applied foreground color when the value increases.

<attribute name="color-down"
value="#841819" />

The applied foreground color when the value decreases.

<attribute name="backgroundColor-up"
value="#cdefbd" />

The applied background color when the value increases.

<attribute name="backgroundColor-down"
value="#feb3aa" />

The applied background color when the value
decreases.

4. <transform name="mybank.element.styler.PriceStyler">

A custom JavaScript class styler that changes the appearance of the displayed value (using CSS classes),
depending on the tradable state of the data. The styler is configured by name/value pairs as shown in the

table below.

Styler configuration (PriceStyler)

Description

<attribute name="recordStatus"
value="${RTTP.RECORD STATUS}" />

The status of the data (stale or not stale). In this case
the field "RrTP.RECORD_sTATUS" holds the status of the
data.

<attribute name="tradableState"
value="${TRADABLE}" />

The tradable state of the instrument that the data
represents (tradable or not tradable). In this case the
"TrRaDABLE" field holds the tradable state of the
instrument.

<attribute name="class-tradable"
value="tradablePrices" />

The CSS class to apply when the data is not stale and
the instrument is tradable.

<attribute name="class-stale"
value="stale" />

The CSS class to apply when the data is stale and the
instrument is not tradable.

<attribute name="class-tradablestale"
value="tradablestale" />

The CSS class to apply when the data is stale but the
instrument is tradable.

© Caplin Systems Ltd. 2010

CONFIDENTIAL

10

Caplin Trader 1.5
How To Create And Use Element Renderers Defining an Element Renderer in XML

In the Reference Implementation of Caplin Trader, CSS files are located in the directory
apps/webapps/caplintrader/applications/CaplinTrader/source/styles. The CSS classes used by the price
styler are defined in the file product-grids.css.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 11

Caplin Trader 1.5
How To Create And Use Element Renderers Defining an Element Renderer in XML

3.1 Composite Element Renderer XML definition

A composite Element Renderer is constructed from HTML and references to other renderer definitions,
and is used to render data from multiple fields in the column of a Grid.

1.57670 1.57306 1.57670 ¥ 1.57906
102,335 102,345 102,335 ¥ 102 345
1.99565 1.99398 1.99365 ¥1.99395
100500 1.00322 100200 51 002322

Data from two fields being rendered in the '‘Rate’
column of a Grid

In this case two prices ('Best bid' and 'Best ask') are separated by the '/' character and rendered in the
Rate column of a Grid.

The example below shows a typical XML definition for a composite renderer.

Tip: The document Caplin Trader: Element Renderer Configuration XML Reference fully
describes the XML that you can use to define an Element Renderer, and lists the Element
Renderer JavaScript classes that are provided with the Caplin Trader framework.

XML that defines a composite Element Renderer

<rendererDefinitions>

<renderer type="fx-spread" streams="bid,ask">
<template>
<var>
<renderer type="fx-price" stream="bid"/>
/
<renderer type="fx-price" stream="ask"/>
</var>
</template>
</renderer>

<renderer type="fx-price">
<control type="caplin.control.basic.TextControl">

</control>
<downstream>

</downstream>
</renderer>

</rendererDefinitions>

In this configuration the composite renderer t ype="fx-spread" renders data from two data streams
(streams="bid, ask").

© Caplin Systems Ltd. 2010 CONFIDENTIAL 12

Caplin Trader 1.5
How To Create And Use Element Renderers Defining an Element Renderer in XML

An explanation of the example XML configuration
Here is an explanation of what the example XML configuration contains and how this relates to what the
end user sees on the screen.

<rendererDefinitions> starts the renderer definitions.

<rendererDefinitions>

<renderer type="fx-spread" streams="bid,ask">
<template>

</renderer>
<renderer type="fx-price">
<control type="caplin.control.basic.TextControl">

</renderer>
</rendererDefinitions>

In this case two renderers are defined (type="fx-spread" and type="fx-price").

The renderer type="fx-spread" is a composite renderer, with components defined by the
<template> tag. The defined type of this composite renderer (type="fx-spread") can be used in
your application to render data on the screen (see Using Element Renderers in your application| 184).

