
How To Create A

November 2009

C O N F I D E N T I A L

Caplin Xaqua 1.0

 Permissioning DataSource Adapter



i

How To Create A Permissioning DataSource Adapter

© Caplin Systems Ltd. 2009

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

Contents

........................................................................................................................................................ 1Preface1

............................................................................................................................................ 1What this document contains1.1

.................................................................................................................................. 1About Caplin document formats 

............................................................................................................................................ 1Who should read this document1.2

............................................................................................................................................ 2Related documents1.3

............................................................................................................................................ 3Typographical conventions1.4

............................................................................................................................................ 3Feedback1.5

............................................................................................................................................ 3Acknowledgments1.6

............................................................................................................................................ 4Code samples in this document1.7

........................................................................................................................................................ 5What is a Permissioning DataSource?2

............................................................................................................................................ 6The Permissioning DataSource API2.1

........................................................................................................................................................ 7Creating a Permissioning DataSource Adapter3

............................................................................................................................................ 7Creating a Single Permissioning DataSource3.1

.................................................................................................................................. 10Upgrading the Permissioning DataSource library 

............................................................................................................................................ 11Creating Multiple Permissioning DataSource Adapters3.2

.................................................................................................................................. 12Creating the Master 

.................................................................................................................................. 13Creating a Slave 

.................................................................................................................................. 14Master/Slave Limitations 

.................................................................................................................................. 16Setting the Master/Slave Roles 

............................................................................................................................................ 17About Transactions3.3

.................................................................................................................................. 17API methods for starting a transaction 

.................................................................................................................................. 17When should an Image or Update transaction be used? 

............................................................................................................................................ 18Creating Rules3.4

............................................................................................................................................ 18Updating Permissioning Data3.5

.................................................................................................................................. 18Creating Users 

.................................................................................................................................. 19Creating Groups 

.................................................................................................................................. 20Removing Users and Groups 

.................................................................................................................................. 20Setting a User's Password 

.................................................................................................................................. 21Changing a User's Permissions 

.................................................................................................................................. 21Removing a Permission from a User 

.................................................................................................................................. 21Changing a Group's Permissions 

.................................................................................................................................. 22Changing the Subject Mapping for a User 

.................................................................................................................................. 23Changing User Attributes 

.................................................................................................................................. 24Changing the Members of a Group 



ii

How To Create A Permissioning DataSource Adapter

© Caplin Systems Ltd. 2009

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

........................................................................................................................................................ 25Creating a Custom Subject Mapper4

............................................................................................................................................ 25Implementing the SubjectMapper Interface4.1

.................................................................................................................................. 26Example Implementation of SubjectMapper 

............................................................................................................................................ 29Deploying a custom Subject Mapper4.2

........................................................................................................................................................ 30The Demo Permissioning DataSource5

............................................................................................................................................ 31Starting and Stopping the Demo Permissioning DataSource5.1

.................................................................................................................................. 31Starting the Demo Permissioning DataSource 

.................................................................................................................................. 31Stopping the Demo Permissioning DataSource 

............................................................................................................................................ 32Overview of the Demo Permissioning DataSource5.2

........................................................................................................................................................ 33The Demo Permissioning XML6

............................................................................................................................................ 33Technical Assumptions and Restrictions6.1

............................................................................................................................................ 33Ordering and Nesting of Tags6.2

............................................................................................................................................ 36XML Reference Information6.3

.................................................................................................................................. 36<attributes> 

.................................................................................................................................. 36<fieldMatchCriteria> 

.................................................................................................................................. 36<group> 

.................................................................................................................................. 37<groupRef> 

.................................................................................................................................. 37<groups> 

.................................................................................................................................. 37<master> 

.................................................................................................................................. 37<match> 

.................................................................................................................................. 38<members> 

.................................................................................................................................. 38<permission> 

.................................................................................................................................. 38<permissioning> 

.................................................................................................................................. 38<permissionSet> 

.................................................................................................................................. 39<productPermissionSet> 

.................................................................................................................................. 39<role> 

.................................................................................................................................. 40<rule> 

.................................................................................................................................. 41<rules> 

.................................................................................................................................. 41<slave> 

.................................................................................................................................. 41<subjectMapping> 

.................................................................................................................................. 42<user> 

.................................................................................................................................. 42<userAttribute> 

.................................................................................................................................. 42<userRef> 

.................................................................................................................................. 43<users> 

........................................................................................................................................................ 44Further Reading7

........................................................................................................................................................ 45Glossary of terms and acronyms8



iii

How To Create A Permissioning DataSource Adapter

© Caplin Systems Ltd. 2009

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

...................................................................................................................................................... 47Index



Preface

1© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

1 Preface

1.1 What this document contains

This  document  describes  how  you  can  create  a  Permissioning  DataSource  adapter  by  writing  an
application that uses the Permissioning DataSource API. A Permissioning DataSource adapter is required
to  integrate  Caplin  Xaqua  with  a  Permissioning  System.  The  document  also  discusses  the  Demo
Permissioning  DataSource  that  is  provided  with  the  reference  implementation  of  Caplin  Trader  from
release 1.2.8.

