CAPLIN

Caplin Trader 2.0

JavaScript Preprocessor
Configuration XML Reference

October 2010

CONFIDENTIAL

Caplin Trader 2.0

JavaScript Preprocessor Configuration XML Reference Contents
Contents
1 =Y - [=YY 1
1.1 What this dOCUMENT CONTAINS. ...t e e e 1
About Caplin document formats ... 1
1.2 Who should read this dOCUMENT........... ..o e 1
1.3 Related dOCUMENES ... e e et e et et e e e e e e e e e eeee s 1
1.4 TypographiCal CONVENTIONS oo, 2
1.5 FEEADACK ettt et e —— 2
1.6 ACKNOWIEBAGMENTS.ttt e et e e et e e st e e st eesaeeesereneseteeens 3
2 [0 3 =Y /= 4
3 Technical asSUMPLIONS......ccceiiiiimiriirr s 5
3.1 About the Caplin Trader development environment....................cccoooviiiiiii e 6
4 How the JavaScript PreproCcessor WOrKS............occccimmmmimnisesrrs s ssssss s s 8
A1 ThE BIrOWSEI FEAUEST.ttt et e e e e e ettt e e e e e e e e e e eeeeens 8
4.2 Building the dependenCy trEe.o ettt e e e 10
4.3 Returning concatenated fileS.................ocuoiiiiiiiiieee s 13
5 Example JavaScript Preprocessor configuration.........ccccccuvecccciimemniniinnssccsssscessss s sssssssssssseseeses s 15
5.1 JSPP servlet CONfIQUIAtION. et eee e 15
5.2 Namespace CONfIQUIAtIoNccooiieiieeee et e e 18
5.3 ReSsoUrce CONfIGUIALIONooiii et e e e e e e e e e e reeeeeans 20
5.4 TRE JAVASEIVEI PAGE. ...ttt e e e et e e e e e e e eaes 23
6 Configuration Reference: JSPP Serviet........ s s 24
7 Configuration Reference: Namespace Mappings.......ccccccmrmmmiiinniiiineesmnn s snneees 25
7.1 Ordering and NESHING OF TAGS............eiei ettt e e e e e eaes 25
7.2 Namespace Mappings XML ReferenCe 26
=] 1Y (=TS T= T = 26
D 1.1.F= 1 0] 1T 26
10 F=1 o] 0 1T 1< >SS 27
111010 [T 27
8 Configuration Reference: Module ReSources............cccooomiiimiiiiiicicneine s 28
8.1 Ordering and NESHING OF TAGS...........oiiie et ee e e e eeeee e 28
8.2 Module Resources XML REFEIENCE............coooeeee e et 29

© Caplin Systems Ltd. 2010 CONFIDENTIAL i

Caplin Trader 2.0

JavaScript Preprocessor Configuration XML Reference Contents
SCIASSINAIME™ ... s 29
<eoNfIgUratioNPath> ... 29
L Te [T =T0 [0 P T 29
1= 10 o= > 29

9 Configuration Reference: The JavaServer Page........cccccocmiinnimimminnnnsss s s 30

9.1 <P@EAGID Y%0> ..ot re e eneere 30
9.2 <CAPNNISCIIPL /> ...ttt n s s neeneereeneeneene 30
10 Glossary of terms and aCroNYMS.........cccovcviriiinir e ———— 31

© Caplin Systems Ltd. 2010 CONFIDENTIAL ii

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Preface

1

1.1

1.2

1.3

Preface

What this document contains

This document describes the XML-based configuration that determines which files are served by the
Caplin Trader JavaScript Preprocessor.

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF: file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (HTML files), which you can read on-line using a web browser. To read the web version
of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.
To read a .CHM file just open it — no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files
You can only read . CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of . CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at

http://support.microsoft.com/kb/896054/.

Who should read this document

This document is intended for System Administrators and Software Developers who need to configure an
application that is based on the Caplin Trader framework.

Related documents

Caplin Trader 2.0: Installation Guide

This document describes how to install Caplin Trader version 2.0 for evaluation, and for use in
developing a Caplin Trader application.

Caplin Trader Overview

A business and technical overview of Caplin Trader.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 1

http://support.microsoft.com/kb/896054/

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Preface

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name
aParameter Parameter or variable name
/AFolder/Afile.txt File names, folders and directories

Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input — things you type at the computer keyboard

XYZ Product Overview Document name

* Information bullet point

u Action bullet point — an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.

Use these points to find out where to get more help on a topic.

Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 2

https://support.caplin.com/documentfeedback/?product=Caplin Trader 2.0&doctitle=JavaScript Preprocessor Configuration XML Reference&date=October 2010&release=1

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Preface

1.6 Acknowledgments
Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Java and JavaScript are trademarks of Sun Microsystems, Inc. in the U.S. or other countries.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 3

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Overview

2

Overview

The JavaScript Preprocessor (JSPP) is a Java servlet that resides on the application server, and runs
when the server receives a browser request for the Caplin Trader application. Its function is to ensure
faster application start up and to reduce the application payload in the client browser.

To achieve this, the JSPP parses the dependency tree of the JavaScript classes that comprise the
application, and selects just those classes that are actually used. A particular application will typically not
use all the Caplin Trader framework classes, so the JSPP ensures that only the classes required are
actually sent to the client. It also concatenates the JavaScript class files held on the server into a single
file, with the classes arranged in dependency order.

The JSPP can also be configured to select and concatenate source files from one of several different
locations, depending on the value of a query string in the URL received from the client. This feature can
be used in a development environment to run either the development version of the application or the
built version of the application.