If the composite renderer is used to render data in the column of a Grid, then the order and number of
streams (streams="bid, ask") must match the order and number of fields in the XML definition of the
column (see the document "Caplin Trader: Grid Configuration XML Reference").

The renderer type="fx-price" consists of a <control> and the <downstream> transforms that
transform the data rendered in the control. This renderer is used by the composite renderer to render the
data streams (see the <template> tag), and is defined by the XML described in Defining an Element
Renderer in XML[7™

<template> contains the definition of the composite renderer.

<template>
<var>
<renderer type="fx-price" stream="bid"/>
/
<renderer type="fx-price" stream="ask"/>
</var>
</template>

The <template> tag contains standard HTML as well as other <renderer> tags. In this way a composite
renderer is constructed from HTML and references to other renderer definitions.

The HTML <var> tag in this example is used to enclose the components of the composite renderer, and
can also be referred to in CSS to style the composite renderer.

Because the <renderer> tag is a child of the <template> tag, the type attribute of the <renderer>
tag identifies the renderer of a particular data stream. In this case the renderer type="fx-price"
renders both the 'bid' and 'ask’ streams (stream="bid" and stream="ask").

In this example the '/' character separates the data streams when they are rendered on the screen.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 13

Caplin Trader 1.5
How To Create And Use Element Renderers Customizing Element Renderers

4

4.1

Customizing Element Renderers

You can customize an Element Renderer by:

modifying the XML definition of the Element Renderer,

writing your own custom JavaScript classes and employing these in your XML definition,
using a combination of these two customization techniques.

The Reference Implementation of Caplin Trader has several pre-defined Element Renderers that you can
copy and use in your own Caplin Trader application. You will find the XML definitions for these Element
Renderers in the file apps/webapps/caplintrader/applications/CaplinTrader/conf/rendererDefinitions.jsp.

Modifying the XML definition

The following examples show you how to modify the XML definition of Element Renderers that have been
created to render data in the cells of a Grid. In each case a downstream transform is inserted into the XML
definition.

Note: Formatter and styler transforms are applied in the same order in which they are defined in the
XML configuration; the output of one transform being the input to the next. Parsers can be
defined in any order.

The document Caplin Trader: Element Renderer Configuration XML Reference lists the transforms
that are supplied with the Caplin Trader framework, and describes how to set the properties of these
transforms.

Adding a Decimal Formatter

The Caplin Trader framework includes a decimal formatter that can be inserted into the XML definition of
an Element Renderer, as shown in the following example.

<rendererDefinitions>

<renderer type= ...
<downstream>
<transform type="caplin.element.formatter.DecimalFormatter">
<attribute name="dp" value="3"/>
</transform>

</rendererDefinitions>

If this renderer is applied to the cells of a Grid, then the data in each cell will be formatted to three decimal
places. The formatter is applied in addition to any other formatters in the XML definition of this Element
Renderer.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 14

Caplin Trader 1.5
How To Create And Use Element Renderers Customizing Element Renderers

4.2

Adding a Flash Styler

The Caplin Trader framework includes a flash styler that can be inserted into the XML definition of an
Element Renderer, as shown in the following example.

<rendererDefinitions>

<renderer type= ...
<downstream>

<transform type="caplin.element.styler.FlashStyler">
<attribute name="duration" value="500" />
<attribute name="color-up" value="#286221" />
<attribute name="color-down" value="#841819" />
<attribute name="backgroundColor-up" value="#cdefbd" />
<attribute name="backgroundColor-down" value="#feb3aa" />

</transform>

</rendererDefinitions>

If this renderer is applied to the cells of a Grid, then the price flashes when the displayed value increases
or decreases.

In this case a dark green foreground on a light green background is applied if the value increases, and a
dark red foreground on a light red background is applied if the value decreases. Each color is applied for
500 milliseconds, after which the colors return to the default colors.

The formatter is applied in addition to any other formatters in the XML definition of this Element Renderer.

Writing your own JavaScript Classes

The Caplin Trader framework includes a number of JavaScript classes that you can use in your Element
Renderer XML definitions. You may however want to write your own JavaScript classes that transform data
or that respond to events in a customized way, and include these in your Element Renderer XML
definitions.

