
How To Create A

March 2012

C O N F I D E N T I A L

Caplin Xaqua 1.0

 Permissioning DataSource Adapter

i

How To Create A Permissioning DataSource Adapter

© Caplin Systems Ltd. 2009 – 2012

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 2Related documents1.3

.. 3Typographical conventions1.4

.. 3Feedback1.5

.. 4Acknowledgments1.6

.. 4Code samples in this document1.7

.. 5What is a Permissioning DataSource?2

.. 6The Permissioning DataSource API2.1

.. 7Creating a Permissioning DataSource Adapter3

.. 7Creating a Single Permissioning DataSource3.1

.. 10Upgrading the Permissioning DataSource library

.. 11Creating Multiple Permissioning DataSource Adapters3.2

.. 12Creating the Master

.. 13Creating a Slave

.. 14Master/Slave Limitations

.. 15Setting the Master/Slave Roles

.. 16About Transactions3.3

.. 16API methods for starting a transaction

.. 17When should an Image or Update transaction be used?

.. 17Creating Rules3.4

.. 18Updating Permissioning Data3.5

.. 18Creating Users

.. 19Creating Groups

.. 19Removing Users and Groups

.. 20Setting a User's Password

.. 21Changing a User's Permissions

.. 24Changing a Group's Permissions

.. 27Changing Subject Mappings for a User

.. 28Updating the global context of Subject Mappers

.. 30Changing User Attributes

.. 31Changing the Members of a Group

ii

How To Create A Permissioning DataSource Adapter

© Caplin Systems Ltd. 2009 – 2012

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

.. 32Creating a Custom Subject Mapper4

.. 32Implementing the SubjectMapper Interface4.1

.. 33Example Implementation of SubjectMapper

.. 35Deploying a custom Subject Mapper4.2

.. 37Creating a Custom Global Context5

.. 38Implementing the GlobalContext Interface5.1

.. 38Example Implementation of GlobalContext

.. 42Deploying a custom Global Context5.2

.. 43Configuring the Permissioning Auth Module5.3

.. 44Deploying the javaauth.properties file

.. 45Creating Permissions for TOBO6

.. 45Creating the rule that matches a TOBO switch message6.1

.. 46Adding sales and customer users6.2

.. 47Assigning TOBO permissions to SalesUser16.3

.. 48Assigning TOBO permissions to SalesUser26.4

.. 49Assigning tiers and permissions to CustomerUser16.5

.. 50Assigning tiers and permissions to CustomerUser26.6

.. 51Assigning tiers and permissions to CustomerUser36.7

.. 52Committing the transaction6.8

.. 53The Demo Permissioning DataSource7

.. 54Starting and Stopping the Demo Permissioning DataSource7.1

.. 54Starting the Demo Permissioning DataSource

.. 55Overview of the Demo Permissioning DataSource7.2

.. 56The Demo Permissioning XML8

.. 56Technical Assumptions and Restrictions8.1

.. 56Ordering and Nesting of Tags8.2

.. 59XML Reference Information8.3

.. 59<attributes>

.. 59<fieldMatchCriteria>

.. 59<group>

.. 60<groupRef>

.. 60<groups>

.. 60<master>

.. 60<match>

.. 61<members>

.. 61<permission>

iii

How To Create A Permissioning DataSource Adapter

© Caplin Systems Ltd. 2009 – 2012

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

.. 61<permissioning>

.. 61<permissionSet>

.. 62<productPermissionSet>

.. 62<role>

.. 63<rule>

.. 64<rules>

.. 64<slave>

.. 64<subjectMapping>

.. 65<user>

.. 65<userAttribute>

.. 65<userRef>

.. 66Stopping the Demo Permissioning DataSource

.. 66<users>

.. 67Further Reading9

.. 68Glossary of terms and acronyms10

Preface

1© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

1 Preface

1.1 What this document contains

This document describes how you can create a Permissioning DataSource adapter by writing an
application that uses the Permissioning DataSource API. A Permissioning DataSource adapter is required
to integrate Caplin Xaqua with a Permissioning System. The document also discusses the Demo
Permissioning DataSource that is provided with the reference implementation of Caplin Trader.

Before reading this document, make sure you are familiar with the document
Caplin Xaqua: Permissioning Overview And Concepts.

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for System Architects and Software Developers who want to integrate
Caplin Xaqua with a Permissioning System.

http://support.microsoft.com/kb/896054/

Preface

2© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

1.3 Related documents

Caplin Xaqua: Overview

Provides a business and technical overview of Caplin Xaqua and includes an explanation of its
architecture.

Caplin Liberator: Administration Guide

Describes how to install and configure Caplin Liberator and discusses the authentication modules
that are provided with the server.

Caplin Xaqua: Permissioning Overview And Concepts

Introduces permissioning concepts and terms, and shows the permissioning components of the
Caplin Xaqua architecture.

Caplin Xaqua: Installing Permissioning Components

Describes how to install the Permissioning Auth Module and Permissioning DataSource in an existing
 Caplin Xaqua installation. You do not need to install these components if your Caplin Xaqua client is
based on Caplin Trader, because they are included in the Caplin Xaqua software that is installed
along with Caplin Trader.

Caplin Trader: How To Add Permissioning At The Client

Describes how to add Permissioning to Caplin Trader.

Permissioning DataSource: API Reference

The API reference documentation provided with the Permissioning DataSource SDK (Software
Development Kit). The classes and interfaces presented by this API allow you to write a Java
application that will integrate a Permissioning System with Caplin Xaqua.

Caplin Trader: API Reference

The API reference documentation provided with Caplin Trader. The classes and interfaces of the
caplin.security.permissioning package allow you to write JavaScript classes that extend the
live permissioning capabilities of Caplin Trader.

Preface

3© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

Glossary term Items that appear in the “Glossary of terms and acronyms”

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

 Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

https://support.caplin.com/documentfeedback/?product=Caplin Xaqua 1.0&doctitle=How To Create A Permissioning DataSource Adapter&date=March 2012&release=1

Preface

4© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

1.6 Acknowledgments

Adobe® Reader is a registered trademarks and Adobe Flex™ a trademark of Adobe Systems Incorporated
in the United States and/or other countries.

Windows is a registered trademark and Silverlight™ a trademark of Microsoft Corporation in the United
States and other countries.

Java, JavaScript, and JVM are trademarks or registered trademarks of Oracle® Corporation in the U.S.
and other countries.

1.7 Code samples in this document

The code samples presented in this document use the following conventions:

Text within <angled brackets> represents parameters that must be defined in your code.

Text shown as (...) represents parameters that have been omitted for simplicity.

What is a Permissioning DataSource?

5© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

2 What is a Permissioning DataSource?

A Permissioning DataSource is a DataSource Adapter that acts as the interface between Caplin
Xaqua and your Permissioning System. Its purpose is to provide Liberator with the permissioning data
that the Permissioning Auth Module will use to decide whether or not an interaction with Liberator is
permitted.

Simplified Caplin Xaqua architecture
showing only permissioning components

What is a Permissioning DataSource?

6© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

To create a Permissioning DataSource, you write and compile a Java application that uses the
Permissioning DataSource API. This simple API is built on top of the Caplin DataSource for Java API,
allowing your application to send permissioning data to Liberator using the DataSource protocol, but
without the need for your code to explicitly use the DataSource API.

Tip: You will find further information about the permissioning components of the Caplin Xaqua
architecture in the document Caplin Xaqua: Permissioning Overview And Concepts.

2.1 The Permissioning DataSource API

The Permissioning DataSource API is part of the Permissioning DataSource SDK (Software Development
Kit) and allows you to write applications that can send permissioning data to Caplin Liberator. The SDK is
delivered with Caplin Xaqua and contains the following components.

The library of Java classes that provide the Permissioning DataSource API.

Permissioning DataSource: API Reference that includes an overview, and package and class-level
documentation.

A Demo Permissioning DataSource Adapter . This example application uses the Permissioning
DataSource API to provide Liberator with permissioning data from an XML file .

The Permissioning DataSource API is contained in a single package that provides the classes and
interfaces you need to integrate Caplin Xaqua with a Permissioning System. The package also includes
classes for assigning permissions to Users and Groups, classes for storing permissioning data, and
classes for handling exceptions.

Tip: For a complete description of the Permissioning DataSource API, please refer to the
Permissioning DataSource: API Reference.

53

56

Creating a Permissioning DataSource Adapter

7© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

3 Creating a Permissioning DataSource Adapter

Permissioning data can either be sent to Liberator from a single Permissioning DataSource , or from
multiple Permissioning DataSources .

Note: To create a Permissioning DataSource adapter as described in this document, your application
must use version 4.5.18 (or later) of the Permissioning DataSource library. Please contact
Caplin support if you intend to use an earlier version of that library.

3.1 Creating a Single Permissioning DataSource

The Permissioning DataSource API provides the interface between Caplin Xaqua and a Permissioning
System. When you write an application that uses this API, your code must implement the
PermissioningConnectionListener interface and instantiate a PermissioningDataSource, as
summarized in steps 1 to 5 below.

1. Implement the PermissioningConnectionListener interface

This interface has two callback methods that your code must implement. The first of these callback
methods, onConnect(), is triggered by the PermissioningDataSource when a new connection
to Liberator is established. The second of these callback methods, onDisconnect(), is triggered by
the PermissioningDataSource when the connection to Liberator is lost.

These are informational callbacks only, and an application would typically respond by logging the
current connection status.

2. Instantiate a PermissioningDataSource

The PermissioningDataSource has one constructor that expects three arguments in the
following order:

An instance of your PermissioningConnectionListener implementation, as described in
step 1 above.

A DataSource XML configuration file (conf/DataSource.xml), in the form of an InputStream.
This file configures the PermissioningDataSource as a DataSource adapter, and must
contain network connection information for your particular network.

A DataSource XML field mapping file (conf/Fields.xml), in the form of an InputStream. This
file maps DataSource field names to field numbers, and must match the field name to number
mappings that are used by Liberator.

The Demo Permissioning DataSource that is supplied with the SDK has an example DataSource
XML configuration file and example DataSource XML field mapping file. You can either create your
own version of these files or customize the supplied example files as required.

3. Set the role of the PermissioningDataSource

When there is only one PermissioningDataSource connected to Liberator, set the role to master
(see Creating Multiple Permissioning DataSource Adapters).

Note: If your client application does not support multiple Permissioning DataSources, then omit step 3
and do not set the role of the PermissioningDataSource
(see Upgrading the Permissioning DataSource library).

7

11

53

11

10

Creating a Permissioning DataSource Adapter

8© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

4. Apply permissioning data to the PermissioningDataSource

Permissioning rules, and the permissions of users and groups, are created as part of a transaction
and applied to the PermissioningDataSource when the transaction is committed. Permissioning
data can be applied to the PermissioningDataSource at any time, either before or after a
Liberator connection is established.

Each time a connection is established, the PermissioningDataSource sends permissioning data
for all committed transactions to Liberator as an image. If a connection to Liberator is already
established, permissioning data is sent to Liberator as soon as the transaction is committed.

5. Start the PermissioningDataSource

You start a PermissioningDataSource when you call PermissioningDataSource.start().

The following code sample is a trivial implementation of a PermissioningConnectionListener, as
summarized in steps 1 to 5 above.

// Step 1 (part 1/3): Implement the PermissioningConnectionListener interface.
public class MyPermissioningSystemAdapter implements PermissioningConnectionListener
{
 private PermissioningDataSource pds;

 public MyPermissioningSystemAdapter() throws IOException, SAXException
 {
 // Step 2: Instantiate a PermissioningDataSource, passing in this
 // adapter as a listener.
 pds = new PermissioningDataSource(this,
 <DataSource.Config.Stream>,
 <Fields.Config.Stream>);

 // Step 3: Set the role of the PermissioningDataSource to master.
 pds.setMasterRole();

 // Step 4: In this example we apply permission data before starting
 // the PermissioningDataSource, but this can be done at any time.
 // Apply the permissioning data as part of an image transaction.
 pds.startImageTransaction();

 // Create some Rules.
 pds.createActionRule(...);
 pds.createActionRefRule(...);

 // Create some Users and configure them.
 User user1 = pds.createUser(...);
 user1.applyPermission(...);
 user1.setSubjectMapping(...);

 User user2 = pds.createUser(...);
 user2.applyPermission(...);

 // Create some Groups and configure them.
 Group group1 = pds.createGroup(...);
 group1.applyPermission(...);
 group1.addMember(user1);

 Group group2 = pds.createGroup(...);
 group2.applyPermission(...);
 group2.addMember(user1);
 group2.addMember(user2);

 // Commit the permissioning data. The data is sent to Liberator immediately,
 // or as soon as a connection to Liberator is established.
 pds.commitTransaction();

 // Step 5: Start the PermissioningDataSource.
 pds.start();
 }

Creating a Permissioning DataSource Adapter

9© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

 // Step 1 (part 2/3): Implement the onConnect() callback
 public void onConnect(int peerIndex)
 {
 System.out.println("Connected to Liberator!")
 }
 // Step 1 (part 3/3): Implement the onDisconnect() callback
 public void onDisconnect(int peerIndex)
 {
 System.out.println("Disconnected from Liberator!")
 }
}

Creating a Permissioning DataSource Adapter

10© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Upgrading the Permissioning DataSource library

From release 4.5.6, the Permissioning DataSource library supports two versions of a Permissioning
message protocol, each having a different (and mutually incompatible) message format.

Version 1 (the original protocol) has a message format that allows only one Permissioning DataSource to
connect to Liberator. Version 2 (a later protocol) has a message format that allows both single (master)
and multiple (master/slave) Permissioning DataSources to connect to Liberator.