]
User clicks
on link to
Caplin Trader

Browser requests Resources returned
Caplin Trader include required
application JavaScript classes only

Application Server

Required
JavaScriot
Resourees

JavaSonpt
Resourees

JSPP selects only those JavaScript classes
required by the application

© Caplin Systems Ltd. 2010 CONFIDENTIAL 4

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Technical assumptions

3 Technical assumptions

The JSPP is supplied with the Caplin Trader development framework. To configure and use the JSPP as
described in this document, your application must meet the following criteria:

1. The application must be developed using the Caplin Trader framework, version 2.0.0 or later.

2. The application must be served from an application server that supports JavaServer Page (JSP)
technology.

3. The entry point to the application must be a JavaServer Page (such as application.jsp). The JSPP
will function if the application is served using another technology, but the features described in The
JavaServer Page| 237 will not be available.

4. You must have created a development environment for the application as described in the document
Caplin Trader 2.0: Installation Guide.

In the remainder of this document, it is assumed that you used the following parameter values to create
your application development environment.

Application directory: Novobank
Application name: Novotrader
Application version: 1.0
Application namespace: novox

When you read this document, substitute these parameter values with the values you actually used.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 5

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Technical assumptions

3.1 About the Caplin Trader development environment

When you create a development environment for your application, the directory structure will look
something like this.

= [£3) Movobank
[E B Jogs |
B 1.0
[.buid

|5 acceptance-tests

(5 build

F I3 conf

H 5 demo
= lib

?.._—:i novos |
&) jsunit
D stc |
() WEB-INF

El= webaEp_
| () comf
() diagnostics
.mdules_
& [public
[source
& [C3) theme-test
& [T utils
[3) WEB-INF

The following table lists the top level directories in this structure (as highlighted above), with a brief
description of what each directory contains. The information will help you to locate files when you

configure the JSPP.

Directory Content

dlogs The top level directory containing the application
server log files.

Novotrader The top level directory containing the development
environment for the Novotrader application.

novox The top level directory containing application
specific (novox namespace) files and directories.

novox/src Contains the configuration file

novox-resources.xml.

This file is created by the Caplin Trader build
system when the Novotrader development
environment is first created.

It contains information about the application
specific JavaScript classes that the JSPP must
include when it builds the JavaScript dependency
tree for Novotrader.

You can change the content of this file, or create
other application resource files, when you develop
Novotrader.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 6

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference

Technical assumptions

Directory

Content

Nnovox/src/novox

Contains the development copy of the JavaScript
source code modules (novox namespace) for the
Novotrader application. This is where all your
JavaScript development work is done.

webapp

The Caplin Trader build system builds the
Novotrader application to this directory.

The directory contains the file application.jsp,
which is the JavaServer Page entry point to the
Novotrader application. This file contains a
markup tag that causes the browser to request a
resource served by the JSPP servlet. Without this
tag, the JSPP would not run.

You can change the content of this file when you
develop Novotrader.

webapp/conf’

Contains configuration files for the Novotrader
application.

The file jspp.xml contains XML that configures the
JSPP. The XML specifies the location of the
resources.xml files that the JSPP parses when it
builds the JavaScript dependency tree. The XML
also maps namespaces to paths.

You can change the content of jspp.xm!/ when you
develop Novotrader.

webapp/modules

Contains the Caplin runtime framework modules
(caplin namespace) that are required by the
Novotrader application. The Caplin build system
also copies application specific (novox
namespace) modules to this directory.

The directory also contains several configuration
files with resources.xml in the filename. These files
contain information about the runtime framework
JavaScript classes that the JSPP must include
when it builds the JavaScript dependency tree.

You must not modify or delete any of the
resource files in this directory.

webapp/WEB-INF

Contains the deployment descriptor file web.xml. A
setting in this file determines the URL pattern that
activates the JSPP servlet.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 7

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Refere

nce

How the JavaScript Preprocessor works

4 How the JavaScript Preprocessor works

The way that the JSPP selects and concatenates the JavaScript files that it returns to the browser can be

considered in three stages:

1. The browser request/ 8%

2. Building the dependency treel 103

3. Returning concatenated files/ 13

4.1 The browser request

When the browser requests the Novotrader application from the application server, the request URL

will look something like the following:

http://trader.caplin.com:9090/1.0/Novotrader/webapp/application.jsp

?mode=dev

The query string ?mode=dev is optional, but can be used to specify a mode to the JSPP

(see Building the dependency tree[10Y).

In response to this request, the JavaServer Page (applicationjsp) returns the HTML for the

Novotrader application to the browser.

Javasever Page
(gppiication jsg)

Browser
A
Browser requests
application.jsp?mode=dev HTML
Application Server
Run Return
application.jsp HTML
v

If a <caplin:script /> tag is present in application.jsp, the returned HTML contains a
<script> tag with a src attribute of the form src="ClassLoader. jspp?mode=dev".

{caplin:script ~:

returns this HTML #

{acript sroc="Claszsloader . jspp?mnode=dev" >

© Caplin Systems Ltd. 2010

CONFIDENTIAL

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference How the JavaScript Preprocessor works

In response to this <script> tag being returned to the browser, the browser requests the resource
ClassLoader.jspp?mode=dev from the application server.

Because the requested resource matches the pattern *.jspp, the application server passes the
request to the JSPP servlet.

Browser requests
ClassLoader.jspp?mode=dev

Application Server

Request passed
to JSPP serviet

The URL pattern that causes the request to be passed to the JSPP is defined in the deployment
descriptor file for the Novotrader application, Novotrader\webapp\WEB-INF\web.xml.