The following examples show you how to write customized data transforms and event handlers.

Tip: The Caplin Trader APl Reference document (caplin.element package) defines the
interfaces that your code must implement when you write a new transform or event handler
JavaScript class.

The document also has a section called "Writing your own classes", linked from the "Overview"
section, that provides guidance on writing JavaScript classes using the Caplin Trader
framework. The section includes guidance on how to implement an interface.

Creating a new Formatter
When you write a new formatter class, your JavaScript code must implement the format method of the
caplin.element.Formatter interface.

The following is an example of a custom formatter that transforms a value to upper case when the value is
a string, and returns the unformatted value otherwise.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 15

Caplin Trader 1.5
How To Create And Use Element Renderers Customizing Element Renderers

mybank.element.formatter.UpperCaseFormatter.prototype.format = function(sValue,
mAttributes) {

return typeof sValue === "string" ? sValue.toUpperCase() : sValue;

You insert a custom formatter into the XML definition of an Element Renderer as you would for any
formatter, by setting the type attribute of a <transform> tag to the fully qualified name of the
implementing JavaScript class.

<rendererDefinitions>
<renderer type=
<downstream>

<transform type="mybank.element.formatter.UpperCaseFormatter" />

</rendererDefinitions>

Because this custom formatter does not have any properties that need to be set, the <transform> tag
does not have any child <attribute> tags.

Creating a new Styler

When you write a new styler class, your JavaScript code must implement the style method of the
caplin.element.Styler interface.

The following is an example of a custom styler that adds a CSS class to a control when the trading state is
"READY", and removes the CSS class otherwise.

mybank.element.styler.PriceStyler.prototype.style = function (sValue,

mAttributes,
oControl) {
if (mAttributes["tradingState"] === "READY") {
oControl.addClass ("tradable"); // adds a CSS class
} else {
oControl.removeClass ("tradable"); // removes a CSS class

}
}

In this case the trading state is determined by the value of "tradingState", which is set in the XML
definition of the Element Renderer.

You insert a custom styler into the XML definition of an Element Renderer as you would for any styler, by
setting the type attribute of a <transform> tag to the fully qualified name of the implementing
JavaScript class.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 16

Caplin Trader 1.5
How To Create And Use Element Renderers Customizing Element Renderers

<rendererDefinitions>

<renderer type=
<downstream>
<transform type="mybank.element.styler.PriceStyler">
<attribute name="tradingState" value="${TRADING STATE}"/>
</transform>

</rendererDefinitions>

Because the tradingState property of the custom styler needs to be set, the <transform> tag has a
child <attribute> tag that sets the value of "tradingstate" to the value of the TRADING STATE field.
The ${} notation indicates that the value of the property is derived from a field.

Creating a new Handler

When you write a new handler class, your JavaScript code must implement the onclick method of the
caplin.element.Handler interface.

The following is an example of a custom handler that opens a trade ticket if the trading state is "READY"
when the end user clicks the value displayed by the Element Renderer.

mybank.element.handler.TradeOnClickHandler.prototype.onclick = function (oDomEvent,
oRenderer,
mAttributes) {

if (mAttibutes["tradingState"] === "READY") {
// add code here that opens the trade ticket

}
}

In this case the trading state is determined by the value of "tradingState", which is set in the XML
definition of the Element Renderer.

You insert a custom handler into the XML definition of an Element Renderer as you would for any handler,
by setting the type attribute of a <handler> tag to the fully qualified name of the implementing

JavaScript class.

<rendererDefinitions>

<renderer type=
<control type="caplin.control.basic.TextControl">
<handler type="mybank.element.handler.TradeOnClickHandler">
<attribute name="tradingState" value="${TRADING STATE}"/>
</handler>
</control>

</rendererDefinitions>

Because the tradingState property of the custom handler needs to be set, the <handler> tag has a
child <attribute> tag that sets the value of "tradingState" to the value of the TRADING STATE field.
The ${} notation indicates that the value of the property is derived from a field.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 17

Caplin Trader 1.5
How To Create And Use Element Renderers Using Element Renderers in your application

5

5.1

Using Element Renderers in your application

Element Renderers that have been defined in XML can be used in your application in two ways:
In a Grid, by configuring the XML definition of the Grid.