Before  reading  this  document,  make  sure  you  are  familiar  with  the  document  Caplin  Xaqua:
Permissioning Overview And Concepts.

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file. 

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install  the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM  files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop),  or  ask  your  System  Administrator  to  grant  access  to  the  file  across  the  network.  For  more
information see the Microsoft knowledge base article at 
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for  System Architects and Software Developers who want  to  integrate Caplin
Xaqua with a Permissioning System.

http://support.microsoft.com/kb/896054/


Preface

2© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

1.3 Related documents

Caplin Xaqua: Overview

Provides  a  business  and  technical  overview  of  Caplin  Xaqua  and  includes  an  explanation  of  its
architecture.

Caplin Liberator: Administration Guide

Describes  how  to  install  and  configure  Caplin  Liberator  and  discusses  the  authentication  modules
that are provided with the server.

Caplin Xaqua: Permissioning Overview And Concepts

Introduces  permissioning  concepts  and  terms,  and  shows  the  permissioning  components  of  the
Caplin Xaqua architecture.

Caplin Xaqua: Installing Permissioning Components

Describes how to install the Permissioning Auth Module and Permissioning DataSource in an existing
 Caplin  Xaqua  installation.  You  only  need  to  install  these  components  if  your  installation  of  Caplin
Trader is earlier than release 1.2.8, as later releases include these permissioning components.

Caplin Trader: How To Add Permissioning At The Client

Describes how to add Permissioning to Caplin Trader.

Permissioning DataSource: API Reference

The  API  reference  documentation  provided  with  the  Permissioning  DataSource  SDK  (Software
Development  Kit).  The  classes  and  interfaces  presented  by  this  API  allow  you  to  write  a  Java
application that will integrate a Permissioning System with Caplin Xaqua.

Caplin Trader: API Reference

The  API  reference  documentation  provided  with  Caplin  Trader.  The  classes  and  interfaces  of  the
caplin.security.permissioning package allow you to write JavaScript classes that extend the
live permissioning capabilities of Caplin Trader.



Preface

3© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

1.5 Feedback

Customer  feedback  can  only  improve  the  quality  of  our  product  documentation,  and  we would  welcome
any comments, criticisms or suggestions you may have regarding this document.

Please email your feedback to documentation@caplin.com.

1.6 Acknowledgments

Adobe® Reader is a registered trademarks and Adobe Flex™ a trademark of Adobe Systems Incorporated
in the United States and/or other countries.

Windows  is  a  registered  trademark  and  Silverlight™  a  trademark  of  Microsoft  Corporation  in  the  United
States and other countries.

Java, JavaScript, and JVM are trademarks of Sun Microsystems, Inc. in the U.S. or other countries.

mailto:documentation@caplin.com


Preface

4© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

1.7 Code samples in this document

The code samples presented in this document use the following conventions:

Text within <angled brackets> represents parameters that must be defined in your code. 

Text shown as ( ... ) represents parameters that have been omitted for simplicity.



What is a Permissioning DataSource?

5© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

2 What is a Permissioning DataSource?

A Permissioning  DataSource  is  a  DataSource  Adapter  that  acts  as  the  interface  between  Caplin  Xaqua
and your  Permissioning System. Its  purpose  is  to  provide  Liberator  with  the  permissioning  data  that  the
Permissioning Auth Module will use to decide whether or not an interaction with Liberator is permitted.

Simplified Caplin Xaqua architecture
showing only permissioning components

To  create  a  Permissioning  DataSource,  you  write  and  compile  a  Java  application  that  uses  the
Permissioning  DataSource  API.  This  simple  API  is  built  on  top  of  the  Caplin  DataSource  for  Java  API,
allowing  your  application  to  send  permissioning  data  to  Liberator  using  the  DataSource  protocol,  but
without the need for your code to explicitly use the DataSource API.



What is a Permissioning DataSource?

6© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Tip: You  will  find  further  information  about  the  permissioning  components  of  the  Caplin  Xaqua
architecture in the document Caplin Xaqua: Permissioning Overview And Concepts.

2.1 The Permissioning DataSource API

The Permissioning DataSource API is part of the Permissioning DataSource SDK (Software Development
Kit) and allows you to write applications that can send permissioning data to Caplin Liberator. The SDK is
delivered with Caplin Xaqua and contains the following components.

The library of Java classes that provide the Permissioning DataSource API.

Permissioning DataSource: API Reference that includes an overview, and package and class-level
documentation.

A  Demo  Permissioning  DataSource  Adapter .  This  example  application  uses  the  Permissioning
DataSource API to provide Liberator with permissioning data from an XML file .

The  Permissioning  DataSource  API  is  contained  in  a  single  package  that  provides  the  classes  and
interfaces you need to integrate Caplin  Xaqua with a Permissioning System. The package also includes
classes  for  assigning  permissions  to  Users  and  Groups,  classes  for  storing  permissioning  data,  and
classes for handling exceptions.

Tip: For  a  complete  description  of  the  Permissioning  DataSource  API,  please  refer  to  the
Permissioning DataSource: API Reference.

30

33



Creating a Permissioning DataSource Adapter

7© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

3 Creating a Permissioning DataSource Adapter

Permissioning data  can either  be sent  to  Liberator  from a  single  Permissioning  DataSource ,  or  from
multiple Permissioning DataSources .

3.1 Creating a Single Permissioning DataSource

The Permissioning DataSource API provides the interface between the Caplin Xaqua and a
Permissioning System. When you write an application that uses this API, your code must
implement the PermissioningDataSourceListener interface and instantiate a
PermissioningDataSource, as summarized in the following sequence diagram and in steps
1 to 4 below.

Typical sequence of events for sending permissioning data to Liberator

1. Implement the PermissioningDataSourceListener interface

This interface has three callback methods that your code must implement. The first of these callback
methods, onConnect(), is triggered by the PermissioningDataSource when a new connection
to Liberator is established.

7

11



Creating a Permissioning DataSource Adapter

8© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Your  implementation  of  onConnect()  would  typically  respond  to  this  trigger  by  starting  a
transaction, applying permissioning data to the PermissioningDataSource, and then committing
the  transaction.  Data  is  applied  to  the  PermissioningDataSource  when  you  call  one  of  the
createUser, createGroup and  create-rule methods as part of a transaction. Committing the
transaction sends that data to Liberator.

The  other  two  callback  methods,  onDisconnect()  and  onReconnect(),  simply  inform  your
application  about  the  Liberator  connection  status.  There  is  no  need  to  send  permissioning  data  or
start a transaction, and your implementation would typically respond by logging the connection status.

2. Instantiate a PermissioningDataSource

The  PermissioningDataSource  has  one  constructor  that  expects  three  arguments  in  the
following order:

An instance of your PermissioningDataSourceListener implementation, as described in
step 1 above.

A DataSource XML configuration file (conf/DataSource.xml), in the form of an InputStream.
This file configures the PermissioningDataSource as a DataSource adapter, and must
contain network connection information for your particular network.

A DataSource XML field mapping file (conf/Fields.xml), in the form of an InputStream. This
file maps DataSource field names to field numbers, and must match the field name to number
mappings that are used by Liberator. 

The Demo Permissioning DataSource  that is supplied with the SDK has an example DataSource
XML configuration file and example DataSource XML field mapping file. You can either create your
own version of these files or customize the supplied example files as required. 

3. Set the role of the PermissioningDataSource

When there is only one PermissioningDataSource connected to Liberator, set the role to master
(see Creating Multiple Permissioning DataSource Adapters ).

Note: If your client application does not support multiple Permissioning DataSources, then omit step 3
and do not set the role of the PermissioningDataSource 
(see Upgrading the Permissioning DataSource library ).

4. Start the PermissioningDataSource

You start a PermissioningDataSource when you call PermissioningDataSource.start().

The  following  code  sample  is  a  trivial  implementation  of  a  PermissioningDataSourceListener,  as
summarized in steps 1 to 4 above. 