<!- Servlet mappings ->
<servlet-mapping>
<servlet-name>JavaScriptPreprocessorServlet</servlet-name>
<url-pattern>*.jspp</url-pattern>
</servlet-mapping>

© Caplin Systems Ltd. 2010 CONFIDENTIAL 9

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference How the JavaScript Preprocessor works

4.2 Building the dependency tree

When the JSPP servlet receives the request for ClassLoader. jspp, it parses the configuration file
Novotrader\webapp\conf\jspp.xml (see JSPP servlet configuration| 15").

The JSPP gets the configuration for the requested mode by looking in the parsed configuration file
for a <mode> tag with a name attribute that matches the mode in the request URL
(in this case ?mode=dev).

Request for

Look for ClassLoader jspp?mode=dev
requested mode tag
(name=dev)
<mode name="dev"> [
< naming
< naming

<A nocEs A
Configuration for

requested mode

parsed jspp.xm!

If this tag is not found (<mode name="dev">), or if a mode was not specified in the request URL,
the JSPP uses the configuration specified by the default <mode> to build the dependency tree.

jspp-xml

<mappings default="war">

<mode name="war'">

Each <mode> tag has one or more child <mapping> tags that map a resource namespace to a
resource path for that mode.

Mappings in jspp.xml for <mode name="dev">

<mode name="dev">

<mapping namespace="novox.*" path="../../novox/src"/>
<mapping namespace="caplin.*" path="../modules"/>
</mode>

© Caplin Systems Ltd. 2010 CONFIDENTIAL 10

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference How the JavaScript Preprocessor works

For each child <mapping> tag, the JSPP looks in the mapped path for files with names that start
with the mapped namespace (hyphen separated) and that end in -resources.xml
(such as novox-resources.xml).

Look in mapped paths for

resources. xmf files
P novox~esourees. i

path="_7/./novox/src/”
Y other-resources- xml ,

~® othervesourees.xm!

novox-resources. Xy >

path="_Jjmaoduies"

A resources.xml file lists the JavaScript classes required by a module, classes that the JSPP must
concatenate and return to the browser.

Example resources.xml file

<resources>
<requiredClasses>

<className>novox.renderer.DateElementRenderer</className>
<className>novox.renderer.YieldElementRenderer</className>

</requiredClasses>
</resources>

For each resources.xml file that it finds, the JSPP adds the JavaScript classes required by that
module to an internal class dependency tree.

<requiredClassess
... Glass-1
... clags-2
<frequiredCiassess

class-1
class-2
class-3
class-4

NOVOX-FESoUrca s xmt

'{}eqw.,edojassesrb Class dependency tree
. Glass-3
... Glass-4

<EQUIredC IS 585

other-resources. xml

© Caplin Systems Ltd. 2010 CONFIDENTIAL 11

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference How the JavaScript Preprocessor works

For each resources.xml file that it finds, the JSPP also looks in the path specified by the
<configurationPath> tag for other XML configuration files (such as gridDefinitions.xml) that
have tags with a c1assName attribute.

Example resources.xml file (showing the <configurationPath> tag)

<resources>
<requiredClasses>
<configurationPath></configurationPath>

</requiredClasses>
</resources>

Example gridDefinitions.xml file with className attributes

<decoratorMappings>
<decoratorMapping id="dragDecorator"
className="caplin.grid.decorator.DragDecorator"/>
<decoratorMapping id="dropDecorator"
className="caplin.grid.decorator.DropDecorator"/>

</decoratorMappings>

The configuration path is relative to the root path as defined in the deployment descriptor file for the
Novotrader application, Novotrader\webapp\WEB-INF\web.xml.

Extract from deployment descriptor file

<init-param>
<param-name>root.path</param-name>
<param-value>conf</param-value>
</init-param>

In this case, because the <configurationPath> tag is empty, the root path and the configuration
path are the same (conf).

For each className attribute that it finds, the JSPP adds the JavaScript class specified by that
attribute to its internal class dependency tree.

cecoraforiianpings=

... Clagshiate="class-5 ..
... Clagshiate="class-6 ..

%fdecoraforﬂﬂappir@&

gridDefinifions xmi Class dependency tree

© Caplin Systems Ltd. 2010 CONFIDENTIAL 12

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference How the JavaScript Preprocessor works

4.3 Returning concatenated files

For each JavaScript class in the internal class dependency tree, the JSPP adds the JavaScript file
for that class, namespace, and mode to the list of files it concatenates.

Class-1 ja

Class-2 js
Class-3 fa
Class4 js
Class-5 js
Class6 js

Class dependency tree Concatenated
JavaScript files

The JSPP locates the file for a required JavaScript class using the mapped namespace and path
of the <mapping> tag in the jspp.xml configuration file.

Mappings in jspp.xml for <mode name="dev">

<mode name="dev">

<mapping namespace="novox.*" path="../../novox/src"/>
<mapping namespace="caplin.*" path="../modules"/>
</mode>

If a concatenated JavaScript file includes other JavaScript classes (using the caplin.include
directive), the files for these Javascript classes are also concatenated.

When all JavaScript classes in the dependency tree have been processed, the JSPP returns the
concatenated JavaScript class files to the browser.