If you are you are upgrading the Permissioning DataSource library and your client application uses version
1 of the Permissioning message protocol, then you must ensure that your Permissioning DataSource
continues to use version 1 of this protocol.

A Permissioning DataSource will use version 1 of the protocol if you do not set the role of the
Permissioning DataSource (see step 3 of Creating a Single Permissioning DataSource). This means
that if the client application only supports version 1 of the protocol, then you do not need to modify any
code in either the client application or Permissioning DataSource when you upgrade the Permissioning
DataSource library.

A Permissioning DataSource will use version 2 of the protocol if you do set the role of the Permissioning
DataSource. You must set the role of the Permissioning DataSource if your client application is configured
to use version 2 of the Permissioning message protocol.

The following table shows the messaging protocols that are supported by each release of the
Permissioning DataSource and Caplin Trader libraries.

Supported Permissioning message protocols:

Component Release Supported
Permissioning
Message
Protocol

How to configure

Permissioning
DataSource library
(DataSource+)

4.5.3 and
earlier

version 1 only Not applicable

Permissioning
DataSource library
(DataSource+)

4.5.4 and
4.5.5

version 2 only Not applicable

Permissioning
DataSource library
(DataSource+)

4.5.6 and
later

versions 1 and 2 The Permissioning DataSource will use protocol
version 1 if you do not set the master or slave
role.

The Permissioning DataSource will use protocol
version 2 if you do set the master or slave role.

Caplin Trader
library
(StreamLink+)

1.4.8 and
earlier

version 1 only Not applicable

Caplin Trader
library
(StreamLink+)

1.5.0 and
later

version 1 and 2 See the document Caplin Trader: How To
Add Permissioning At The Client.

7

Creating a Permissioning DataSource Adapter

11© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

3.2 Creating Multiple Permissioning DataSource Adapters

When permissioning data is sent to Liberator from more than one Permissioning DataSource, one of the
Permissioning DataSources must be designated the master and each of the other Permissioning
DataSources must be designated as slaves.

Multiple Permissioning DataSource Adapters connected to Liberator (showing
one master and one slave)

There can only be one master Permissioning DataSource, but there can be one or more slave
Permissioning DataSources depending on business requirements. For example, one slave could provide
permissions for FX instruments and another permissions for FI instruments. Only the master can add
permissioning rules and the user authentication details that allow end-users to log in to Liberator (see
Master/Slave Limitations).14

Creating a Permissioning DataSource Adapter

12© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Creating the Master

To designate a Permissioning DataSource as the master, your code must call methods that set the role of
the Permissioning DataSource as master. In the following code sample, the master is set in step 3. The
code is identical to the code sample described in Creating a Permissioning DataSource Adapter ,
except that user permissions and subject mappings are set in the slave (see Creating a Slave).

// Step 1 (part 1/3): Implement the PermissioningConnectionListener interface.
public class MasterPermissioningSystemAdapter implements PermissioningConnectionListener
{
 private PermissioningDataSource pdsm;

 public MasterPermissioningSystemAdapter() throws IOException, SAXException
 {
 // Step 2: Instantiate a PermissioningDataSource, passing in this
 // adapter as a listener.
 pdsm = new PermissioningDataSource(this,
 <DataSource.Config.Stream>,
 <Fields.Config.Stream>);

 // Step 3: Set the role of the PermissioningDataSource to master.
 pdsm.setMasterRole();

 // Step 4: In this example we apply permission data before starting
 // the PermissioningDataSource, but this can be done at any time.
 // Apply the permissioning data as part of an image transaction.
 pdsm.startImageTransaction();

 // Create some Rules.
 pdsm.createActionRule(...);
 pdsm.createActionRefRule(...);

 // Create some Users - permissions and subject mappings for these
 // Users are applied in the slave, but could be applied here.
 User user1 = pdsm.createUser(...);
 User user2 = pdsm.createUser(...);

 // Create some Groups and configure them.
 Group group1 = pdsm.createGroup(...);
 group1.applyPermission(...);
 group1.addMember(user1);

 Group group2 = pdsm.createGroup(...);
 group2.applyPermission(...);
 group2.addMember(user1);
 group2.addMember(user2);

 // Commit the permissioning data. The data is sent to Liberator immediately,
 // or as soon as a connection to Liberator is established.
 pdsm.commitTransaction();

 // Step 5: Start the PermissioningDataSource.
 pdsm.start();
 }

 // Step 1 (part 2/3): Implement the onConnect() callback
 ...

 // Step 1 (part 3/3): Implement the onDisconnect() callback.
 ...
}

Note that permissions and subject mappings can be applied in the master or in a slave.

7

13

Creating a Permissioning DataSource Adapter

13© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Creating a Slave

To designate a Permissioning DataSource as a slave, your code must call a method that sets the role of
the Permissioning DataSource as a named slave. In the following code sample, the role is set in step 3.
The rest of the code is similar to the code sample described in Creating a Permissioning DataSource
Adapter , except that a slave can only send a limited set of permissioning data to Liberator (see Master/
Slave Limitations).

// Step 1 (part 1/3): Implement the PermissioningConnectionListener interface.
public class SlavePermissioningSystemAdapter implements PermissioningConnectionListener
{
 private PermissioningDataSource pdss;

 public SlavePermissioningSystemAdapter() throws IOException, SAXException
 {
 // Step 2: Instantiate a PermissioningDataSource, passing in this
 // adapter as a listener.
 pdss = new PermissioningDataSource(this,
 <DataSource.Config.Stream>,
 <Fields.Config.Stream>);

 // Step 3: Set the role of the PermissioningDataSource to slave,
 // and set the name of the slave to "FX".
 pdss.setSlaveRole("FX");

 // Step 4: In this example we apply permission data before starting
 // the PermissioningDataSource, but this can be done at any time.
 // Apply the permissioning data as part of an image transaction.
 pdss.startImageTransaction();

 // Create some Users and apply permissions and subject mappings.
 // Note: Users created here must also be created in the master.
 User user1 = pdss.createUser(...);
 user1.applyPermission(...);
 user1.setSubjectMapping(...);

 User user2 = pdss.createUser(...);
 user2.applyPermission(...);

 // Commit the permissioning data. The data is sent to Liberator as
 // soon as a connection to Liberator is established.
 pdss.commitTransaction();

 // Step 5: Start the PermissioningDataSource.
 pdss.start();
 }

 // Step 1 (part 2/3): Implement the onConnect() callback
 ...

 // Step 1 (part 3/3): Implement the onDisconnect() callback.
 ...
}

In the code sample above, a slave Permissioning DataSource is created with the name "FX". In this case
the slave applies permissions for two users (user1 and user2). A similar piece of code could be created
for the slave named "FI".

When you configure Liberator, you must also include the name of the slave in the include-pattern
configuration option of add-data-service (see "Configuring Liberator to Connect to Multiple
Permissioning DataSources" in Caplin Xaqua: Installing Permissioning Components).

7

14

Creating a Permissioning DataSource Adapter

14© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Master/Slave Limitations

When permissioning data is sent to Liberator from master/slave Permissioning DataSources, the slaves
can only send a limited set of permissioning data. The following table indicates the permissioning data that
can be set in the master and slave Permissioning DataSources, where a "Y" indicates that data can be set
and an "N" indicates that data cannot be set.

Master/Slave permissioning data limitations

Master/
Slave

Rules Groups User
Permissions

User
Password

User
Attributes

Subject
Mapping

Master Y Y Y Y Y Y

Slave N Y Y N Y Y

In addition to the limitations specified in the table above, users must be created in the master
Permissioning DataSource before end-users can log in to Liberator. The permissions of users created in
the master can then be set in a slave, as shown in the following code samples.

First create the users "John Smith" and "Fred Dibble" in the master:

...

// start a PermissioningDataSource update transaction
pdsm.startUpdateTransaction();

// create two Users without permissions
// Note: Users created here can be given permissions in the slave or the master
User user1 = pdsm.createUser("John.Smith", "johnsPassword");
User user2 = pdsm.createUser("Fred.Dibble", "fredsPassword");

// send the permissioning data by committing the transaction
pdsm.commitTransaction();

...

Now give "John Smith" and "Fred Dibble" permissions in the slave:

...

// start a PermissioningDataSource update transaction
pdss.startUpdateTransaction();

// create Users and apply permissions
// Note: Users created here (without passwords) must also be created
// in the master (with passwords)
User user1 = pdss.createUser("John.Smith", "");
user1.applyPermission(...);

User user2 = pdss.createUser("Fred.Dibble", "");
user2.applyPermission(...);

// send the permissioning data by committing the transaction
pdss.commitTransaction();

...

Creating a Permissioning DataSource Adapter

15© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Note that the password for each user must be set in the master and not in the slave.

User Attributes and Subject Mappings

User attributes and subject mappings can be set in either the master or slave Permissioning DataSource,
but you must make sure that only one Permissioning DataSource sets a particular user attribute or subject
mapping.

User Attributes

If the same user attribute is set to different values in more than one Permissioning DataSource, then the
value retrieved by the Caplin Xaqua client cannot be determined and could be either value.

For example, if the master sets MaxUSD to 5000 and the slave sets MaxUSD to 8000, then either 5000 or
8000 could be returned when the Caplin Xaqua client retrieves the user attribute MaxUSD.

Subject Mappings

If a subject is mapped in more than one Permissioning DataSource, even if wildcards are used to define
the subject, then it is not possible to determine what mapping will be applied by the Permissioning Auth
Module.

For example, if the master maps /FX/EURGBP to tier1 and the slave maps /FX/EUR* to tier2, then
the Permissioning Auth Module could map a request for /FX/EURGBP to either tier1 or tier2.

Setting the Master/Slave Roles

The following examples show you how to set the roles of the master and slave Permissioning
DataSources.

Setting the Master Role

This example sets a PermissioningDataSource (pdsm) as the master Permissioning DataSource.

// set the master role and name the slave ("FX")
pdsm.setMasterRole();
...

pdsm.startUpdateTransaction();
...
pdsm.commitTransaction();

There can only be one master but there can be more than one slave Permissioning DataSource (see
Setting the Slave Role).

The role of the master must be set before the transaction is started.

16

Creating a Permissioning DataSource Adapter

16© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Setting the Slave Role

This example sets a PermissioningDataSource (pdss) as a slave Permissioning DataSource.

// set the slave role and give the slave a name ("FX")
pdss.setSlaveRole("FX");
...

pdss.startUpdateTransaction();
...
pdss.commitTransaction();

In this example the setSlaveRole()method sets the role of the Permissioning DataSource to 'slave' and
names the slave "FX".

The role of the slave must be set before the transaction is started.

3.3 About Transactions

Transactions ensure that one or more operations on permissioning data are sent to Liberator as a single
atomic unit. A typical sequence of events would be:

1. Start a transaction.

2. Apply permissioning data to the PermissioningDataSource (for example add and remove users,
groups and permissions).

3. Commit the transaction.

Permissioning data is sent from the PermissioningDataSource to Liberator when the transaction is
committed. The Permissioning Auth Module (which is embedded in Liberator) will not apply any
permissioning data until all the data for a transaction is received.

API methods for starting a transaction

The Permissioning DataSource API provides two methods for starting a transaction.

startImageTransaction()

Call this method when you want to apply a new set of permissioning data to Liberator. When you
commit the transaction, all permissioning data in the PermissioningDataSource is sent to
Liberator. Liberator replaces any permissioning data from previous transactions with this new
permissioning data. Rules must be applied as part of an image transaction.

startUpdateTransaction()

Call this method when you want to update permissioning data. When you commit the transaction,
only changes to permissioning data are sent to Liberator. Liberator updates any permissioning data
from previous transactions with this new permissioning data. Rules cannot be applied as part of an
update transaction.

Creating a Permissioning DataSource Adapter

17© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

When should an Image or Update transaction be used?

The table below shows the type of transaction that is required (image or update) to send permissioning
data to Liberator. The startImageTransaction() method starts an image transaction, and the
startUpdateTransaction() method starts an update transaction (see About Transactions).

Situation Type of transaction required

When you start your PermissioningDataSource. Start an image transaction. The permissioning data
that you send will replace any existing
permissioning data in Liberator.

The PermissioningDataSource does not send
permissioning data to Liberator until the first
transaction is committed. The first transaction
should either be committed before the
PermissioningDataSource is started, or as soon
as it is started, as Liberator will use permissioning
data from an earlier connection (if it exists).

When permissioning data in your Permissioning
System changes (for example, when a new user is
added to your Permissioning System).

Start an update transaction. The permissioning
data that you send will modify the existing
permissioning data in Liberator.

When you want to replace an existing set of
permissioning data with a new set of permissioning
data.

Start an image transaction. The permissioning data
that you send will replace any existing
permissioning data in Liberator.

When you want remove all permissioning data and
eject all users currently logged in to a Caplin
Xaqua client and/or Liberator.

Send an empty image transaction. This will clear all
permissioning data from the
PermissioningDataSource and from Liberator.

3.4 Creating Rules

Rules state the permissions that users must have for an action (see Master/Slave Limitations).

In this example the user must have "SPOT" permission for the product in the "Instrument" field of the
RTTP message, when the subject of the RTTP message matches the regular expression
"/TradeChannel/.*" and the value of the "SIDE" field is "Buy".

pds.startImageTransaction();

Map<String,String> fieldMatchCriteria = new HashMap<String,String>();
fieldMatchCriteria.put("SIDE","Buy");
pds.createActionRule("/TradeChannel/.*", fieldMatchCriteria, "TradeType",
 "SPOT", "Instrument");

// add Users, Groups and Permissions for this image transaction
...

pds.commitTransaction();

Rules must be applied as part of an image transaction (see About Transactions).