#+ Elsewhere in the application, by instantiating the Element Renderer in JavaScript.

Using an Element Renderer in a Grid

When an Element Renderer has been defined in XML, you can use it to render data in the cells of a Grid.
To define the Element Renderer that you want to use, set the cel1Renderer attribute of the Grid column
to the name of the Element Renderer in the XML configuration of the Grid.

In the example below, all Grids that inherit from the FX grid template (gridTemplate id="FX") use the
"fx-price" Element Renderer to render data in the "Best Bid" and "Best Ask" columns of the
Grid.

<templates>

<gridTemplate id="FX">
<decorators>

</decorators>
<columnDefinitions>

<column id="bestbid"
cellRenderer="£fx-price"
fields="BestBid"
displayName="Best Bid"
width="100"/>

<column id="bestask"
cellRenderer="£fx-price"
fields="BestAsk"
displayName="Best Ask"
width="100"/>

</gridTemplate>

</templates>

The Grid framework manages the life cycle of the Grid and the Element Renderers that are used in the
Grid, so there is no need to instantiate the Grid or Element Renderers in JavaScript. When a new Grid is
created, the Grid framework creates an Element Renderer instance for each cell in the Grid; when the Grid
is deleted, the Grid framework destroys these Element Renderer instances.

In the Reference Implementation of Caplin Trader, Grids are defined in the file
apps/webapps/caplintrader/applications/CaplinTrader/conf/gridDefinitions.xml.

For further information about how to configure Grids in a Caplin Trader application, see the document
Caplin Trader: Grid XML Configuration Reference. In particular, the description of the
<gridTemplate> tag describes Grid inheritance, and the description of the cel1Renderer attribute of
the <column> tag discusses the Element Renderer.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 18

Caplin Trader 1.5
How To Create And Use Element Renderers Using Element Renderers in your application

5.2

Using an Element Renderer elswhere in the application
If you want to use an Element Renderer to render data outside of a Grid, then the life cycle of each
Element Renderer instance must be managed in JavaScript by your Caplin Trader application.

This is in contrast to an Element Renderer that is used to render data in the cells of a Grid, where the life
cycle of each instance of the Element Renderer is managed by the Grid framework.

To use an Element Renderer to render data outside of a Grid, you must:
1. Create an instance of the Element Renderer[19% in JavaScript.

2. Bind the instance of the Element Renderer |23 to an HTML DOM element.

3. Display values/2™ and capture events on the DOM element.

When the Element Renderer instance is no longer needed, your application code must unbind the instance
from the HTML DOM element, which frees all resources used by that instance.

The Caplin Trader APl Reference document (caplin.element package) describes the JavaScript
classes that you can use to manage an instance of an Element Renderer in your Caplin Trader application.

Creating an instance of the Element Renderer

To create an instance of the Element Renderer you must:
1. Identify the type of Element Renderer that you want to instantiate.
2. Get areference to the RendererFactory JavaScript object.

3. Create an instance of the Element Renderer by invoking createRenderer ()
on the RendererFactory object.

The Element Renderer type is defined by the type attribute of the <renderer> tag in the XML definition
of the Element Renderer. In the Reference Implementation of Caplin Trader, Element Renderers are
defined in the file apps/webapps/caplintrader/applications/CaplinTrader/conf/rendererDefinitions.jsp.

The example code below shows you how to instantiate an instance of the "fx-price" Element Renderer.

var sRendererType = "fx-price";

// Get a reference to a RendererFactory object
var oRendererFactory = caplin.element.ElementFactory.getRendererFactory();

// Create the Element Renderer instance
var oRenderer = oRendererFactory.createRenderer (sRendererType) ;

When you have completed these steps, the Element Renderer instance is ready to be bound to a DOM
element.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 19

Caplin Trader 1.5
How To Create And Use Element Renderers Using Element Renderers in your application

Binding an instance of the Element Renderer

Element Renderers created by the Renderer Factory implement the caplin.element.
RendererFramework interface. This interface has methods that bind and unbind Element Renderer
instances to DOM elements (see the Caplin Trader APl Reference for a description of this interface).