Browser

Concatenated
JavaScript files
(for mode=dev)

Browser requests
ClassLoader. jspp?mode=dev

Application Server

%) Concatenated
Request passed Greeas JavaScript files
to JSPP serviet s _

taseers | (for mode=dev)

© Caplin Systems Ltd. 2010 CONFIDENTIAL 13

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference How the JavaScript Preprocessor works

In this way, multiple JavaScript class files are returned to the browser in response to a single resource
request (the request for ClassLoader. jspp).

By changing the mode specified in the application URL (in this case ?mode=dev), you can request a
different version of the Novotrader application (such as the built version rather than the development
version). If you do not specify a mode, JavaScript files for the default mode are returned.

By changing the classes listed in the resource configuration file for the Novotrader application,
Novotrader\novox\src\novox-resources.xml, you can control the application specific JavaScript classes
that the JSPP concatenates and returns to the browser.

© Caplin Systems Ltd. 2010 CONFIDENTIAL

14

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

5 Example JavaScript Preprocessor configuration

The JSPP is configured by settings in a number of XML configuration files, and activated if the application
server receives a request that matches a particular URL pattern.

5.1 JSPP serviet configuration

The JSPP servlet is configured by settings in the deployment descriptor file, web.xml. The format of the
XML configuration is an industry standard (see the Web Application Deployment Descriptor schema on
the Sun Developer Network website at http://java.sun.com/xml/ns/javaee/index.html).

In the following example, the application server is configured to pass resource requests that end
in .jspp to the JavaScript Preprocessor.

URL pattern mapping

<servlet-mapping>
<servlet-name>JavaScriptPreprocessorServlet</servlet-name>
<url-pattern>*.jspp</url-pattern>

</servlet-mapping>

Note: Do not set this URL pattern to anything else. The JavaServer Page returns a <script> tag
with a src attribute of the form src="ClassLoader.jspp?mode=dev" to the browser if the
<caplin:script /> tagis present in the JavaServer Page. If the configured URL pattern is
not *.jspp, the JavaScript Preprocessor will not receive the request for the resource
ClassLoader.spp (see The browser request! 8" for further information).

Other characteristics of the JSPP servlet are configured by name/value pair parameters in the
deployment descriptor file (see Configuration Reference: JSPP Serviet/24Y).

JSPP servlet configuration

servlet>
<servlet-name>JavaScriptPreprocessorServlet</servlet-name>
<servlet-class>com.caplin.javascript.preprocessor.web.JavaScriptPreprocessorServlet
</servlet-class>
<init-param>
<param-name>root.path</param-name>
<param-value>conf</param-value>
</init-param>
<init-param>
<param-name>jspp.config</param-name>
<param-value>jspp.xml</param-value>
</init-param>
<init-param>
<param-name>
<param-name>jspp.xsd</param-name>
<param-value>schema/JavaScriptPreprocessor.xsd</param-value>
</init-param>
<init-param>resources.xsd</param-name>
<param-value>schema/Resources.xsd</param-value>
</init-param>
<init-param>
<param-name>cache.expiry</param-name>
<param-value>0</param-value>
</init-param>
<init-param>
<param-name>log.level</param-name>
<param-value>FINE</param-value>
</init-param>
</servlet>

© Caplin Systems Ltd. 2010 CONFIDENTIAL 15

http://java.sun.com/xml/ns/javaee/index.html

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

An explanation of the example servlet configuration

Here is an explanation of the JSPP servlet configuration used in this example.

root.path The root path, relative to the servlet context, of all other JSPP configuration paths.

<param-name>root.path</param-name>
<param-value>conf</param-value>

The servlet context is the directory containing the JavaServer Page that serves the application. In
this case the root path is set to conf, which specifies that all configuration file paths are relative to

the conf directory.

In the case of the Novotrader development environment, the conf directory is inside the webapp
directory (see About the Caplin Trader framework/ 6%).

jspp.config The path to the configuration file that contains namespace to path mappings for each
JSPP mode (see Namespace configuration| 18Y).

<param-name>jspp.config</param-name>
<param-value>jspp.xml</param-value>

In this case the file path is set to jspp.xml. Because the path is relative to the root path, the JSPP
will expect to find the configuration file jspp.xml inside the conf directory.

jspp.xsd The path to the XML schema for the configuration file specified by jspp.config.

<param-name>jspp.xsd</param-name>
<param-value>schema/JavaScriptPreprocessor.xsd</param-value>

The JSPP validates the namespace to path configuration file against this schema. If the validation
fails, the JSPP will not start and an error is logged at the application server.

In this case, the file path is set to schema/JavaScriptPreprocessor.xsd.
Because the path is relative to the root path, the JSPP will expect to find the configuration file
schema/JavaScriptPreprocessor.xsd inside the conf directory.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 16

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

*

resources.xsd The path to the XML schema for all resource configuration files (see Resource
configuration| 20Y).

<param-name>resources.xsd</param-name>
<param-value>schema/Resources.xsd</param-value>

The JSPP validates all resource configuration files against this schema. If the validation fails, an
error is logged at the application server.

In this case the file path is set to schema/Resources.xsd. Because the path is relative to the root
path, the JSPP will expect to find the configuration file schema/Resources.xsd inside the conf
directory.

cache.expiry The cache expiry time at the server for all JSPP configuration files and
concatenated JavaScript files.

<param-name>cache.expiry</param-name>
<param-value>0</param-value>

In this case the cache expiry time is set to 0, which means that JSPP configuration files and
concatenated JavaScript files are not cached at the server. The cache expiry time must be set to
Infinity when the application is deployed for production.

log.level The Java log level for all JSPP error messages that are logged at the application
server.