16

14

16

Creating a Permissioning DataSource Adapter

18© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

3.5 Updating Permissioning Data

The following examples show you how to update the permissioning data that has already been sent to
Liberator (see Master/Slave Limitations). You update permissioning data as part of an update
transaction (see About Transactions).

Creating Users

This example creates a new user in the PermissioningDataSource (pds). When the transaction is
committed, the data for this user is sent to Liberator.

pds.startUpdateTransaction();
pds.createUser("John.Smith", "johnsPassword");
pds.commitTransaction();

The getUser() method can later be used to get a reference to the user "John Smith" (see Setting a
User's Password).

Applying Permissions

Permissions can either be applied as part of the same transaction in which the user is created, or in later
transactions.

The following example creates a new user and then gives this user the permission to "SPOT-TRADE" all
products in the "TradeType" namespace.

pds.startUpdateTransaction();
User newUser = pds.createUser("John.Smith", "johnsPassword");
Set products = new HashSet();
products.add("/.*");
newUser.applyPermission(products, // productSet
 "TradeType", // nameSpace
 "SPOT-TRADE", // action
 Authorization.ALLOW); // authorization
pds.commitTransaction();

We look at how to change the permissions of an existing user in Changing a User's Permissions .

ALL_ACTIONS

You can also specify the generic action “ALL_ACTIONS”. The following example gives the user permission
for all actions on the specified products in the “TradeType” namespace:

...
newUser.applyPermission(products, // productSet
 "TradeType", // nameSpace
 "ALL_ACTIONS", // action
 Authorization.ALLOW); // authorization
...

14

16

20

21

Creating a Permissioning DataSource Adapter

19© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Tip: The action "ALL_ACTIONS" is intended to be used when permissioning sales-users for TOBO.
For more information about when and how to use this action, see "Permissioning for TOBO" in
the document Caplin Xaqua: Permissioning Overview And Concepts.

Also see Creating Permissions for TOBO .

Creating Groups

The following example creates a new group, applies a permission to the group, and then adds an existing
user to the group. When the transaction is committed, the data for this group is sent to Liberator.

pds.startUpdateTransaction();

// Create a new Group.
Group newGroup = pds.createGroup("RFQ-Traders");

// Build up a product set.
Set products = new HashSet();
products.add("/.*");

// Apply the permission to the Group.
newGroup.applyPermission(products, "TradeType", "RFQ", Authorization.ALLOW);

// Retrieve an existing user from the permissioning datasource.
User existingUser = pds.getUser("John.Smith");

// Add the user as a member of the new Group.
newGroup.addMember(existingUser);
pds.commitTransaction();

In the example above, pds.getUser() retrieves an existing user from the
PermissioningDataSource. This user, who was created in an earlier transaction (see Creating Users)

, now inherits the permissions of the new group to "RFQ" trade all products in the "TradeType"
namespace.

Removing Users and Groups

In this example we remove the user and group that we created in previous transactions (see Creating
Users and Creating Groups) .

pds.startUpdateTransaction();
Group group = pds.getGroup("RFQ-Traders");
pds.removeGroup(group);

User user = pds.getUser("John.Smith");
pds.removeUser(user);
pds.commitTransaction();

45

18

18 19

Creating a Permissioning DataSource Adapter

20© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

When you remove a group that has members, the members are not removed from the inheritance
hierarchy but they no longer inherit permissions from the removed group or any of its parents.

When you remove a user, the user is automatically removed from all parent groups and will no longer be
able to log in to a Caplin Xaqua client. If the removed user was already logged in to a Caplin Xaqua client,
then they will be disconnected.

When you remove a user or group, references to the removed user or group object can no longer be used
and should be de-referenced so that the object can be garbage collected. If you need to re-create a
removed user or group, use createUser() or createGroup() inside a transaction to create a new
object for that user or group.

Setting a User's Password

In this example we change a user's password.

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");

// Set the new password.
user.setPassword("new-password");
pds.commitTransaction();

If a user's password is changed when the user is logged in to Liberator, they will be disconnected
immediately and will have to log back in using the new password.

Creating a Permissioning DataSource Adapter

21© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Changing a User's Permissions

The permissions assigned to a user can be changed using the following methods:

Ø User.applyPermission()

Ø User.removePermission()

Ø User.permit()

Ø User.deny()

User.applyPermission()

This method sets a user permission that either allows or denies a single action on a product set and
namespace.

In the following example, the user permission to "OneClick" trade the "FX/GBPUSD" product in the
"TradeType" namespace is allowed.

pds.startUpdateTransaction();

// Acquire a reference to the User.
User user = pds.getUser("John.Smith");

// Build up the product set.
Set products = new HashSet();
products.add("/FX/GBPUSD");

// Apply the permission.
user.applyPermission(products, // productSet
 "TradeType", // nameSpace
 "OneClick", // action
 Authorization.ALLOW); // authorization

pds.commitTransaction();

This permission is added to the permissions already assigned to this user, and replaces any other
permission the user has for this action, product set, and namespace.

21

22

22

23

Creating a Permissioning DataSource Adapter

22© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

User.removePermission()

This method removes the permission a user has for a single action on a product set and namespace.

In the following example, the user permission to "OneClick" trade the "FX/GBPUSD" product in the
"TradeType" namespace is removed. We assigned this permission in the previous transaction
(see User.applyPermission()).

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");
Set products = new HashSet();
products.add("/FX/GBPUSD");

// Remove the OneClick permission in the TradeType namespace for /FX/GBPUSD
user.removePermission(products, // products
 "TradeType", // namespace
 "OneClick"); // action

pds.commitTransaction();

Attempting to remove a permission that has not been assigned has no effect.

ALL_ACTIONS

If you specify the generic action “ALL_ACTIONS”, this removes any existing permission for the product set
and namespace that has the action “ALL_ACTIONS”. It does not remove any existing permissions for the
product set and namespace whose actions were overridden by the “ALL_ACTIONS” permission.

...
user.removePermission(products, // products
 "TradeType", // namespace
 "ALL_ACTIONS"); // action...

Tip: The action "ALL_ACTIONS" is intended to be used when permissioning sales-users for TOBO.
For more information about when and how to use this action, see "Permissioning for TOBO" in
the document Caplin Xaqua: Permissioning Overview And Concepts.

User.permit()

This method sets a user permission that allows one or more actions on a product set and namespace. The
method differs from User.applyPermission() in that:

Multiple actions on a product set can be allowed by a single call to this method.

The method can only be used to allow actions, not to deny actions. To deny actions, call User.deny()
.

Because the actions are passed in as Java varargs, any number of actions can be passed to
User.permit().

Tip: For further information about Java varargs, see the description from Oracle at
http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html.

21

23

http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

Creating a Permissioning DataSource Adapter

23© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

In the following example, the user permission to trade the "/FX/GBPUSD" product on tenors of one week
("1W"), two weeks ("2W"), and three weeks ("3W") is allowed. The example assumes that tenor
permissions are in the "Tenor" namespace, and that the name of each tenor identifies the action that must
be allowed.

pds.startUpdateTransaction();

// acquire a reference to the User
User user = pds.getUser("John.Smith");

// Build up the product set.
Set products = new HashSet();
products.add("/FX/GBPUSD");

// Apply the permission.
user.permit(products, // productSet
 "Tenor", // nameSpace
 "1W", "2W", "3W"); // actions

pds.commitTransaction();

This permission is added to the permissions already assigned to this user, and replaces any other
permission the user has for these actions, product set, and namespace.

User.deny()

This method sets a user permission that denies one or more actions on a product set and namespace.
The method differs from User.applyPermission() in that:

Multiple actions on a product set can be denied by a single call to this method.

The method can only be used to deny actions, not to allow actions. To allow actions,
call User.permit() .

Because the actions are passed in as Java varargs, any number of actions can be passed to
User.deny().

Tip: For further information about Java varargs, see the description from Oracle at
http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html.

In the following example, the user permission to trade the "/FX/EURUSD" product on tenors of one week
("1W"), two weeks ("2W"), and three weeks ("3W") is denied. The example assumes that tenor
permissions are in the "Tenor" namespace, and that the name of each tenor identifies the action that must
be denied.

22

http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

Creating a Permissioning DataSource Adapter

24© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

pds.startUpdateTransaction();

// Acquire a reference to the User.
User user = pds.getUser("John.Smith");

// Build up the product set.
Set products = new HashSet();
products.add("/FX/EURUSD");

// Apply the permission.
user.deny(products, // productSet
 "Tenor", // nameSpace
 "1W", "2W", "3W"); // actions

pds.commitTransaction();

This permission is added to the permissions already assigned to this user, and replaces any other
permission the user has for these actions, product set, and namespace.

Changing a Group's Permissions

The permissions assigned to a group can be changed using the following methods:

Ø Group.applyPermission()

Ø Group.removePermission()

Ø Group.permit()

Ø Group.deny()

Group.applyPermission()

This method sets a group permission that either allows or denies a single action on a product set and
namespace.

In the following example, the group permission to "OneClick" trade all FX products in the "TradeType"
namespace is allowed.

pds.startUpdateTransaction();

// Acquire a reference to the group.
Group group = pds.getGroup("JuniorTraders");

// Allow "OneClick" action on all FX products.
Set products = new HashSet();
products.add("/FX/.*");

group.applyPermission(products, // productSet
 "TradeType", // nameSpace
 "OneClick", //action
 Authorization.ALLOW); //authorization

pds.commitTransaction();

This permission is added to the permissions already assigned to this group, and replaces any other
permission the group has for this action, product set, and namespace.

24

25

25

26

Creating a Permissioning DataSource Adapter

25© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Group.removePermission()

This method removes the permission a group has for a single action on a product set and namespace.

In the following example, the group permission to "OneClick" trade all FX products in the "TradeType"
namespace is removed. We assigned this permission in the previous transaction
(see Group.applyPermission()).

pds.startUpdateTransaction();

// Acquire a reference to the group.
Group group = pds.getGroup("JuniorTraders");

// Remove "OneClick" action on all FX products.
Set products = new HashSet();
products.add("/FX/.*");

group.removePermission(products, // products
 "TradeType", // namespace
 "OneClick"); //action

pds.commitTransaction();

Attempting to remove a permission that has not been assigned has no effect.

Group.permit()

This method sets a group permission that allows one or more actions on a product set and namespace.
The method differs from Group.applyPermission() in that:

Multiple actions on a product set can be allowed by a single call to this method.

The method can only be used to allow actions, not to deny actions. To deny actions,
call Group.deny() .

Because the actions are passed in as Java varargs, any number of actions can be passed to
Group.permit().

Tip: For further information about Java varargs, see the description from Oracle at
http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html.

In the following example, the group permission to trade all FX products on the accounts “Jones”, “Mortimer
Ltd”, and “XYZ Corp” is allowed. The example assumes that account permissions are in the "Account"
namespace, and that the name of each account identifies the action that must be allowed.

24

26

http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

Creating a Permissioning DataSource Adapter

26© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

pds.startUpdateTransaction();

// acquire a reference to the Group
Group group = pds.getGroup("AccountTraders");

// build up the product set
Set products = new HashSet();
products.add("/FX/.*");

// apply the permissions
group.permit(products, // productSet
 "Account", // nameSpace
 "Jones", "Mortimer Ltd", "XYZ Corp"); // actions

pds.commitTransaction();

This permission is added to the permissions already assigned to this group, and replaces any other
permission the group has for these actions, product set, and namespace.

Group.deny()

This method sets a group permission that denies one or more actions on a product set and namespace.
The method differs from Group.applyPermission() in that:

Multiple actions on a product set can be denied by a single call to this method.

The method can only be used to deny actions, not to allow actions. To allow actions,
call Group.permit() .

Because the actions are passed in as Java varargs, any number of actions can be passed to
Group.deny().

Tip: For further information about Java varargs, see the description from Oracle at
http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html.

In the following example, the group permission to trade all FX products on the accounts “Walker & Baines”
and “Zedco Corp” is denied. The example assumes that account permissions are in the "Account"
namespace, and that the name of each account identifies the action that must be denied.

pds.startUpdateTransaction();

// acquire a reference to the User
Group group = pds.getGroup("John.Smith");

// build up the product set
Set products = new HashSet();
products.add("/FX/.*");

// apply the permission

group.deny (products, // productSet
 "Account", // nameSpace
 "Walker & Baines", "Zedco Corp"); // actions

pds.commitTransaction();

25

http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

Creating a Permissioning DataSource Adapter

27© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

This permission is added to the permissions already assigned to this group, and replaces any other
permission the group has for these actions, product set, and namespace.

Changing Subject Mappings for a User

A default subject mapper is provided with the Permissioning software that allows one subject mapping to
be added for a user. If you want to add multiple subject mappings for a user, or if you want to provide
customized mapping logic, then you must specify the subject mapper class that provides these mappings.

Tip: The RegexSuffixSubjectMapper class of the Permissioning DataSource API allows you to
add multiple subject mappings for a user (see the Permissioning DataSource: API Reference
for further information). If you want to provide customized mapping logic, then you must write a
custom subject mapper class (see Creating a Custom Subject Mapper).

You will find further information about subject mapping in the document Caplin Xaqua: Permissioning
Overview And Concepts.

Using the default subject mapper

With the default subject mapper, the setSubjectMapping()method adds a new subject mapping or
changes an existing subject mapping.

The following example shows a subject mapping being changed for one user, and a subject mapping being
removed for another user.

pds.startUpdateTransaction();

// Modify User with existing subject-mapping.
User userWithChangedMapping = pds.getUser("John.Smith");
userWithChangedMapping.setSubjectMapping("/FX/.*", "-tier2");

// Remove a User's subject-mapping.
User userWithRemovedMapping = pds.getUser("Jane.Davis");
userWithRemovedMapping.removeSubjectMapping();
pds.commitTransaction();

Because a user can only have one subject mapping, the removeSubjectMapping() method does not
require any parameters.