To bind an instance of an Element Renderer you must:

1. Get the identity of the DOM element where you want to render data (the element must already exist).
2. Create the HTML for the Element Renderer instance inside the DOM element.

3. Bind (attach) the Element Renderer instance to the DOM element.

4. Set the name and namespace of the Element Renderer instance.

The example code below shows you how to bind an instance of an Element Renderer to the DOM element
BID PRICE HOLDER.

// Get the identity of the DOM element
var ePriceHolder = document.getElementById("BID PRICE HOLDER");

// Create the HTML for the renderer instance inside the DOM elemnt
ePriceHolder.innerHTML = oRenderer.createHtml ();

// Bind the renderer instance to the DOM element
oRenderer.bind (ePriceHolder) ;

// Set the name and namespace of the renderer instance
oRenderer.setName ("BID PRICE");
oRenderer.setNamespace ("/FX/GBPUSD") ;

You must set the name and namespace of the Element Renderer instance to the name of the field

(BID PRICE) and instrument (/FX/GBPUSD) that is rendered, so that event handlers can access this
information. For example, if you have an event handler that handles onclick events, then the event
handler can invoke getname () and getnamespace () on the Element Renderer instance to determine
the name of the field and instrument that the event relates to.

When you have completed these steps, the Element Renderer instance is ready to display data and
capture events.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 20

Caplin Trader 1.5
How To Create And Use Element Renderers Using Element Renderers in your application

Displaying values

Element Renderers created by the Renderer Factory implement the caplin.element.
RendererFramework interface. This interface has methods that determine the values that are displayed
by an Element Renderer instance (see the Caplin Trader APl Reference for a description of this
interface).

Below we look at two different ways in which your code can use the same Element Renderer to display a
price in a custom dialog. In each case the Element Renderer will:

Display a price to a specified number of decimal places.
Flash according to price movement.
Apply CSS styling according to the tradable state of the price.

The example XML that defines the Element Renderer is reproduced below, and described in detail in
Defining an Element Renderer in XML 7%,

XML that defines the example Element Renderer

<rendererDefinitions>

<renderer type="fx-price">
<control type="caplin.control.basic.TextControl">
<handler name="mybank.element.handler.TradeOnClickHandler"/>

</control>
<downstream>
<transform name="caplin.element.formatter.NullValueFormatter">
<attribute name="nullvValue" value=""/>
</transform>

<transform name="caplin.element.formatter.DecimalFormatter">
<attribute name="DP" value="${DP} default="4" />

</transform>

<transform name="caplin.element.styler.FlashStyler"
<attribute name="duration" value="500"/>
<attribute name="color-up" value="#286221"/>
<attribute name="color-down" value="#841819"/>
<attribute name="backgroundColor-up" value="#cdefbd"/>
<attribute name="backgroundColor-down" value="#feb3aa"/>

</transform>

<transform name="mybank.element.styler.PriceStyler"
<attribute name="recordStatus" value="${RTTP.RECORD STATUS}" />
<attribute name="tradableState" value="${TRADABLE}" />
<attribute name="class-tradable" value="tradablePrices" />
<attribute name="class-stale" value="stale" />
<attribute name="class-tradablestale" value="tradablestale" />

</transform>

</downstream>
</renderer>
</rendererDefinitions>

Option 1: invoke setValue() — set the displayed value

One way to render a value is to invoke setvalue () on the Element Renderer instance.

First create an instance[19 of the Element Renderer, and then bind that instance | 28" to the DOM element
of the custom dialog.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 21

Caplin Trader 1.5
How To Create And Use Element Renderers Using Element Renderers in your application

// create instance of the fx-price renderer
var oRendererFactory = caplin.element.ElementFactory.getRendererFactory();

var oRenderer = oRendererFactory.createRenderer ("fx-price");

// bind renderer to custom dialog

var ePriceHolder = document.getElementById("BID_PRICE_HOLDER") ;
ePriceHolder.innerHTML = oRenderer.createHtml ();
oRenderer .bind (ePriceHolder) ;

oRenderer.setName ("BID PRICE");

oRenderer.setNamespace ("/FX/GBPUSD") ;

In this case an instance of the "fx-price" Element Renderer is created and bound to the DOM element
"BID PRICE HOLDER".