<param-name>log.level</param-name>
<param-value>FINE</param-value>

In this case the log level is set to FINE, which means that tracing information is logged.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 17

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

5.2 Namespace configuration

When the JSPP servlet runs on the application server, it parses the XML configuration file pointed to by
the jspp.config configuration parameter of the deployment descriptor file (see JSPP_servlet configuration
[15%). This configuration file contains namespace to path mappings for one or more application modes.

The example below shows a typical namespace to path mappings XML configuration file.

XML for namespace to path mappings

<mappings default="war">
<mode name="dev">

<mapping namespace="novox.*" path="../../novox/src"/>
<mapping namespace="caplin.*" path="../modules"/>
</mode>

<mode name="war">
<errorMessage>Sorry, there is a technical fault and the
application cannot be loaded.</errorMessage>
<mapping namespace="*" path="../modules"/>
</mode>
</mappings>

An explanation of the example XML configuration
Here is an explanation of what the example XML configuration contains, and how the JSPP uses this
information to return different JavaScript files according to the mode specified in the request URL.

<mappings> contains configuration settings for two modes (name="dev" and name="war").

<mappings default="war">
<mode name="dev">

<mode name="war'">

</mappings>

If the URL in the application request contains the query string ?mode=dev, the JSPP will use the
<mode name="dev"> configuration to concatenate and return JavaScript files.

If the URL in the application request contains the query string ?mode=war, the JSPP will use the
<mode name="war"> configuration to concatenate and return JavaScript files.

If a mode is not present in the application request (typical when deployed in production), or if the
requested mode or mapped paths do not exist, the JSPP will use the default configuration
(default="war") to concatenate and return JavaScript files.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 18

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

<mode> contains configuration settings for a single mode.

<mode name="dev">
<mapping

<mode name="war">
<mapping ...

In this case, namespace to path mappings are defined for two modes
(name="dev" and name="war").

<mapping> maps a hamespace to a path for a particular mode.

<mode name="dev">

<mapping namespace="novox.*" path="../../novox/src"/>
<mapping namespace="caplin.*" path="../modules"/>
</mode>
<mode name="war">
<errorMessage> ... </errorMessage>
<mapping namespace="*" path="../modules"/>
</mode>

The namespace attribute defines the namespace, and the path attribute the path for that
namespace. The JSPP uses this information in two ways:

1. When the JSPP builds the JavaScript class dependency tree, it looks in the top level directory
of each mapped path for files with names that start with the mapped namespace (hyphen
separated) and end in -resources.xml (such as novox-resources.xml). Each resource file lists
the JavaScript classes required by a module, and the JSPP adds these classes to an internal
class dependency tree (see Resource configuration! 20).

2. When the JSPP concatenates the files for each class in the class dependency tree, it locates
the files using the requested (or default) mode, and the namespace to path mapping for that
mode.

In this case, the caplin namespace is mapped to the same path for each mode
(path="../modules"), but the novox namespace is mapped to different paths for each mode.
This means that the files returned by the JSPP in the novox namespace depend on the mode
specified in the request URL, but the files returned by the JSPP in the caplin namespace are
independent of the specified mode.

<errorMessage> contains a message that is displayed in the client browser if the JSPP logs an
error on the server.

<errorMessage>Sorry, there is a technical fault and the
application cannot be loaded.</errorMessage>

If the <errorMessage> tag is not present in the configuration, a detailed error message is
displayed in the client browser.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 19

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

5.3

Resource configuration

A resource configuration file specifies the JavaScript classes required by a module. There are several
modules in the caplin namespace, and each module has its own resource configuration file (such as
caplin-grid-resources.xml).

Note: You must not modify or delete any resource configuration file in the caplin namespace.

If you created a development environment for the Novotrader application, you will find a resource
configuration file for the novox module. This file is called novox-resources.xml, and is located in the
novox/source directory of the Novotrader environment (see About the Caplin Trader framework| 6%). You
can change the content of this file if you develop the Novotrader application.

Each resource configuration file must have a filename that is prefixed by the hyphen-separated
namespace of the module, and which ends in -resources.xml (such as novox-resources.xml or
caplin-grid-resources.xml).

The path to resource configuration files is defined by the <mapping> tag in the namespace to path
configuration file (see Namespace configuration| 18Y).

The following example is an extract from a typical resource configuration file for the Novotrader
application. The example is an extract because the Novotrader resource file has several lines, but you
only need to see some of these lines to understand the example.

XML extract from a resource configuration file

<resources>
<requiredClasses>
<configurationPath></configurationPath>
<!-- caplin namespace classes —-->

<className>caplin.grid.GridColumn</className>
<className>caplin.grid.RttpContainerGridDataProvider</className>

<!-- novox namspace classes -->
<className>novox.grid.decorator.RightClickMenuDecorator</className>

</requiredClasses>
</resources>

© Caplin Systems Ltd. 2010 CONFIDENTIAL 20

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

An explanation of the example XML configuration

Here is an explanation of what the example XML configuration contains, and how the JSPP uses this
information to select the files it concatenates.

<requiredClasses> contains the classes required by the module.

<requiredClasses>
<className>caplin.grid.GridColumn</className>
<className>caplin.grid.RttpContainerGridDataProvider</className>

<className>novox.grid.decorator.RightClickMenuDecorator</className>

</requiredClasses>

In this case three classes are specified, two in the caplin namespace and one in the novox
namespace.

<className> contains the fully qualified name of a JavaScript class.