Attempting to remove a subject mapping that has not been assigned has no effect.

32

Creating a Permissioning DataSource Adapter

28© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Specifying the subject mapper

If you want to provide multiple or customized subject mappings for a user, the setSubjectMapper()
method specifies the class of the subject mapper that you want to use, and the addSubjectMapping()
method adds subject mappings for that user.

The following example maps prices for FX and FI instruments. The example assumes that a custom
subject mapper has been created and that Liberator has been configured to use this custom subject
mapper.

pds.startUpdateTransaction();

// specify the User
User userWithCustomMapping = pds.getUser("Pauline.Jones");

// specify the class that implements the custom subject mapper for this User
userWithCustomMapping.setSubjectMapper("com.mydomain.MyCustomSubjectMapper");

// add some subject mappings for FX trades
Map<String,String> fxMappings = new HashMap<String,String>();
fxMappings.put("USDGBP","-tier1");
fxMappings.put("USDEUR","-tier2");
userWithCustomMapping.addSubjectMapping("FX", fxMappings);

// add some subject mappings or FI trades
Map<String,String> fiMappings = new HashMap<String,String>();
fiMappings.put("DEFAULT","-tier1");
fiMappings.put("ORCL","-tier2");
fiMappings.put("MSFT","-tier3");
userWithCustomMapping.addSubjectMapping("FI", fiMappings);

pds.commitTransaction();

In this example the prices shown to the user will be from tier 1, tier 2, or tier 3, depending on the
instrument requested. Note that addSubjectMapping() adds a subject mapping when you specify the
subject mapper, but setSubjectMapping() adds a subject mapping when you are using the default
subject mapper.

To remove subject mappings from a custom subject mapper, call setSubjectMapper() as part of an
update transaction. When this method is called a new instance of the subject mapper is created with no
mappings (effectively removing existing mappings).

Updating the global context of Subject Mappers

The global context is an object at the Permissioning Auth Module and contains data that any subject
mapper can access. In this way a custom subject mapper can map subjects using logic based on this
common data, and not just on subject mappings defined for the user.

For example, if a custom subject mapper uses FX rates to map a subject, it is a more efficient use of
memory and bandwidth to add these rates to the global context than to the subject mappings of every
user.

Data for the global context is sent to the Permissioning Auth Module by the Permissioning DataSource.

Note: There is only one global context and it is shared by all Permissioning DataSources. Therefore if
you have multiple Permissioning DataSources, make sure they do not overwrite each other's
data.

Creating a Permissioning DataSource Adapter

29© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

A default global context class is provided with the Permissioning software, but you can also create your
own class that provides additional methods to subject mappers. To create and deploy a custom global
context, see Creating a Custom Global Context .

Adding data to the global context

To add data to the global context, call the updateGlobalContext() method as part of a transaction.
The following example adds FX rates to the global context, and sets the identifier of this data to "RATES".

 pds.startUpdateTransaction();

 final Map<String,String> ratesData = new HashMap<String,String>();
 ratesData.put("USDGBP", "1.34");
 ratesData.put("USDEUR", "1.41");

 // Add data to the global context.
 pds.updateGlobalContext("RATES", ratesData);

 pds.commitTransaction();

A custom subject mapper can now use these FX rates in the logic that maps a subject for a user.

Tip: Because the arguments to updateGlobalContext(String, Map) are the same as the
arguments to addSubjectMapping(String, Map), it is relatively simple to migrate data,
such as FX rates, from a user's subject mapper to the global context.

An example custom subject mapper that accesses global context data is shown in Creating a Custom
Global Context .

Removing data from the default global context

To remove data from the default global context, pass the identifier of the data that you want to remove to
the removeGlobalContextData() method. The following example removes "RATES" from the default
global context.

 pds.startUpdateTransaction();

 // Remove data from the global context.
 pds.removeGlobalContextData("RATES");

 pds.commitTransaction();

37

37

Creating a Permissioning DataSource Adapter

30© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Changing User Attributes

A user can be assigned any number of attributes in the form of name/value pairs.

In this example we change the value of the "MaxTradeDollars" attribute to 3 million for an existing user.

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");

// Modify an existing attribute (assumes MaxTradeDollars already set – not shown here).
user.setAttribute("MaxTradeDollars", "3000000");
pds.commitTransaction();

The next example shows how to remove the "MaxTradeDollars" attribute from the same user.

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");

// Remove an attribute.
user.removeAttribute("MaxTradeDollars");
pds.commitTransaction();

Attempting to remove an attribute that has not been assigned has no effect.

Creating a Permissioning DataSource Adapter

31© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Changing the Members of a Group

The members of a group can be changed using the methods Group.addMember() and
Group.removeMember(). Adding and removing group members affects every child that inherits from the
group.

In this example we give an existing user a new parent and grandparent.

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");

// Create the parent Group and add the User as a member.
Group parent = pds.createGroup("Parent");
parent.addMember(user);

// Create the grandparent group and add the earlier parent group as a member.
Group grandparent = pds.createGroup("Grandparent");
grandparent.addMember(parent);

pds.commitTransaction();

The user will now inherit permissions (not shown in this example) from both the parent and the
grandparent.

We now remove the parent group from the grandparent group.

pds.startUpdateTransaction();

// Acquire a reference to the two groups that are to be detached from each other.
Group parent = pds.getGroup("Parent");
Group grandparent = pds.getGroup("Grandparent");

// Sever the relationship.
grandparent.removeMember(parent);
pds.commitTransaction();

The user continues to inherit permissions from the parent group but no longer inherits permissions from
the grandparent group, because the grandparent is no longer an ancestor of this user.

Creating a Custom Subject Mapper

32© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

4 Creating a Custom Subject Mapper

Subject mapping allows the subject of an RTTP message to be modified by Liberator. Subject mapping is
transparent to the user and could be used, for example, to provide preferential data to selected users (see
Caplin Xaqua: Permissioning Overview And Concepts for further details).

Subjects are modified in the Permissioning Auth Module from mappings that you set in the Permissioning
DataSource. For example the subject "FX/USDGBR" could be changed to "FX/USDGBR-tier2", so that the
end-user is shown tier 2 prices when they request the "FX/USDGBR" instrument.

The default subject mapper provided with the Permissioning software allows one subject mapping to be
added for a user, and the RegexSuffixSubjectMapper class of the Permissioning DataSource API
allows multiple subject mappings to be added. If you want to calculate subject mappings based on your
own mapping logic, then you must create a custom subject mapper.

To create a custom subject mapper you must:

Write custom Java code that implements the SubjectMapper Interface of the Permissioning
DataSource API.

Compile the custom Java code and deploy it to the Permissioning Auth Module .

4.1 Implementing the SubjectMapper Interface

When you create a custom subject mapper, the Java code that you write must implement the
SubjectMapper interface of the Permissioning DataSource API. This interface has three methods.

updateMappings(String key, Map<String, String> updateMap)

This method is called by the Permissioning Auth Module when subject mappings are received from
the Permissioning DataSource. The method is passed a key and the subject mappings for that key.

The key and subject mappings are set in the Permissioning DataSource using the
User.setSubjectMapper() and User.addSubjectMappings() methods, and sent to the
Permissioning Auth Module as part of a transaction.

The updateMappings() method has no return value but allows you to store the received keys and
subject mappings, and to make them available to mapSubject(). Each subject mapping typically
consists of a subject pattern and subject suffix, and the key associated with the mapping.

mapSubject(String subject)

This method is called by the Permissioning Auth Module when Liberator receives an RTTP message
from the client application. The subject passed to this method is the subject of the RTTP message
received by Liberator.

If a mapping exists for this subject, the method must return the modified subject as a string. Liberator
uses the modified subject to communicate with the DataSource and to check user permissions.

If a mapping does not exist for this subject, the method must return return null. In this case Liberator
uses the original subject to communicate with the DataSource and to check user permissions.

setGlobalContext(GlobalContext globalContext)

This method is called by the Permissioning Auth Module when the global context is updated by the
Permissioning DataSourrce as part of a transaction (see Setting the global context for Subject
Mappers). The globalContext object that is passed to this method contains all global context
data, and not just the updated data.

If the subject mapper needs to access global context data when the Permissioning Auth Module calls
mapsubject(), for example in the logic that maps a subject, the method must store a reference to
globalContext. If the subject mapper does not need to access global context data, the method
can be empty and simply return. This method has no return value.

32

35

28

Creating a Custom Subject Mapper

33© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

The SubjectMapper interface that you implement must either provide a default (no argument)
constructor, or let the compiler create the default constructor. A default constructor is required so that
instances of the custom SubjectMapper class can be created dynamically.

Example Implementation of SubjectMapper

The following is an example of a custom subject mapper that implements the SubjectMapper interface
of the Permissioning DataSource API. Comments in the example describe how it works.

Tip: This example provides the same methods as the RegexSuffixSubjectMapper class of the
Permissioning DataSource API, which is provided with the Permissioning software kit.

package example.mapper;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.regex.Pattern;
import com.caplin.permissioning.SubjectMapper;
import com.caplin.permissioning.GlobalContext;

public class CustomRegexSubjectMapper implements SubjectMapper
{
 // Stores the mapping data in a list of PatternSuffixPairs. PatternSuffixPairs
 // associate regex patterns with the suffixes that should be appended if a given
 // regex pattern matches.
 private final List<PatternSuffixPair> patternsToSuffixes =
 new ArrayList<PatternSuffixPair>();

 // This method is called by the Permissioning Auth Module when it receives an RTTP
 // message from the client application. This method must map the subject if a mapping
 exists for this subject, otherwise it should return null.
 //
 // In this implementation we attempt to match the passed in subject with each regex
 // in turn. If a regex matches the passed in subject, we return a new string that
 // is constructed by concatenating the suffix associated with the matching regex to
 // the passed in subject. If no regexs match, we return null to signify that the
 // subject has not been mapped.
 private String mapSubject(String subject)
 {
 for(PatternSuffixPair pair : patternsToSuffixes)
 {
 if(pair.pattern.matcher(subject).matches())
 {
 return subject+pair.suffix;
 }
 }
 return null;
 }

 // This method is called by the Permissioning Auth Module when global context data
 // is received from the Permissioning DataSource. As the global context is not used
 // by this SubjectMapper implementation, this method does not do anything.
 public void setGlobalContext(GlobalContext globalContext)
 {
 // no-op
 }

Creating a Custom Subject Mapper

34© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

 // This method is called by the Permissioning Auth Module when subject mapping data
 // is received from the Permissioning DataSource.
 //
 // This method must store the passed in data so that it can be used in the
 // implementation of mapSubject(String). Note: when storing the data, we
 // preemptively compile the regex to avoid having to do so repeatedly in each
 // call to mapSubject(String).
 public void updateMappings(String identifier, Map<String,String> updateMap)
 {
 for(Map.Entry<String,String> entry : updateMap.entrySet())
 {
 final Pattern pattern = Pattern.compile(entry.getKey());
 final String suffix = entry.getValue();
 patternsToSuffixes.add(new PatternSuffixPair(pattern, suffix));
 }
 }

 // This simple class is used to associate the regex patterns compiled by
 // updateMappings() with their suffixes.
 private static class PatternSuffixPair
 {
 public final Pattern pattern;
 public final String suffix;

 public PatternSuffixPair(Pattern pattern, String suffix)
 {
 this.pattern = pattern;
 this.suffix = suffix;
 }
 }
}

The following is an example of how the custom subject mapper shown above could be used, after it has
been deployed to the Permissioning Auth Module.

At the Permissioning DataSource

The Permissioning DataSource sends two subject mappings to the Permissioning Auth Module as part of a
transaction. The first subject mapping maps the regular expression (regex) "/FX/USD.*" to the string
"-tier1", and the second maps the regex "/FX/EUR.*" to the string "–tier2". The identifier for these subject
mappings is "FXkey1".

 permissioningDataSource.startUpdateTransaction();

 // define the subject mappings
 final Map<String,String> mappingData = new HashMap<String,String>();
 mappingData.put("/FX/USD.*", "-tier1");
 mappingData.put("/FX/EUR.*", "-tier2");

 // the subject mappings will be added for this user
 final User existinguser = permissioningDataSource.getUser(username);

 // set the subject mapper for this user
 user.setSubjectMapper(CustomRegexSubjectMapper.class.getName());

 // add the subject mappings for this user
 user.addSubjectMapping("FXkey1", mappingData);

 permissioningDataSource.commitTransaction();

Creating a Custom Subject Mapper

35© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

At the Permissioning Auth Module

When the transaction for this subject mapping is received from the Permissioning DataSource, the
Permissioning Auth Module calls the interface method updateMappings(), passing in the received
identifier and subject mappings. The updateMappings() method iterates over the passed in subject
mapping pairs, and saves each key-value pair as a compiled regex pattern and associated subject suffix.

When the user requests an instrument, the Permissioning Auth Module calls mapSubject(), passing in
the subject of the RTTP message request. If this subject matches a saved regex pattern, mapSubject()
concatenates the suffix for this pattern to the passed in subject, and returns the concatenated string. If the
subject of a message does not match a saved regex pattern, mapSubject()returns null.

For example, if the user requests "/FX/USDGBP", mapSubject() matches this to the regex pattern
"/FX/USD.*" and returns "/FX/USDGBP-tier1" as the mapped subject. Alternatively, if the user requests
"/FX/EURAUD", mapSubject() matches this to the regex pattern "/FX/EUR.*" and returns
"/FX/EURAUD-tier2" as the mapped subject.