Now invoke setVvalue () on the Element Renderer instance, passing in the value that you want to render.

// set renderer value directly
var sBidPrice = "1.4932";
oRenderer.setValue (sBidPrice) ;

In this case 1.4932 is rendered in the custom dialog. The value is rendered to four decimal places
because 4 is the default value of the decimal formatter in the Element Renderer XML definition.

<transform name="caplin.element.formatter.DecimalFormatter">
<attribute name="DP" value="${DP}" default="4" />

Option 2: invoke updateFields() — update multiple fields at the same time

Another way to render a value is to invoke updateFields () on the Element Renderer instance, passing
in name/value pairs for the fields that you want to update.

First create an instance[193 of the Element Renderer, and then bind that instance | 28" to the DOM element
of the custom dialog.

// create instance of the fx-price renderer
var oRendererFactory = caplin.element.ElementFactory.getRendererFactory();
var oRenderer = oRendererFactory.createRenderer ("fx-price", ["BidPrice"]);

// bind renderer to custom dialog

var sHtml = oRenderer.createHtml () ;

var ePriceHolder = document.getElementById ("BID_PRICE_HOLDER") ;
ePriceHolder.innerHTML = oRenderer.createHtml ();
oRenderer .bind (ePriceHolder) ;

OoRenderer.setName ("BID PRICE");

oRenderer.setNamespace ("/FX/GBPUSD") ;

In this case an instance of the "fx-price" Element Renderer is created that renders values from the
"BidPrice" field. The instance is bound to the DOM element "BID PRICE HOLDER".

© Caplin Systems Ltd. 2010 CONFIDENTIAL 22

Caplin Trader 1.5
How To Create And Use Element Renderers Using Element Renderers in your application

Now invoke updateFields () on the Element Renderer instance, passing in name/value pairs for the
fields that you want to update. Field names for each transform are specified in the Element Renderer XML
definition, while the field that is rendered is specified in the call to createRenderer (), as shown in the

example code above.

// set renderer value indirectly, through field names
var mFields = { "BidPrice": "1.4932",

"DP": 3,

"TRADABLE STATE": true,

"RECORD STATUS": 3 };
oRenderer.updateFields (mFields) ;

In this case 1.493 is rendered in the custom dialog. The value is rendered to three decimal places
because the "Dp" field is set to 3 when updateFields () is invoked. In the XML definition of the
Element Renderer, the "Dp" field (value="${DP}") is specified as holding the value that sets the
number of decimal places property (name="DP") of the decimal formatter.

<transform name="caplin.element.formatter.DecimalFormatter">
<attribute name="DP" value="${DP}" default="4" />

© Caplin Systems Ltd. 2010 CONFIDENTIAL 23

Caplin Trader 1.5

How To Create And Use Element Renderers Glossary of terms and acronyms

6 Glossary of terms and acronyms

This section contains a glossary of terms, acronyms, and abbreviations, used in this document.

Term

Definition

Blotter

Caplin Liberator

Caplin Trader

Caplin Xaqua

Caplin Xaqua client

Data provider

Display component

Display control

Downstream data

Element Renderer

Event handler

Field

A display component of Caplin Trader that displays information
about each trade.

Caplin Liberator is a real-time financial internet hub (server) that
delivers trade messages and market data to and from subscribers
over any network.

A Rich Internet Application framework for constructing Caplin
Xaqua client applications for browser-based trading. It includes a
comprehensive set of trading GUI components.

Caplin Trader was formerly called "Caplin Trader Client".

A framework for building single-dealer platforms that enables banks
to deliver multi-product trading direct to client desktops.

A client desktop application that interfaces with Caplin Xaqua to
deliver multi-product trading to end users. The application can be
implemented in any technology that is supported by Caplin Xaqua;
for example Ajax, Microsoft .NET, Microsoft Silverlight™, Adobe
Flex™, and Java™.

Caplin Trader is a framework for constructing browser-based
Caplin Xaqua client applications.