<className>caplin.grid.GridColumn</className>
<className>caplin.grid.RttpContainerGridDataProvider</className>

<className>novox.grid.decorator.RightClickMenuDecorator</className>

The JSPP adds each class defined by a <className> tag to an internal class dependency tree.
When the JSPP concatenates JavaScript files, it is files for the classes in this dependency tree that
it concatenates.

The JSPP locates the JavaScript file for a required class using the requested (or default) mode, in
conjunction with other configuration settings, as shown below.

Namespace mapping for the requested mode (?mode=war, see Namespace configuration| 18):

<mapping namespace="novox.*" path="../modules"/>

Root path (see JSPP servlet configuration| 15):

webapp/conf (assuming the servlet context is webapp and the root.path is set to cornf)

Path to the modules directory (relative to the root path):

webapp/modules (because . ./ is in the path definition of the namespace mapping)

Required class:

novox.grid.decorator.RightClickMenuDecorator

© Caplin Systems Ltd. 2010 CONFIDENTIAL 21

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

Relative path to the concatenated file (by convention, the path must mirror the package name):

novox/grid/decorator

Location of the concatenated file:

webapp/modules/novox/grid/decorator

Name of the concatenated file:

RightClickMenuDecorator.js

<configurationPath> contains the path to other XML configuration files that may or may not
specify required JavaScript classes.

<configurationPath></configurationPath>

The JSPP looks in the path specified by the <configurationPath> tag for other XML
configuration files (such as gridDefinitions.xml) that have tags with a className attribute. For
each className attribute found, the JSPP adds the JavaScript class specified by that attribute to
its internal class dependency tree.

The configuration path is relative to the root path as defined in the deployment descriptor file
(see JSPP_servlet configuration[18). In this case, because the <configurationPath> tag is
empty, the configuration path is set to the root path.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 22

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Example JavaScript Preprocessor configuration

5.4

The JavaServer Page

The application server can be configured to pass requests that match a particular URL pattern to the
JavaScript Preprocessor (see JSPP servlet configuration| 153).

For example, the application server can be configured to pass all requests that match the pattern * . jspp
to the JavaScript Preprocessor. To achieve this, add a <caplin:script /> tag to the application
JavaServer Page.

When the JavaServer Page returns HTML to the browser, it replaces the <caplin:script /> tag with
a tag of the form <script src="ClassLoader.]jspp?mode=xxx">, where xxx is replaced by the
mode present in the URL that requested the application.

A typical application request URL is:

http://trader.caplin.com:9090/1.0/Novotrader/webapp/application.jsp?
mode=war

In response to this request, the JavaServer Page returns the tag

<script src="ClassLoader.jspp?mode=war"> to the browser, which in turn requests the resource
ClassLoader. jspp?mode=war. Because the request matches the configured URL pattern

(* . jspp), the request is passed to the JSPP servlet.

The following is an extract from a JavaServer Page that contains a <caplin:script /> tag.

Extract from a JavaServer Page

<%@ taglib uri="http://www.caplin.com/CaplinTrader/JavaScriptPreprocessor"
prefix="caplin" %>

<html>

<caplin:script />

</html>

The <%@ taglib> tag is a directive, and declares that the JavaServer Page uses tags defined in a

custom tag library. The directive must be placed before the <caplin:script /> tag in the JavaServer
Page, and the <caplin:script /> tag must be a child of an <html> tag.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 23

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Configuration Reference: JSPP Servlet

6 Configuration Reference: JSPP Serviet

This is the configuration reference for the JSPP servlet (see JSPP servlet configuration! 157).

JSPP configuration parameters

Parameter Required? | Default Description

root.path Yes The path, relative to the servlet context, that all other
JSPP configuration paths are relative to
(see An explanation of the example servlet

configuration! 16%).

jspp.config Yes The path to the configuration file that contains
namespace to path mappings for each JSPP mode
(see Namespace configuration| 18").

jspp-xsd Yes The path to the XML schema for jspp.config. The
JSPP validates the configuration file that jspp.config
points to against this schema. If the validation fails,
the JSPP will not start and an error is logged at the
application server.

resources.xsd Yes The path to the XML schema for resource
configuration files (see Resource configuration|20Y).
The JSPP validates all resource configuration files
against this schema. If the validation fails, an error is
logged at the application server.

cache.expiry No Infinity The server cache expiry time for all JSPP
configuration files and concatenated JavaScript files.
Valid values:

0 files are not cached (recommended
application development setting).

N cache expiry time in seconds (a
positive integer).

Infinity files are cached until the application
server is re-started (this setting
must be used when the application
is deployed for production).

log.level No ALL The Java log level of the JSPP. The JSPP logs error
messages to this level at the application server. Valid
values:

SEVERE, WARNING, INFO, CONFIG, FINE, FINER,
FINEST, and ALL.

Application server log files are written to the
.logs/tomcat directory of the installed development
environment (see About the Caplin Trader
development environment! 6M).

For a description of the available log levels, refer to the java.util.logging class in the API
specification for the Java Platform, Standard Edition v1.4.2, available at
http://download.oracle.com/javase/1.4.2/docs/api/javal/util/logging/Level.html.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 24

http://download.oracle.com/javase/1.4.2/docs/api/java/util/logging/Level.html

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference

Configuration Reference: Namespace Mappings

7 Configuration Reference: Namespace Mappings

This is the reference information for the configuration XML that maps JavaScript class namespaces to the

relative path locations of these namespaces.

71 Ordering and nesting of tags

Each top level tag of the namespace mapping configuration XML is shown below, together with the child
tags that it can typically contain (the children are in no particular order).