Although the subject mapper in this example does not use the passed in identifier "FXkey1", other subject
mappers could use this identifer in the logic that maps a subject.

4.2 Deploying a custom Subject Mapper

If you create a custom subject mapper that implements the SubjectMapper interface of the
Permissioning DataSource API, then you must deploy the compiled class file, or a JAR file containing the
compiled class, to a classpath of the Permissioning Auth Module. To deploy the compiled subject mapper
class:

Copy the class or JAR file to a directory that Liberator can access.

Add the directory as a classpath in the Liberator configuration file java.conf.

Deploying Class Files to the Permissioning Auth Module

Class files are typically copied to /lib/java in the Liberator installation directory, and in a directory structure
that corresponds to the package location. When you have copied the class file, add the classpath for this
directory to the Liberator configuration file java.conf.

add-javaclass
 class-name com.caplin.permissioning.PermissioningAuthModule
 class-id authenticator
 classpath %r/../kits/permissioning-auth-module-latest-jar-
 with-dependencies.jar
 classpath %r/lib/java/
end-javaclass

In the example configuration above, %r is a symbolic reference to the Liberator installation directory.

Creating a Custom Subject Mapper

36© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Deploying JAR Files to the Permissioning Auth Module

JAR files are typically copied directly to /lib/java in the Liberator installation directory. When you have

copied the JAR file, add the classpath for the JAR file to the Liberator configuration file java.conf.

add-javaclass
 class-name com.caplin.permissioning.PermissioningAuthModule
 class-id authenticator
 classpath %r/../kits/permissioning-auth-module-latest-jar-
 with-dependencies.jar
 classpath %r/lib/java/MyCustomSubjectMapper.jar
end-javaclass

In the example configuration above, %r is a symbolic reference to the Liberator installation directory.

Creating a Custom Global Context

37© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

5 Creating a Custom Global Context

The global context is an object at the Permissioning Auth Module that implements the GlobalContext
interface. This interface allows a custom subject mapper to access data that is common to all subject
mappers and users. In this way a subject mapper can map subjects using logic based on this common
data, and not just on subject mappings defined for the user.

For example, if a custom subject mapper uses FX rates to map a subject, it is a more efficient use of
memory and bandwidth to add these rates to the global context than to the subject mappings of every
user.

A default implementation of GlobalContext is provided with the Permissioning software, and provides a
get() method for accessing this common data. You can also write a custom class that implements this
interface, or extend the default implementation to provide additional methods that subject mappers can
call.

For example, a custom implementation of GlobalContex could provide complex objects that would
otherwise require the subject mapper to make multiple get() calls to the default implementation. Another
example is a custom implementation that provides the same complex object to several subject mappers,
reducing the processing required by each subject mapper.

Data for the global context is sent to the Permissioning Auth Module by the Permissioning DataSource.

Note: There is only one global context object at the Permissioning Auth Module, and it is shared by all
Permissioning DataSources. Therefore if you have multiple Permissioning DataSources, make
sure they do not overwrite each other's data.

To create a custom global context you must:

1. Write a custom global context class that implements the GlobalContext Interface of the
Permissioning DataSource API. This class can either implement the GlobalContext interface
directly, or extend the DefaultGlobalContext class that already implements this interface.

2. Write a custom subject mapper that calls the GlobalContext interface to access global context
data (see the example subject mapper in Example Implemenation of GlobalContext).

3. Compile the custom code and deploy it at the Permissioning Auth Module
(see Deploying a custom Global Context and Deploying a custom Subject Mapper).

4. Configure the Permissioning Auth Module to use your custom global context class
(see Configuring the Permissioning Auth Module).

38

38

42 35

43

Creating a Custom Global Context

38© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

5.1 Implementing the GlobalContext Interface

When you create a custom global context class, the Java code that you write must implement the
GlobalContext interface of the Permissioning DataSource API. This interface has four methods.

void update(String identifier, Map<String,String> data)

This method is called by the Permissioning Auth Module when data for the global context is received
from the Permissioning DataSource. The method is passed a Map of the data and an identifier for
that data.

The identifier and data Map are set in the Permissioning DataSource using the
PermissioningDataSource.updateGlobalContext() method, and sent to the Permissioning
Auth Module as part of a transaction.

The method has no return value, but allows you to save the identifier and data, and to make them
available to subject mappers that call the get() method of this interface.

Map get(String identifier)

This method is called by subject mappers that want to get the Map of data that is saved for the
passed in identifier. The subject mapper can then use data from this Map in the logic that maps a
subject.

String get(String identifier, String key)

This method is called by subject mappers that want to get the data value that is saved for the passed
in identifier and key. The subject mapper can then use the data value in the logic that maps a subject.
Calling this method is the same as calling get(identifier), and then calling get(key) on the
returned data Map.

void remove(String identifier)

This method is called by the Permissioning Auth Module when the Permissioning DataSource calls
removeGlobalContextData() as part of a transaction. The method has no return value but must
remove from the global context, the data Map for the passed in identifier.

The GlobalContext interface that you implement must either provide a default (no argument)
constructor, or let the compiler create the default constructor. A default constructor is required so that
instances of the custom GlobalContext class can be created dynamically.

Example Implementation of GlobalContext

The following is an example of a custom global context class that allows subject mappers to map subjects
in a way that provides a 24-hour market for instruments. This implementation of the GlobalContext
interface extends the DefaultGlobalContext class, and comments in the code describe in detail how it
works.

The getCurrentMarket() method of this class gets the current time and the opening times of three
markets, and uses this information to return a string that indicates the currently open market. A subject
mapper that calls this method can then insert the returned string in subjects that it maps, so that
instrument requests can be routed to the market that is currently open (such as the current market for
indicative FX prices).

Market opening times are sent from the Permissioning DataSource and saved to the global context. The
getCurrentmarket() method accesses this global context data when it constructs the string for the
currently open market. In this way individual subject mappers do not need to access or process global
context data directly.

An example of a custom subject mapper that uses this class to provide a 24-hour market is also described.

Creating a Custom Global Context

39© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

package example.mapper;
import java.util.Calendar;
import java.util.Map;
import java.util.SortedMap;
import java.util.TimeZone;
import java.util.TreeMap;
import com.caplin.permissioning.DefaultGlobalContext;

public class MarketRoutingGlobalContext extends DefaultGlobalContext
{
 // The identifier used by the Permissioning DataSource to indicate that updates
 // to the global context contain market opening times.
 private static final String MARKETS = "MARKETS";

 // The timezone that market opening times are expressed in.
 private static final TimeZone GMT = TimeZone.getTimeZone("GMT");

 // Store the market opening times in a format that can be easily
 // used at runtime. A SortedMap is used as its headMap(String) method
 // returns the most recent market start time (as used in getCurrentMarket())
 private final SortedMap<String,String> hoursToMarkets =
 new TreeMap<String,String>();
 @Override
 public void update(String identifier, Map<String, String> data)
 {
 // This class is only interested in MARKETS data.
 if(MARKETS.equals(identifier))
 {
 // Process and save the opening time of each market.
 // Opening times are sent from the Permissioning DataSource as integers,
 // for example 1 represents an opening time of 01:00, 9 an opening time
 // of 09:00, and 17 an opening time 17:00.
 for(Map.Entry<String,String> entry : data.entrySet())
 {
 // Get the market opening time as an hour between 0 and 23 (inclusive).
 final String marketStart = entry.getKey();
 // Get the string that identifies the market.
 final String market = entry.getValue();

 // Save market opening times in the format required by getCurrentMarket().
 // That is, save 1 as 0059, 9 as 0859, and so on. This is because
 // getCurrentMarket() calls SortedMap.headMap(key) to get markets that are open,
 // and headMap(key) only returns keys that are less than the passed in key
 // (otherwise the market that opens at 17:00 would not be returned until 17:01).
 final Integer previousHour = ((Integer.valueOf(marketStart) + 24) -1) %24 ;
 hoursToMarkets.put(padZeroes(previousHour)+"59", market);
 }
 // Get the market that is open at midnight, and save the key to this
 // market as "0".
 final String lastMarketStartTime = hoursToMarkets.lastKey();
 hoursToMarkets.put("0", hoursToMarkets.get(lastMarketStartTime));
 }
 // If not MARKETS data, update the superclass.
 else
 {
 super.update(identifier, data);
 }
 }
 @Override
 public void remove(String identifier)
 {
 // We only store data for the MARKETS identifier, so we
 // only have to clear data with this identifier.
 if(MARKETS.equals(identifier))
 {
 hoursToMarkets.clear();
 }
 // If not MARKETS data, the superclass must remove the data.
 else
 {
 super.remove(identifier);
 }
 }

Creating a Custom Global Context

40© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

 // A utility method that converts an hour or minute expressed as a single
 // digit integer, to an hour or minute expressed as a two-digit string.
 private String padZeroes(int hr_or_min)
 {
 // Call padZeroes(String)
 return padZeroes(""+hr_or_min);
 }

 // A utility method that inserts a leading zero in a single digit string.
 private String padZeroes(String hr_or_min)
 {
 while(hr_or_min.length() < 2)
 {
 hr_or_min = "0"+hr_or_min;
 }
 return hr_or_min;
 }

 // This is the custom method that SubjectMappers call to
 // find the market that is currently open.
 public String getCurrentMarket()
 {
 // Get the current hour and minute of the day.
 final Calendar now = Calendar.getInstance(GMT);
 final int currentHour = now.get(Calendar.HOUR_OF_DAY);
 final int currentMinute = now.get(Calendar.MINUTE);
 // Format the current time into a string of the form 0959.
 final String timeToLookup = padZeroes(currentHour)+padZeroes(currentMinute);

 // Get an hoursToMarkets map that contains all market opening times
 // that are earlier than the current time.
 final SortedMap<String,String> ealierMarkets =
 hoursToMarkets.headMap(timeToLookup);
 // Return the market that opened most recently (the currently open market).
 return ealierMarkets.get(ealierMarkets.lastKey());
 }
}

Adding market opening times at the Permissioning DataSource

To add market opening times to the custom global context, call updateGlobalContext() as part of a
transaction. The following example assumes that the custom MarketRoutingGlobalContext class has
already been deployed at the Permissioning Auth Module (see Deploying a custom Global Context),
that the Permissioning Auth Module has been configured to use this custom class (see Configuring the
Permissioning Auth Module), and that the following markets are available:

Hong Kong Stock exchange (HKSE), open between 01:00 GMT and 09:00 GMT.

London Stock Exchange (LSE), open between 09:00 GMT and 17:00 GMT.

New York Stock Exchange (NYSE), open between 17:00 GMT and 01:00 GMT the next day.

permissioningDataSource.startUpdateTransaction();

 final Map<String,String> marketsData = new HashMap<String,String>();
 marketsData.put(“1”, “HKSE”);
 marketsData.put(“9”, “LSE”);
 marketsData.put(“17”, “NYSE”);

 permissioningDataSource.updateGlobalContext(“MARKETS”, marketsData);

permissioningDataSource.commitTransaction();

42

43

Creating a Custom Global Context

41© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

An example custom subject mapper that provides a 24-hour market

The following is an example of a custom subject mapper that uses the custom
MarketRoutingGlobalContext class to provide a market for instruments that is open 24-hours a day.

The custom subject mapper extends the example CustomRegexSubjectMapper class described in this
document (see Example Implementation of SubjectMapper), and prepends mapped subjects with a
string that identifies the currently open market. To get this string, the subject mapper calls the
getCurrentMarket() method of MarketRoutingGlobalContext.

package example.mapper;
import com.caplin.permissioning.GlobalContext;

public class MarketRoutingSubjectMapper extends CustomRegexSubjectMapper
{
 // Create a reference to the custom GlobalContext
 private MarketRoutingGlobalContext marketContext;

 // Because the setGlobalContext() method of CustomRegexSubjectMapper is empty
 // and does not store the global context, override this method and
 // store the global context here.
 @Override
 public void setGlobalContext(GlobalContext globalContext)
 {
 if(globalContext instanceof MarketRoutingGlobalContext)
 {
 marketContext = (MarketRoutingGlobalContext)globalContext;
 }
 }

 @Override
 public String mapSubject(String subject)
 {
 // Use mapObject() of the super class to determine if the passed in subject
 // matches a regex subject mapping, and is therefore mapped by this subject mapper.
 String superResult = super.mapSubject(subject);
 if(superResult != null)
 {
 // If the subject is mapped by the superclass, map it further by
 // prepending the string that identifies the open market
 return "/"+marketContext.getCurrentMarket()+superResult;
 }
 else
 {
 // If the passed in subject is not mapped by this subject mapper, do not
 // prepend a market string and simply return null
 return null;
 }
 }
}

33

Creating a Custom Global Context

42© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Adding subject mappings at the Permissioning DataSource

The following example sets the custom MarketRoutingSubjectMapper class as the class that maps
subjects for a user, and then adds two subject mappings for that user. The example assumes that the
custom MarketRoutingSubjectMapper class has already been deployed at the Permissioning Auth
Module (see Deploying a custom Subject Mapper).

permissioningDataSource.startUpdateTransaction();

 // Define subject mappings.
 final Map<String,String> fxMappingData = new HashMap<String,String>();
 fxMappingData.put(“/FX/PRICES/USDGBP”, “-tier1”);
 fxMappingData.put(“/FX/PRICES/USDEUR”, “-tier2”);

 // Get the user.
 final User existinguser = permissioningDataSource.getUser(username);

 // Set the subject mapper and add subject mappings for this user.
 user.setSubjectMapper(“example.mapper.MarketRoutingSubjectMapper”);
 user.addSubjectMapping(“any-value”, fxMappingData);

permissioningDataSource.commitTransaction();

5.2 Deploying a custom Global Context

If you create a custom global context that implements the GlobalContext interface of the Permissioning
DataSource API, then you must deploy the compiled class file, or a JAR file containing the compiled class,
to a classpath of the Permissioning Auth Module. To deploy the compiled global context class:

Copy the class or JAR file to a directory that Liberator can access.