A data provider provides data to the display components of
Caplin Trader. An example is the 'rttpContainerGridDataProvider'
(see Caplin Trader: Grid XML Configuration Reference), which
provides data from a web server for displaying in a grid.

A GUI component of Caplin Trader that can be rendered in a page
on the screen.

The term also refers to the JavaScript code that generates the
component and handles its user interaction. Caplin Trader has a
number of pre-defined, customizable display components, such as
Grids, Trade Tiles, and the Blotter.

A screen element that is rendered by a JavaScript class. A display
control can display information (such as text or images), or allow
the end user to interact with the application (such as by typing text
into the control, or clicking part of the control).

Data provided by a data provider, such as indicative prices from a
web server.

A display control and the optional transforms that transform the
data displayed in the control. An Element Renderer can be
identified in the XML configuration of a display component (such
as to render data in the cells of a Grid column).

An event handler is a JavaScript class that handles mouse and
keyboard events on a display control, such as when the end user
clicks on a displayed price.

A named identifier for a data item. An example of a field is a data
item from Caplin Liberator, such as the price of a financial
instrument. Fields supply data to the cells of a Grid.

© Caplin Systems Ltd. 2010

CONFIDENTIAL 24

Caplin Trader 1.5

How To Create And Use Element Renderers Glossary of terms and acronyms

Term

Definition

Formatter

Grid

GUI

Parser

Renderer

Stream

Styler

Trade Tile

Transform

Upstream data

A formatter converts data from a known input format to a required
output format. If the input format is not recognized, then the input
and output formats will be identical.

A typical use of a formatter is to convert a value suited to machine
processing (such as the number of seconds since the beginning of
January 1970), to a string formatted for the benefit of the end user
(such as 21-Jun-20009).

A display component of Caplin Trader that renders data in a
tabular format.

Graphical User Interface

A parser analyses input data and attempts to convert it to a
specified output format.

A typical use of a parser is to convert a string entered by the end
user (such as the date 21-Jun-2009), to a format more suited to
machine processing (such as the number of seconds since the
beginning of January 1970).

Another name for an Element Renderer.

A stream is a named data source in an Element Renderer, in the
same way that a field is a named data source in a Grid column. In
controls that support multiple data streams (such as the spread
control), different transforms can be applied to each data stream.

A styler is a JavaScript class that changes the appearance of the
data in a display control (for example, the color of the displayed
text).

A display component that allows the user to trade on a product
with a single mouse click.

A data styler, formatter, or parser that transforms the data in a
display control. A transform can change the appearance or value
of the data (for example the color of the displayed text or the
number of decimal places in a number).

Data provided by the end user, such as when data is typed into a
control in a column header to filter the instruments in a grid.

© Caplin Systems Ltd. 2010

CONFIDENTIAL 25

Single-dealer platforms for the capital markets C A P I_ I N

Contact Us
The information contained in this publication is

. subject to UK, US and international copyright laws
Caplin Systems Ltd and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Triton Court
14 Finsbury Square
London EC2A 1BR

Various Caplin technologies described in this

Telephone: +44 20 7826 9600 document are the subject of patent applications. All
trademarks, company names, logos and service
Fax: +44 20 7826 9610 marks/names ("Marks") displayed in this publication
. are the property of Caplin or other third parties and
www.caplin.com may be registered trademarks. You are not

permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Trader 1.5: How To Create And Use Element Renderers, April 2010, Release 1

© Caplin Systems Ltd. 2010 CONFIDENTIAL

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	Introduction to the Element Renderer Framework
	Schematic view of an Element Renderer

	Defining an Element Renderer in XML
	Composite Element Renderer XML definition

	Customizing Element Renderers
	Modifying the XML definition
	Adding a Decimal Formatter
	Adding a Flash Styler

	Writing your own JavaScript Classes
	Creating a new Formatter
	Creating a new Styler
	Creating a new Handler

	Using Element Renderers in your application
	Using an Element Renderer in a Grid
	Using an Element Renderer elswhere in the application
	Creating an instance of the Element Renderer
	Binding an instance of the Element Renderer
	Displaying values

	Glossary of terms and acronyms