Tip: Advanced users may wish to consult the XML Schema (JavaScriptPreprocessor.xsd) for
definitive information on the ordering and nesting of tags.

For a description of each tag and its attributes, see the Namespace Mappings XML Reference| 26

section.

<mappings>
This is the outermost tag
<mappings>
<mode></mode> (one or more)
</mappings>
<mode>
<mode>
<errorMessage /> (zero or one)

<mapping /> (one or more)
</mode>

<errorMessage>

<errorMessage /> (no children)

<mapping>

<mapping /> (no children)

© Caplin Systems Ltd. 2010

CONFIDENTIAL 25

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Configuration Reference: Namespace Mappings

7.2

Namespace Mappings XML Reference

This section describes the XML tags that you can use to configure namespace mappings for the JSPP.

Default attribute values

In the tables that follow, if an attribute is not required (Req? = 'N') and there is a default value specified,
then not supplying the attribute is equivalent to setting the attribute to this default value. If an attribute is
not required and the default is '(none)', then not supplying the attribute can result in one of two behaviors,
depending on the particular attribute — either the behavior is as specified in the description column of the
table, or there is no effect on the appearance or behavior of the component.

<errorMessage>

<errorMessage>

A message that is displayed in the client browser when the JSPP logs an error on the server. If
<errorMessage> is not defined, the detailed log message that is logged on the server is also sent to the
browser. The message only applies to the mode in which it is defined, and is normally used to prevent
detailed log messages being displayed when the application is deployed for production.

Attributes: This tag has no attributes.

<mapping>

<mapping>

Maps a JavaScript class namespace to a path. When the JSPP is applying the configuration for the
parent mode, it looks in the top level directory of the mapped path for files with names that start with the
mapped namespace (hyphen separated) and that end in -resources.xml, and adds the JavaScript classes
specified in these resource files to an internal class dependency tree. When the JSPP concatenates files
in the dependency tree for the mapped namespace, it locates the files using the mapped path.

Attributes:

Name Type Default Req? Description

namespace string (none) Y The namespace to map. The * character is a
wildcard character that matches any text if
prefixed by "' and placed at the end of the
namespace (as in novox.*), or if it appears
on its own (as in * where it matches any
namespace). The * character is not treated
as a wildcard character if it is placed
anywhere else in the namespace.

path string (none) Y The path for the mapped namespace,
relative to the root path (see the root.path
parameter of the deployment descriptor file,
as described in the 'Configuration
Reference: JSPP Servlet' section of this
document).

© Caplin Systems Ltd. 2010 CONFIDENTIAL 26

Caplin Trader 2.0

JavaScript Preprocessor Configuration XML Reference

Configuration Reference: Namespace Mappings

<mappings>

<mappings>

The outermost tag of the namespace mappings XML configuration, containing one or more <mode> tags.

Attributes:
Name Type Default Req? Description
default string (none) Y Identifies the name of the <mode> tag that
contains the default namespace to path
mappings configuration for the JSPP. The
JSPP uses the default configuration if a
configuration for the requested mode does
not exist, or if a mode is not specified in the
request URL. A <mode> tag with the default
name must exist in the namespace
mappings XML configuration.
<mode>
<mode>

Contains the namespace to path mappings for a named mode.

Attributes:
Name Type Default Req? Description
name string (none) Y The name of the mode, which must be
unique across all defined modes.
© Caplin Systems Ltd. 2010 CONFIDENTIAL 27

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Configuration Reference: Module Resources

8

8.1

Configuration Reference: Module Resources

This is the reference information for the configuration XML that specifies the JavaScript resources
required by a module.

Ordering and nesting of tags

Each top level tag of the module resources configuration XML is shown below, together with the child tags
that it can typically contain (the children are in no particular order).

Tip: Advanced users may wish to consult the XML Schema (resources.xsd) for definitive information
on the ordering and nesting of tags.

For a description of each tag and its attributes, see the Module Resources XML Reference| 29" section.

<resources>
This is the outermost tag

<resources>

<requiredClasses></requiredClasses> (one only)
</resources>

<requiredClasses>
<requiredClasses> (the child tags can be in any order)
<className /> (zero or more)

<configurationPath /> (zero or more)
</requiredClasses>

<className>

<className /> (no children)

<configurationPath>

<configurationPath /> (no children)

© Caplin Systems Ltd. 2010 CONFIDENTIAL 28

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Configuration Reference: Module Resources

8.2

Module Resources XML Reference

This section describes the XML tags that you use to specify the JavaScript resources required by a
module.

<className>

<className>

The fully qualified name of a required JavaScript class (such as
novox.grid.decorator.RightClickMenuDecorator). The JSPP adds required JavaScript classes to its
internal class dependency tree (see <requiredClasses>).

Attributes: This tag has no attributes.

<configurationPath>

<configurationPath>

The path to a directory containing other XML files that configure the application (such as
gridConfiguration.xml). The JSPP looks in these configuration files for tags that have className
attributes, and adds the JavaScript classes specified by these attributes to its internal class dependency
tree (see <requiredClasses>). The path is relaive to the root path as defined in the deployment descriptor
file (see the root.path parameter in the 'Configuration Reference: JSPP Servlet' section of this document.
If this tag is empty, the configuration path is the same as the root path.

Attributes: This tag has no attributes.

<requiredClasses>

<requiredClasses>

Specifies the classes required by a module (see <className> and <configurationPath>). The JSPP adds
required classes to its internal class dependency tree. It is the files for classes in this dependency tree
that the JSPP concatenates and returns to the browser.

Attributes: This tag has no attributes.