Add the directory as a classpath in the Liberator configuration file java.conf.

The Permissioning Auth Module must also be configured to use the custom global context
(see Configuring the Permissioning Auth Module).

Deploying Class Files to the Permissioning Auth Module

Class files are typically copied to /lib/java in the Liberator installation directory, and in a directory structure
that corresponds to the package location. When you have copied the class file, add the classpath for this
directory to the Liberator configuration file java.conf.

add-javaclass
 class-name com.caplin.permissioning.PermissioningAuthModule
 class-id authenticator
 classpath %r/../kits/permissioning-auth-module-latest-jar-
 with-dependencies.jar
 classpath %r/lib/java/
end-javaclass

In the example configuration above, %r is a symbolic reference to the Liberator installation directory.

35

43

Creating a Custom Global Context

43© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Deploying JAR Files to the Permissioning Auth Module

JAR files are typically copied directly to /lib/java in the Liberator installation directory. When you have

copied the JAR file, add the classpath for the JAR file to the Liberator configuration file java.conf.

add-javaclass
 class-name com.caplin.permissioning.PermissioningAuthModule
 class-id authenticator
 classpath %r/../kits/permissioning-auth-module-latest-jar-
 with-dependencies.jar
 classpath %r/lib/java/MyCustomGlobalContext.jar
end-javaclass

In the example configuration above, %r is a symbolic reference to the Liberator installation directory.

5.3 Configuring the Permissioning Auth Module

To configure the Permissioning Auth Module to use a custom global context class, set the property
GlobalContextClass to the fully qualified package name of the custom class in the properties file

javaauth.properties. The following example sets this property for the MarketRoutingGlobalContext
class.

GlobalContextClass=example.mapper.MarketRoutingGlobalContext

The javaauth.properties file configures the Permissioning Auth Module, and may have been supplied with
the Liberator kit or created when Liberator was installed.

If javaauth.properties does exist, it will be located in a directory that Liberator can access. This could be:

1. In a directory defined by a classpath of the Permissioning Auth Module in the Liberator

configuration file java.conf.

2. In a location referred to by a symbolic link. The symbolic link would also be located in a directory
defined by a classpath of the Permissioning Auth Module.

If javaauth.properties does not exist, you will need to create it and deploy it to a classpath of the
Permissioning Auth Module.

Note: Only one copy of javaauth.properties must be deployed, otherwise the configuration that is
applied cannot be determined.

Creating a Custom Global Context

44© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Deploying the javaauth.properties file

To deploy javaauth.properties:

Copy the file to a directory that Liberator can access.

In the Liberator configuration file java.conf, add the directory as a classpath of the Permissioning
Auth Module.

The following example shows what the Liberator configuration file java.conf would look like if the javaauth.
properties file is copied to the directory %r/etc, and if the custom global context class

MarketRoutingGlobalContext is deployed in the JAR file %r/lib/java/MyCustomGlobalContext.jar
(see Deploying a custom Global Context).

add-javaclass
 class-name com.caplin.permissioning.PermissioningAuthModule
 class-id authenticator
 classpath %r/../kits/permissioning-auth-module-latest-jar-
 with-dependencies.jar
 classpath %r/lib/java/MyCustomGlobalContext.jar
 classpath %r/etc/
end-javaclass

In the example configuration above, %r is a symbolic reference to the Liberator installation directory.

42

Creating Permissions for TOBO

45© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

6 Creating Permissions for TOBO

 This section and its subsections only apply if the version of the Permissioning Auth Module
in your Liberator is 4.5.9 or later.

TOBO stands for “trading on behalf of”. This is a facility that allows a user who is logged in to a Caplin
Xaqua client to execute trades on instruction from a customer (for example, the customer may give
instructions by telephone). The logged in user is called a sales-user, and the customer is called a
customer-user (because they are known to Caplin Xaqua as an end-user, and are a customer of the
organization that employs the sales-user). The sales-user trades on behalf of the customer-user.

The following example shows how to set up permissioning data to support TOBO functionality. It sets up
VIEW permissions to work correctly when using the SalesIntersectCustomerUser mode of TOBO.

Tip: The example illustrates how some of the TOBO permissioning concepts are put into practice,
but it does not define a complete permissions set up for TOBO. For example, in addition to the
view permissions, you would typically add permissions that enable customer-users to trade
particular instruments, and permissions that allow sales-users to trade those instruments on
behalf of the customer-users.

For more about TOBO permissions and how they work, see the section “Permissioning for TOBO” in the
document Caplin Xaqua: Permissioning Overview And Concepts.

6.1 Creating the rule that matches a TOBO switch message

First, start a new image transaction and create a new rule that matches (is triggered by) a TOBO switch
message sent from the Caplin Xaqua client to the Liberator's Permissioning Auth Module.

// pds is an instance of PermissioningDataSource -
// see Creating a Single Permissioning DataSource .

pds.startImageTransaction();

// Create the rule that matches a TOBO switch message.

pds.createActionRule(/TOBOCHANGEUSER/%u", // subjectNameMatch
 "TradeOnBehalfOf", // permissionNameSpace
 "ChangeTradeOnBehalfOfUser", // action
 "UserName"); // productRef:
 // The message field containing the
 // product name. In this case, it must be
 // the field in the TOBO switch message
 // that contains the sales-user's name.

7

Creating Permissions for TOBO

46© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

The parameter values passed to pds.createActionRule() must match the properties configured in

the Permissioning Auth Module's javaauth.properties file, as follows:

createActionRule()

parameter
Corresponding property in
javaauth.properties

Relationship

subjectNameMatch TOBOSubject The string supplied to
subjectNameMatch must have an
additional /%u on the end and a leading '
/'.

For example (conventionally):

TOBOSubject:
TOBOCHANGEUSER

subjectNameMatch:
/TOBOCHANGEUSER/%u

permissionNameSpace TOBOSwitchNamespace Exactly the same value.

Conventionally:
TradeOnBehalfOf

action TOBOSwitchAction Exactly the same value.

Conventionally:
ChangeTradeOnBehalfOfUser

productRef TOBOField Exactly the same value.

Conventionally:
UserName

For more information about the Permissioning Auth Module's TOBO related properties defined
in javaauth.properties, see “Configuring the Permissioning Auth Module” in the document
Caplin Xaqua: Installing Permissioning Components.

6.2 Adding sales and customer users

Define five new end-users, consisting of two sales-users and three customer-users.

User salesUser1 = pds.createUser("SalesUser1", "SalesPassword1");
User salesUser2 = pds.createUser("SalesUser2", "SalesPassword2");
User customerUser1 = pds.createUser("CustomerUser1", "CustomerPassword1");
User customerUser2 = pds.createUser("CustomerUser2", "CustomerPassword2");
User customerUser3 = pds.createUser("CustomerUser3", "CustomerPassword3");

Creating Permissions for TOBO

47© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

6.3 Assigning TOBO permissions to SalesUser1

Create the Set of usernames for the customer-users on whose behalf “SalesUser1” can trade.
“SalesUser1” can trade for himself, and on behalf of “CustomerUser1”, “CustomerUser2”,
and “CustomerUser3”.

Set<String> usersSalesUser1CanTradeOnBehalfOf = new HashSet<String>();
usersSalesUser1CanTradeOnBehalfOf.add("null"); // "null" entry allows the
 // sales-user to switch
 // out of TOBO so he can
 // also view prices and
 // trade for himself.
usersSalesUser1CanTradeOnBehalfOf.add("CustomerUser1");
usersSalesUser1CanTradeOnBehalfOf.add("CustomerUser2");
usersSalesUser1CanTradeOnBehalfOf.add("CustomerUser3");

Now give “SalesUser1” permission to trade on behalf of the Set of customer-users (“CustomerUser1”,
“CustomerUser2”, and “CustomerUser3”):

salesUser1.permit(usersSalesUser1CanTradeOnBehalfOf, // productSet is the set
 // of customer-users.
 "TradeOnBehalfOf", // nameSpace - must be the same
 // as for the TOBO switch rule.
 "ChangeTradeOnBehalfOfUser"); // actions - must be the same
 // as for the TOBO switch rule.

Note that the permission's namespace and action must be the same as the namespace and action for the
TOBO switch rule defined in Creating the rule that matches a TOBO switch message . Then when, for
example, the Permissioning Auth Module receives a TOBO switch message from SalesUser1's Caplin
Xaqua client where the message's UserName field is "CustomerUser1", the TOBO switch rule that is
fired selects the above permission. “SalesUser1” is therefore allowed to trade on behalf of
"CustomerUser1".

The sales-user must be given the same product permissions as the customer-users. The following code
sets this up.

Create a Set naming the FX instruments (Product Set) that “SalesUser1” can view:

Set<String> instrumentsSalesUser1CanView = new HashSet<String>();
instrumentsSalesUser1CanView.add("/FX/.*"); // All FX instruments.

Note that the instrument subject is specified with the wildcard expression ".*". This wildcard specifies all
instruments whose subjects start with /FX.

Give “SalesUser1” permission to view these instruments:

salesUser1.permit(instrumentsSalesUser1CanView, // productSet
 Constants.DEFAULT_PERMISSION_NAMESPACE, // nameSpace
 "VIEW"); // action

45

Creating Permissions for TOBO

48© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

The permission is in the default namespace and has the action “VIEW”, allowing “SalesUser1” to view all
FX instruments. Thus, when TOBO is in SalesIntersectCustomerUser mode and “SalesUser1” trades on
behalf of, say, “CustomerUser1”, the sales-user can view any FX instrument that “CustomerUser1” can
view.

6.4 Assigning TOBO permissions to SalesUser2

Create a Set of usernames of customer-users on whose behalf “SalesUser2” can trade. “SalesUser” can
trade on behalf of himself, and on behalf of “CustomerUser2” and “CustomerUser3”, but not on behalf of
“CustomerUser1”.

Set<String> usersSalesUser2CanTradeOnBehalfOf = new HashSet<String>();
usersSalesUser2CanTradeOnBehalfOf.add("null"); // "null" entry allows the
 // sales-user to switch
 // out of TOBO so he can
 // also view prices and
 // trade for himself.
usersSalesUser2CanTradeOnBehalfOf.add("CustomerUser2");
usersSalesUser2CanTradeOnBehalfOf.add("CustomerUser3");

Give “SalesUser2” permissions to trade on behalf of this Set of customer-users:

salesUser2.permit(usersSalesUser2CanTradeOnBehalfOf, // productSet is the set
 // of customer-users.
 "TradeOnBehalfOf", // nameSpace - must be the same
 // as for the TOBO switch rule.
 "ChangeTradeOnBehalfOfUser"); // actions - must be the same
 // as for the TOBO switch rule.

Create a Set naming the FX instruments (Product Set) that “SalesUser2” can view. This is a list of
individual instruments:

Set<String> instrumentsSalesUser2CanView = new HashSet<String>();
instrumentsSalesUser2CanView.add("/FX/USDGBP.*");
instrumentsSalesUser2CanView.add("/FX/USDJPY.*");
instrumentsSalesUser2CanView.add("/FX/USDCAD.*");
instrumentsSalesUser2CanView.add("/FX/USDAUD.*");
instrumentsSalesUser2CanView.add("/FX/GBPJPY.*");
instrumentsSalesUser2CanView.add("/FX/GBPAUD.*");
instrumentsSalesUser2CanView.add("/FX/HKDUSD.*");
instrumentsSalesUser2CanView.add("/FX/HKDJPY.*");

Note that the subject of each instrument is specified with the wildcard expression ".*". This wildcard
specifies all instruments whose subjects start with /FX, and it allows the sales-user to view and trade these
instruments on behalf of a customer-user, even when the instrument prices are tiered for that
customer-user – see Assigning tiers and permissions to CustomerUser2 .50

Creating Permissions for TOBO

49© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Give “SalesUser2” permissions to view of these instruments:

salesUser2.permit(instrumentsSalesUser2CanView, // productSet
 Constants.DEFAULT_PERMISSION_NAMESPACE, // nameSpace
 "VIEW"); // action

The permission is in the default namespace and has the action “VIEW”. Note that “SalesUser2” only has
permission to view a subset of FX instruments, unlike “SalesUser1” who can view all FX instruments
(see Assigning TOBO permissions to SalesUser1).

6.5 Assigning tiers and permissions to CustomerUser1

Create a Set naming the FX instruments (Product Set) that “CustomerUser1” can view. The subject for
each instrument constrains the prices seen by the user to a particular price tier (tier1):

Set<String> instrumentsCustomerUser1CanView = new HashSet<String>();
instrumentsCustomerUser1CanView.add("/FX/USDGBP-tier1");
instrumentsCustomerUser1CanView.add("/FX/USDJPY-tier1");
instrumentsCustomerUser1CanView.add("/FX/USDCAD-tier1");
instrumentsCustomerUser1CanView.add("/FX/USDAUD-tier1");

Give “CustomerUser1” permission to view these instruments:

customerUser1.permit(instrumentsCustomerUser1CanView, // productSet
 Constants.DEFAULT_PERMISSION_NAMESPACE, // nameSpace
 "VIEW"); // action

The permission is in the default namespace and has the action “VIEW”, allowing “CustomerUser1”
to view the specified FX instruments in tier1.

Apply a subject mapping to “CustomerUser1”. This maps all requests for /FX for this customer onto tier1.
For example, if Liberator receives a request from “CustomerUser1” for /FX/USDGBP, it maps the request
to /FX/USDGBP-tier1

customerUser1.setSubjectMapping("/FX/.*", // subjectMappingPattern
 "-tier1"); // mappedSubjectSuffix

When TOBO is in SalesIntersectCustomerUser mode, and "SalesUser1" trades on behalf of
“CustomerUser1”, the permissions for “CustomerUser1” and the permissions for “SalesUser1”
(see Assigning TOBO permissions to SalesUser1) are ANDed together. Therefore, "SalesUser1" can
only view the FX instruments that “CustomerUser1” can view: /FX/USDGBP, /FX/USDJPY, /FX/USDCAD,
/FX/USDAUD

Also, the Liberator applies the subject mapping for "CustomerUser1" to "SalesUser1", so "SalesUser1"
sees the tier1 prices, just as "CustomerUser1" would.

47

47

Creating Permissions for TOBO

50© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

6.6 Assigning tiers and permissions to CustomerUser2

Create a Set naming the FX instruments (Product Set) that “CustomerUser2” can view. The subject for
each instrument constrains the prices seen by the user to a particular price tier (tier2):

Set<String> instrumentsCustomerUser2CanView = new HashSet<String>();
instrumentsCustomerUser1CanView.add("/FX/USDGBP-tier2");
instrumentsCustomerUser1CanView.add("/FX/USDJPY-tier2");
instrumentsCustomerUser1CanView.add("/FX/USDCAD-tier2");
instrumentsCustomerUser1CanView.add("/FX/USDAUD-tier2");

Give “CustomerUser2” permission to view these instruments:

customerUser2.permit(instrumentsCustomerUser2CanView, // productSet
 Constants.DEFAULT_PERMISSION_NAMESPACE, // nameSpace
 "VIEW"); // action

The permission is in the default namespace and has the action “VIEW”, allowing “CustomerUser2”
to view all the specified FX instruments in tier2.

Apply a subject mapping to “CustomerUser2”. This maps all requests for /FX for this customer onto tier2.
For example, if Liberator receives a request from “CustomerUser2” for /FX/USDGBP, it maps the request
to /FX/USDGBP-tier2:

customerUser2.setSubjectMapping("/FX/.*", // subjectMappingPattern
 "-tier2"); // mappedSubjectSuffix

When TOBO is in SalesIntersectCustomerUser mode, and "SalesUser2" trades on behalf of
“CustomerUser2”, the permissions for “CustomerUser2” and the permissions for “SalesUser2”
(see Assigning TOBO permissions to SalesUser2) are ANDed together. Therefore, "SalesUser2" can
only view the FX instruments that “CustomerUser2” can view: /FX/USDGBP, /FX/USDJPY, /FX/USDCAD,
/FX/USDAUD

Also, the Liberator applies the subject mapping for "CustomerUser2" to "SalesUser2", so "SalesUser2"
user sees the tier2 prices, just as "CustomerUser2" would.

These restrictions also apply to “SalesUser1” when trading on behalf of “CustomerUser2”.

48

Creating Permissions for TOBO

51© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

6.7 Assigning tiers and permissions to CustomerUser3

Create a Set naming the FX instruments (Product Set) that “CustomerUser3” can view. The subject for
each instrument constrains the prices seen by the user to a particular price tier (tier2), as for
“CustomerUser2”, but the tiered prices apply to a different set of instruments:

Set<String> instrumentsCustomerUser2CanView = new HashSet<String>();
instrumentsCustomerUser3CanView.add("/FX/USDCAD-tier2");
instrumentsCustomerUser3CanView.add("/FX/USDJPY-tier2");
instrumentsCustomerUser3CanView.add("/FX/GBPJPY-tier2");
instrumentsCustomerUser3CanView.add("/FX/HKDUSD-tier2");
instrumentsCustomerUser3CanView.add("/FX/HKDJPY-tier2");
instrumentsCustomerUser3CanView.add("/FX/HKDGBP-tier2");

Give “CustomerUser3” permission to view these instruments:

customerUser3.permit(instrumentsCustomerUser3CanView, // productSet
 Constants.DEFAULT_PERMISSION_NAMESPACE, // nameSpace
 "VIEW"); // action

The permission is in the default namespace and has the action “VIEW”, allowing “CustomerUser3”
to view all the specified FX instruments in tier2.

Apply a subject mapping to “CustomerUser3”. This maps all requests for /FX for this customer onto tier2,
as for “CustomerUser2” :

customerUser3.setSubjectMapping("/FX/.*", // subjectMappingPattern
 "-tier2"); // mappedSubjectSuffix

When TOBO is in SalesIntersectCustomerUser mode, and "SalesUser2" trades on behalf of
“CustomerUser3”, the permissions for “CustomerUser3” and the permissions for “SalesUser2”
(see Assigning TOBO permissions to SalesUser2) are ANDed together. Therefore, "SalesUser2" can
only view the FX instruments that “CustomerUser3” can view (/FX/USDCAD, /FX/USDJPY, /FX/GBPJPY,
/FX/HKDUSD, /FX/HKDJPY), with the exception of /FX/HKDGBP, which this sales-user does not have
permission to view.

Also, the Liberator applies the subject mapping for "CustomerUser3" to "SalesUser2", so "SalesUser2"
sees the tier2 prices, just as "CustomerUser3" would.

In contrast to "SalesUser2", when “SalesUser1” trades on behalf of “CustomerUser3”, he can view all the
instruments that “CustomerUser3” can view. This is because “SalesUser1” is permitted to view all
instruments in /FX on his own behalf (see Assigning TOBO permissions to SalesUser1).

48

47

Creating Permissions for TOBO

52© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

6.8 Committing the transaction

Finally, commit the transaction. This sends the TOBO permissioning data to the Permissioning Auth
Module and makes it available to Caplin Xaqua clients:

pds.commitTransaction();

The Demo Permissioning DataSource

53© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

7 The Demo Permissioning DataSource

The Demo Permissioning DataSource is an example of a Permissioning DataSource application that
gets its permissioning data from an XML file. The application sends the permissioning data to Liberator
when a connection to Liberator is established.

Demo Permissioning DataSource and XML
File

The Demo Permissioning DataSource

54© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

7.1 Starting and Stopping the Demo Permissioning
DataSource

The Demo Permissioning DataSource is supplied with scripts that you can run to start and stop the
example application.

Starting the Demo Permissioning DataSource

To start the Demo Permissioning DataSource, navigate to the apps/caplin/PermissioningDataSource
directory and run the following command.

$./start.sh

This starts the application, passing the following files as arguments.

conf/Permissions.xml (permissioning data in XML format)

conf/DataSource.xml (DataSource configuration file)

conf/Fields.xml (DataSource field mapping file)

When a connection to Liberator is established, the Demo Permissioning DataSource sends the
permissioning data to Liberator.

The Demo Permissioning DataSource

55© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

7.2 Overview of the Demo Permissioning DataSource

The Demo Permissioning DataSource consists of one interface and two classes.

PermissionsLoader: This interface defines a service that loads permissioning data from a
permissioning system.

XMLPermissionsLoader: This class implements the PermissionsLoader interface to load

permissioning data into the PermissioningDataSource from the file conf/Permissions.xml.

DemoPermissioningDataSource: This class is initialized with an XMLPermissionsLoader. It creates
a PermissioningDataSource to send the permissioning data to Liberator when a connection to
Liberator is established. The class implements the PermissioningConnectionListener interface of
the Permissioning DataSource API. The principal methods of the class are summarized below.

main(String[] args)

Creates the DemoPermissioningDataSource using the passed in arguments, retrieves
permissioning data from the permissioning system, and starts the
DemoPermissioningDataSource.

onConnect()

Called by the PermissioningDataSource when a Liberator connection is established. This
implementation simply logs a connection established message.

onDisconnect()

Called by the PermissioningDataSource when a Liberator connection is lost. This
implementation simply logs a connection lost message.

terminate() Shuts down the DemoPermissioningDataSource.

You will find fully commented source code for the Demo Permissioning DataSource in apps/caplin/kits/
permissioning-datasource-<version>/example-application (where <version> = version number).

Tip: The PermissioningConnectionListener interface and PermissioningDataSource
class are described in the Permissioning DataSource: API Reference.

The Demo Permissioning XML

56© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

8 The Demo Permissioning XML

The Demo Permissioning DataSource gets its permissioning data from an XML file, and then sends that
permissioning data to Liberator when a connection to Liberator is established. This part of the document
describes the XML-based elements that define the structure and content of this permissioning data.

If you want to experiment with the demo by adding or modifying permissioning data for users, groups, or
rules, then you must edit the file apps/caplin/PermissioningDataSource/conf/Permissions.xml.

The Demo Permissioning DataSource is a master Permissioning DataSource and does not have any
slaves. If you create a slave Permissioning DataSource that also gets its permissioning data from XML,
then you will need to create a separate XML file containing the permissioning data for that slave.

8.1 Technical Assumptions and Restrictions

XML

The XML markup defined here conforms to XML version 1.0 and the XML schema version defined at
http://www.w3.org/2001/XMLSchema.

8.2 Ordering and Nesting of Tags

Each top level tag is shown below, together with the child tags that it can contain.

Tip: Advanced users may wish to consult the Relax NG Schema (Permissions.rnc) for definitive
information on the ordering and nesting of tags. This file is supplied with the permissioning
software.

For a description of each tag and its attributes, see the XML Reference Information section.

<permissioning>

This is the outermost tag.

<permissioning>
 <rules></rules> (zero or one)
 <users></users> (zero or one)
 <groups></groups> (zero or one)
 <role></role> (zero or one)
</permissioning>

<rules>

<rules>
 <rule></rule> (one or more)
</rules>

11

59

The Demo Permissioning XML

57© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<users>

<users>
 <user></user> (one or more)
</users>

<groups>

<groups>
 <group></group> (one or more)
</groups>

<role>

<role> (must contain only one of the following)
 <master />
 <slave />
</role>

<rule>

<rule>
 <fieldMatchCriteria></fieldMatchCriteria> (zero or one)
</rule>

<user>

<user> (children in any order)
 <subjectMapping /> (zero or one)
 <attributes></attributes> (zero or one)
 <permissionSet></permissionSet> (zero or one)
</user>

<group>

<group>
 <permissionSet></permissionSet> (zero or one)
 <members></members> (zero or one)
</group>

<fieldMatchCriteria>

<fieldMatchCriteria>
 <match /> (one or more)
</fieldMatchCriteria>

<attributes>

<attributes>
 <userAttribute /> (one or more)
</attributes>

The Demo Permissioning XML

58© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<permissionSet>

<permissionSet>
 <productPermissionSet></productPermissionSet> (one or more)
</permissionSet>

<members>

<members>
 <userRef /> (zero or more)
 <groupRef /> (zero or more)
</members>

<productPermissionSet>

<productPermissionSet>
 <permission /> (one or more)
</productPermissionSet>

<groupRef> (no children)

<match> (no children)

<master> (no children)

<slave> (no children)

<subjectMapping> (no children)

<userAttribute> (no children)

<userRef> (no children)

The Demo Permissioning XML

59© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

8.3 XML Reference Information

The following sections describe the Permissioning XML tags. They are arranged in alphabetical order of
tag name.

For each tag the attributes you can use within it are listed and described in a table. The "Req?" column
indicates whether the attribute is always required ("Y") or is optional ("N"). If you do not supply an optional
attribute within an instance of the tag then the runtime behavior will be according to the default value of the
attribute.

<attributes>

<attributes>

A collection of one or more user attributes, with one attribute per child <userAttribute> tag.

Attributes: This tag has no attributes.

<fieldMatchCriteria>

<fieldMatchCriteria>

Contains a list of field match criteria. A rule can have zero or more field match criteria that map RTTP
message fields and values. All defined field mappings must be present in the RTTP message, otherwise
the rule will not match the message. Individual field mappings are defined using <match>.

Attributes: This tag has no attributes.

<group>

<group>

Defines a single permissioning group. A group can have zero or one <permissionSet> and zero or one
<members>. Groups allow product permissions to be applied to the members of the group in an
inheritance hierarchy. A user can be a member of more than one group, and groups can be members of
other groups.

Attributes:

Name Type Default Req? Description

name string (none) Y The name of the group, which must be
unique to each group. Other groups and
users can become members of this group by
referring to the group by this name.

The Demo Permissioning XML

60© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<groupRef>

<groupRef>

 Adds a group member to the group (see <group>). Groups can be members of more than one group, but
cannot be members of their own or child groups.

Attributes:

Name Type Default Req? Description

nameRef string (none) Y The name of the group that you want to add.
Only groups that have been defined using
the name attribute of the <group> tag can be
added to a group. Therefore nameRef must
match the name attribute of a <group> tag.

<groups>

<groups>

Contains a list of one or more permissioning groups, with one group per child <group> tag.

Attributes: This tag has no attributes.

<master>

<master>

Sets the <role> of the Permissioning DataSource to master.

Attributes: This tag has no attributes.

<match>

<match>

A child of <fieldMatchCriteria> that defines an individual field mapping for a key/value pair. The rule will
only match the RTTP message if the field identified by criteria has the value identified by value.

Attributes:

Name Type Default Req? Description

criteria string (none) Y The field to match.

value string (none) Y The value to match.

The Demo Permissioning XML

61© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<members>

<members>

Defines zero or more members of a group, where each member can be a user (<userRef>) or another
group (<groupRef>).

Attributes: This tag has no attributes.

<permission>

<permission>

Defines a single permission. A permission determines whether an action on a product will be allowed or
denied. When you define a permission you can also define a namespace that will restrict the scope of the
permission. If you do not define a namespace, then the permission will reside in the default namespace.