<resources>

<resources>
The outermost tag of the module resources configuration XML.

Attributes: This tag has no attributes.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 29

Caplin Trader 2.0
JavaScript Preprocessor Configuration XML Reference Configuration Reference: The JavaServer Page

9

9.1

9.2

Configuration Reference: The JavaServer Page

This is the configuration reference for the custom tags that can be inserted in the JavaServer Page that
serves the Caplin Trader application (see The JavaServer Page|23)).

<%@ taglib %>

<%@ taglib %>

A directive that declares the JavaServer Page uses tags defined in a custom tag library. The directive
must be placed before any custom tag from that library in the JavaServer Page.

Attributes:

Name Type Default Req? Description

uri string (none) Y The URI that uniquely identifies the custom tag library. For the
<caplin:script /> tag, this must be set to
"http://www.caplin.com/CaplinTrader/JavaScriptPreprocessor".

prefix string (none) Y The prefix that distinguishes tags provided by a given tag
library from tags provided by other tag libraries. For the
<caplin:script /> tag, this must be set to "caplin”.

<caplin:script />

<caplin:script />

A custom tag that can be placed in the JavaServer Page that serves the Caplin Trader application. When
the JavaServer Page returns HTML to the browser, it replaces the <caplin:script /> tag with a tag of
the form <script src="ClassLoader.jspp?mode=xxx">, where xxx is replaced by the mode
present in the URL that requested the application.

A typical application request URL is:

http://trader.caplin.com:9090/1.0/Novotrader/webapp/application.jsp?
mode=war

In response to this request, the JavaServer Page returns the following tag to the browser:
<script src="ClassLoader.jspp?mode=war">

If a mode is not present in the URL that requested the application, the JavaServer Page returns the
following tag to the browser:

<script src="ClassLoader.jspp>

The <caplin:script /> tag must be a child of an <htm1> tag in the JavaServer Page.

Attributes: This tag has no attributes.

© Caplin Systems Ltd. 2010 CONFIDENTIAL 30

Caplin Trader 2.0

JavaScript Preprocessor Configuration XML Reference Glossary of terms and acronyms

10 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms relating to the JavaScript

Preprocessor.

Term

Definition

Application server

Caplin Trader

Caplin Trader application

Deployment descriptor

End-user

Java application server

JavaScript Preprocessor

JavaServer Page
JSP

JSPP

Mode

Module

Production version

Software that serves up web pages (typically with dynamically
constructed content) and web applications, for rendering or
execution by client web browsers.

Caplin Trader applications are served from a Java application
server. In this document the term “application server” means “Java
application server”.

A web application framework for constructing browser-based
financial trading applications.

A web application that is built using Caplin Trader.

A file (named web.xml) containing the XML that configures a Java
web application. When the application server receives a request
for the application, it uses the configuration in the deployment
descriptor file to map the request URL to the code (such as Java
servlets and filters) that handles the request.

A person who uses a piece of software for its intended purpose.
For example, financial traders are the end-users of a Caplin
Trader application.

An application server that hosts JavaServer Pages (JSPs) and
Java servlets. Such servers can also host resources implemented
in other technologies, such as HTML, CSS, XML, and JavaScript.

A Java servlet residing on the application server that can be
configured to concatenate and return only those JavaScript files
required by the requested Caplin Trader application.

A Java technology for serving dynamically generated web pages.
See JavaServer Page.
See JavaScript Preprocessor

A query string that may or may not be present in the URL that
requests the Caplin Trader application. The JSPP can be
configured to concatenate and return JavaScript files from different
locations (such as the development or built version), depending on
the requested mode. If a mode query string is not present in the
request URL, the JSPP returns JavaScript files from a location
specified by the default mode.

A number of JavaScript classes that are related by the functionality
they provide.

The version of a Caplin Trader application that is deployed to
serve end-users, as opposed to the development or test version.

© Caplin Systems Ltd. 2010

CONFIDENTIAL 31

Single-dealer platforms for the capital markets C A P I_ I N

Contact Us

The information contained in this publication is

. subject to UK, US and international copyright laws

Caplin Systems Ltd and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in

Cutlers Court any form or by any means without the written

115 Houndsditch authorization of an Officer of Caplin Systems

Limited.

London EC3A 7BR

Various Caplin technologies described in this

Telephone: +44 20 7826 9600 document are the subject of patent applications. All
trademarks, company names, logos and service
Fax: +44 20 7826 9610 marks/names ("Marks") displayed in this publication

are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

www.caplin.com

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Trader 2.0: JavaScript Preprocessor Configuration XML Reference, October 2010, Release 1

© Caplin Systems Ltd. 2010 CONFIDENTIAL

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	Overview
	Technical assumptions
	About the Caplin Trader development environment

	How the JavaScript Preprocessor works
	The browser request
	Building the dependency tree
	Returning concatenated files

	Example JavaScript Preprocessor configuration
	JSPP servlet configuration
	Namespace configuration
	Resource configuration
	The JavaServer Page

	Configuration Reference: JSPP Servlet
	Configuration Reference: Namespace Mappings
	Ordering and nesting of tags
	Namespace Mappings XML Reference
	<errorMessage>
	<mapping>
	<mappings>
	<mode>

	Configuration Reference: Module Resources
	Ordering and nesting of tags
	Module Resources XML Reference
	<className>
	<configurationPath>
	<requiredClasses>
	<resources>

	Configuration Reference: The JavaServer Page
	<%@ taglib %>
	<caplin:script />

	Glossary of terms and acronyms