Attributes:

Name Type Default Req? Description

action string (none) Y The action that the permission applies to.
This value should match the action defined
by a matching rule (see <rule>).

auth string (none) Y Whether the action will be allowed or denied.
Permitted values are "ALLOW", "DENY", and
"NO PERMISSION" (permission neither
allowed nor denied).

namespace string (none) N The namespace in which the permission
resides. This value should match the
namespace for the action defined by a
matching rule (see <rule>). If not defined,
the permission will reside in the default
namespace.

<permissioning>

<permissioning>

The outermost permissioning tag, with zero or one <role>,with zero or one <rules>, zero or one <users>,
and zero or one <groups>.

Attributes: This tag has no attributes.

<permissionSet>

<permissionSet>

Contains a list of one or more product permission sets, with one set per child <productPermissionSet> tag.

Attributes: This tag has no attributes.

The Demo Permissioning XML

62© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<productPermissionSet>

<productPermissionSet>

Contains a list of one or more permissions for a set of products, with one permission per child
<permission> tag.

Attributes:

Name Type Default Req? Description

productSet string (none) Y A comma delimited string. Each delimited
section of the string must identify a single
product (typically a product symbol such as
"/FX/GBPUSD") or a regular expression that
matches multiple products (such as ".
*USD").

<role>

<role>

Defines the role of the Permissioning DataSource. The <role> tag must contain a <master> tag if the
PermissioningDataSource is the master, or a <slave> tag if the Permissioning DataSource is a slave. If the
<role> tag is omitted from the XML definition, then the PermissioningDataSource will use version 1 of the
Permissioning message protocol (see Upgrading the Permissioning DataSource library).

Attributes: This tag has no attributes.

10

The Demo Permissioning XML

63© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<rule>

<rule>

Defines a single permissioning rule. Every rule must define either an action attribute or an actionRef
attribute, but not both.

Attributes:

Name Type Default Req? Description

action string (none) N The user must have permission for this
action if the rule matches the RTTP
message. This attribute can be used to
match an RTTP message to a single action,
such as "Trade" or "SPOT". If the action
attribute is used then the actionRef attribute
must not be used, otherwise the XML will
not be valid.

actionRef string (none) N The name of the field in the RTTP message
that identifies the action. The user must
have permission for this action if the rule
matches the RTTP message. This attribute
can be used to match the rule when the
RTTP message could define one of several
alternative actions. An example would be
when the value of the TradeType field could
be one of SPOT, FORWARD or SWAP. If
the actionRef attribute is used then the
action attribute must not be used, otherwise
the XML will not be valid.

permissionNamespace string (none) N The namespace in which the user
permission for the action must reside. If a
namespace is not defined, then the user
must have a permission for the action in the
default namespace.

productRef string (none) Y The name of the field in the RTTP message
that identifies the product that the user
must have a permission to action. The
reserved value ALL_PRODUCTS means
that the rule will apply to any product.

ruleType string (none) Y This value must always be WRITE. WRITE
rules apply when data is being contributed
to Liberator, and READ rules when data is
being requested from Liberator. At present
a default READ rule is implemented by the
Permissioning Auth Module when a user
attempts to view data, but in future releases
of Caplin Trader it may be possible to
define READ rules in XML.

subjectNameMatch string (none) Y The subject of the RTTP message that will
match this rule. The value can be a regular
expression. For example "/F." would match
"/FT" and "/FI", since the "." metacharacter
will match any single character.

The Demo Permissioning XML

64© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<rules>

<rules>

Contains a list of one or more permissioning rules, with one rule per child <rule> tag.

Attributes: This tag has no attributes.

<slave>

<slave>

Sets the <role> of the PermissiongDataSource to slave.

Attributes:

Name Type Default Req? Description

name string (none) Y A name that uniquely identifies this slave
from all other slaves of the <master>. The
reserved name MASTER cannot be used to
name a slave.

<subjectMapping>

<subjectMapping>

Maps an RTTP message subject to a subject suffix. If the user attempts to VIEW data where the subject of
the RTTP message matches subjectPattern, then subjectSuffix will be appended to the subject of the
RTTP message before Liberator requests the data from a DataSource. Subject mappings can be used to
get pricing data from different pricing tiers, depending on the user that requested the data.

Attributes:

Name Type Default Req? Description

subjectPattern string (none) Y A regular expression that will be compared
with the subject of the RTTP message. If a
match is found, then subjectSuffix will be
appended to the subject of the RTTP
message.

subjectSuffix string (none) Y The suffix that will be appended to the
subject of the RTTP message.

The Demo Permissioning XML

65© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<user>

<user>

Defines a single user and the user's name and password. A user can have zero or one <permissionSet>,
which allows product permissions to be applied to the user; zero or one <subjectMapping>, which allows
data to be requested from a pricing tier; and zero or one <attributes>, which map user attribute names to
user attribute values.

Attributes:

Name Type Default Req? Description

name string (none) Y The user's login name.

password string (none) Y The user's login password. The reserved
value "keymaster" indicates that the Caplin
Keymaster single sign-on system will
validate the user's password.

<userAttribute>

<userAttribute>

Defines a single user attribute. A user attribute maps an attribute name to an attribute value.

Attributes:

Name Type Default Req? Description

key string (none) Y The attribute name or key.

value string (none) Y The attribute value.

<userRef>

<userRef>

Adds a user member to the group (see <group>). Users can be members of more than one group.

Attributes:

Name Type Default Req? Description

nameRef string (none) Y The name of the user that you want to add.
Only users that have been defined using the
name attribute of the <user> tag can be
added to a group. Therefore nameRef must
match the name attribute of a <user> tag.

The Demo Permissioning XML

66© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Stopping the Demo Permissioning DataSource

To stop the Demo Permissioning DataSource, navigate to the apps/caplin/PermissioningDataSource
directory and run the following command.

$./stop.sh

This stops the application and terminates the connection with Liberator.

<users>

<users>

Contains a list of one or more users, with one user per child <user> tag. Users can have product
permissions applied to them.

Attributes: This tag has no attributes.

Further Reading

67© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

9 Further Reading

If you would like an introduction to permissioning concepts and terms or to consult reference
documentation for the Permissioning DataSource API, then the following documents provide this
information. You may also be interested in reading some of the other Related documents .

An introduction to permissioning concepts and terms

The document Caplin Xaqua: Permissioning Overview And Concepts introduces permissioning
concepts and terms, and shows the permissioning components of the Caplin Xaqua architecture.

Reference documentation for the Permissioning DataSource API

Reference material for this API can be found in the Permissioning DataSource: API Reference.

2

Glossary of terms and acronyms

68© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

10 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms used in this document.

Term Definition

Action The interaction that a user can have with a product.

API Application Programming Interface

Caplin Trader A web application framework for constructing browser-based
financial trading applications (Caplin Trader applications).

Caplin Trader application A Caplin Xaqua client that has been built using Caplin Trader.

Caplin Xaqua A framework for building single-dealer platforms that enables banks
to deliver multi-product trading direct to client desktops. Caplin
Xaqua can also be short for a Caplin Xaqua system.

Caplin Xaqua client A client desktop or web application that interfaces with Caplin
Xaqua to deliver multi-product trading to end-users.

Caplin Xaqua system A single-dealer platform that is built using Caplin Xaqua.

Customer-user An end-user of a Caplin Xaqua client who instructs a sales-user
to trade on their behalf

DataSource An API and underlying code library that allows DataSource
applications to communicate with each other.

DataSource adapter A DataSource application that acts as the interface between
Caplin Xaqua and an external (non-Caplin) system, exchanging
data and/or messages with that system.

DataSource application A Caplin Xaqua application that uses the DataSource API and
code library to communicate with other Caplin Xaqua applications.

DataSource protocol The protocol that DataSource applications use to communicate
with each other.

Demo Permissioning DataSource The Demo Permissioning DataSource is an example of a
Permissioning DataSource that gets its permissioning data from
an XML file.

Global context An object at the Permissioning Auth Module. The global context
allows custom subject mappers to access data that is common to
all subject mappers and users.

Group A logical grouping of zero or more users and other groups, such
that each group can be assigned zero or more permissions.

Liberator A real-time financial internet hub that delivers trade messages and
market data to and from subscribers over any network that supports
web traffic.

Master When permissioning data is sent to Liberator from multiple
Permissioning DataSource adapters, one of the Permissioning
DataSource adapters is designated the master, and the others are
designated as slaves.

Permission Determines whether an action on a product will be allowed or
denied.

Permissioning Auth Module One of several authentication modules that are supplied with
Caplin Xaqua.

53

Glossary of terms and acronyms

69© Caplin Systems Ltd. 2009 – 2012

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Term Definition

Permissioning DataSource A DataSource adapter that acts as the interface between Caplin
Xaqua and your Permissioning System.

Permissioning DataSource API The API that a Permissioning DataSource uses to send
permissioning data to Liberator.

Permissioning System The source of the permissioning data that you want to integrate
with Caplin Xaqua.

Product In permissioning documentation (including this document) a
"product" is any entity on which a User may be assigned
permissions (including financial instruments). In other Caplin
Trader and Caplin Xaqua documentation, a "product" is a term
that refers only to a financial instrument.

Role Roles determine whether a Permissioning DataSource is
designated as a master or slave Permissioning DataSource.

RTTP Real Time Text Protocol.

Caplin's protocol for streaming real-time financial data from Caplin
Liberator servers to Caplin Xaqua clients, and for transmitting
trade messages and other messages between clients and Liberator
in both directions.

RTTP message A message sent between a Caplin Xaqua client and Liberator,
using RTTP

Rule Rules link permissions to user interactions, and are used by
Liberator to decide which of the many permissions that have been
defined will apply when a user attempts to interact with a product.

Sales-user An end-user of a Caplin Xaqua client who takes instructions from
a customer-user to trade on their behalf.

SDK Software Development Kit

Slave When permissioning data is sent to Liberator from multiple
Permissioning DataSource adapters, one of the Permissioning
DataSource adapters is designated the master, and the others are
designated as slaves.

Subject mapper A subject mapper is a Java class that resides at the Permissioning
Auth Module. A subject mapper can modify the message that
Liberator receives when an end-user attempts to view or trade a
product, and can be used to provide preferential data to selected
users.

TOBO Trading On Behalf Of

TOBO switch message An RTTP message that is sent from a Caplin Xaqua client to a
Liberator, requesting that the current user (a sales-user) be
allowed to trade on behalf of a different user (a customer-user).

Trading On Behalf Of This is a facility that allows a user who is logged in to a Caplin
Xaqua client to execute trades on instruction from a customer (for
example, the customer may give instructions by telephone). The
logged-in user (sales-user) trades on behalf of the customer
(customer-user).

For more information, see the document Caplin Xaqua:
Permissioning Overview And Concepts.

User An end-user of a Caplin Xaqua client application such as
Caplin Trader.

© Caplin Systems Ltd. 2009 – 2012

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Xaqua 1.0: How To Create A Permissioning DataSource Adapter, March 2012, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments
	Code samples in this document

	What is a Permissioning DataSource?
	The Permissioning DataSource API

	Creating a Permissioning DataSource Adapter
	Creating a Single Permissioning DataSource
	Upgrading the Permissioning DataSource library

	Creating Multiple Permissioning DataSource Adapters
	Creating the Master
	Creating a Slave
	Master/Slave Limitations
	User Attributes and Subject Mappings

	Setting the Master/Slave Roles
	Setting the Master Role
	Setting the Slave Role

	About Transactions
	API methods for starting a transaction
	When should an Image or Update transaction be used?

	Creating Rules
	Updating Permissioning Data
	Creating Users
	Creating Groups
	Removing Users and Groups
	Setting a User's Password
	Changing a User's Permissions
	User.applyPermission()
	User.removePermission()
	User.permit()
	User.deny()

	Changing a Group's Permissions
	Group.applyPermission()
	Group.removePermission()
	Group.permit()
	Group.deny()

	Changing Subject Mappings for a User
	Using the default subject mapper
	Specifying the subject mapper

	Updating the global context of Subject Mappers
	Adding data to the global context
	Removing data from the default global context

	Changing User Attributes
	Changing the Members of a Group

	Creating a Custom Subject Mapper
	Implementing the SubjectMapper Interface
	Example Implementation of SubjectMapper

	Deploying a custom Subject Mapper

	Creating a Custom Global Context
	Implementing the GlobalContext Interface
	Example Implementation of GlobalContext

	Deploying a custom Global Context
	Configuring the Permissioning Auth Module
	Deploying the javaauth.properties file

	Creating Permissions for TOBO
	Creating the rule that matches a TOBO switch message
	Adding sales and customer users
	Assigning TOBO permissions to SalesUser1
	Assigning TOBO permissions to SalesUser2
	Assigning tiers and permissions to CustomerUser1
	Assigning tiers and permissions to CustomerUser2
	Assigning tiers and permissions to CustomerUser3
	Committing the transaction

	The Demo Permissioning DataSource
	Starting and Stopping the Demo Permissioning DataSource
	Starting the Demo Permissioning DataSource

	Overview of the Demo Permissioning DataSource

	The Demo Permissioning XML
	Technical Assumptions and Restrictions
	Ordering and Nesting of Tags
	XML Reference Information
	<attributes>
	<fieldMatchCriteria>
	<group>
	<groupRef>
	<groups>
	<master>
	<match>
	<members>
	<permission>
	<permissioning>
	<permissionSet>
	<productPermissionSet>
	<role>
	<rule>
	<rules>
	<slave>
	<subjectMapping>
	<user>
	<userAttribute>
	<userRef>
	Stopping the Demo Permissioning DataSource
	<users>

	Further Reading
	Glossary of terms and acronyms