30

11

10



Creating a Permissioning DataSource Adapter

9© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

// Step 1: Implement the PermissioningDataSourceListener interface
public class MyPermissioningSystemAdapter implements PermissioningDataSourceListener
{
   private PermissioningDataSource pds;

   public MyPermissioningSystemAdapter() throws IOException, SAXException
   {
      // Step 2: Instantiate a PermissioningDataSource, 
      // passing this adapter as a listener
      pds = new PermissioningDataSource(this, 
                                        <DataSource.Config.Stream>, 
                                        <Fields.Config.Stream>);

      // Step 3: Set the role of the PermissioningDataSource to master
      pds.setMasterRole();

      // Step 4: Start the PermissioningDataSource
      pds.start();
   }
    
   // Implement the onConnect() callback
   public void onConnect()
   {
      // start a PermissioningDataSource image transaction
      pds.startImageTransaction();

      // create some Rules
      pds.createActionRule( ... );
      pds.createActionRefRule( ... );

      // create some Users and configure them 
      User user1 = pds.createUser( ... );
      user1.applyPermission( ... );
      user1.setSubjectMapping( ... );

      User user2 = pds.createUser( ... );
      user2.applyPermission( ... );

      // create some Groups and configure them
      Group group1 = pds.createGroup( ... );
      group1.applyPermission( ... );
      group1.addMember( user1 );

      Group group2 = pds.createGroup( ... );
      group2.applyPermission( ... );
      group2.addMember( user1 );
      group2.addMember( user2 );
        
      // send the permissioning data by committing the transaction
      pds.commitTransaction();
   }

   // Implement the onDisconnect() callback
   public void onDisconnect()
   {
      System.out.println("Disconnected from Liberator!")
   }

   // Implement the onReconnect() callback
   public void onReconnect()
   {
      System.out.println("Reconnected to Liberator!")
   }
}



Creating a Permissioning DataSource Adapter

10© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Upgrading the Permissioning DataSource library

From  release  4.5.6,  the  Permissioning  DataSource  library  supports  two  versions  of  a  Permissioning
message protocol, each having a different (and mutually incompatible) message format.

Version 1 (the original protocol) has a message format that allows only one Permissioning DataSource to
connect  to  Liberator.  Version 2 (a later  protocol)  has a message format  that  allows both  single  (master)
and multiple (master/slave) Permissioning DataSources to connect to Liberator.

If you are you are upgrading the Permissioning DataSource library and your client application uses version
1  of  the  Permissioning  message  protocol,  then  you  must  ensure  that  your  Permissioning  DataSource
continues to use version 1 of this protocol.

A  Permissioning  DataSource  will  use  version  1  of  the  protocol  if  you  do  not  set  the  role  of  the
Permissioning DataSource (see step 3 of  Creating a Single Permissioning DataSource ).  This means
that  if  the client  application only  supports  version 1  of  the protocol,  then you do not  need to  modify  any
code  in  either  the  client  application  or  Permissioning  DataSource  when  you  upgrade  the  Permissioning
DataSource library.

A Permissioning DataSource will use version 2 of the protocol if you do set the role of the Permissioning
DataSource. You must set the role of the Permissioning DataSource if your client application is configured
to use version 2 of the Permissioning message protocol.

The  following  table  shows  the  messaging  protocols  that  are  supported  by  each  release  of  the
Permissioning DataSource and Caplin Trader libraries.

Supported Permissioning message protocols:

Component Release Supported
Permissioning
Message
Protocol

How to configure

Permissioning
DataSource library
(DataSource+)

4.5.3 and
earlier

version 1 only Not applicable

Permissioning
DataSource library
(DataSource+)

4.5.4 and
4.5.5

version 2 only Not applicable

Permissioning
DataSource library
(DataSource+)

4.5.6 and
later

versions 1 and 2 The Permissioning DataSource will use protocol
version 1 if you do not set the master or slave
role.

The Permissioning DataSource will use protocol
version 2 if you do set the master or slave role.

Caplin Trader
library
(StreamLink+)

1.4.8 and
earlier

version 1 only Not applicable

Caplin Trader
library
(StreamLink+)

1.5.0 and
later

version 1 and 2 See the document Caplin Trader: How To
Add Permissioning At The Client.

8



Creating a Permissioning DataSource Adapter

11© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

3.2 Creating Multiple Permissioning DataSource Adapters

When permissioning data is sent to Liberator from more than one Permissioning DataSource, one of the
Permissioning  DataSources  must  be  designated  the  master  and  each  of  the  other  Permissioning
DataSources must be designated as slaves. 

Multiple Permissioning DataSource Adapters connected to Liberator (showing
one master and one slave)

There  can  only  be  one  master  Permissioning  DataSource,  but  there  can  be  one  or  more  slave
Permissioning DataSources depending on business requirements. For example, one slave could provide
permissions  for  FX  instruments  and  another  permissions  for  FI  instruments.  Only  the  master  can  add
permissioning  rules  and  the  user  authentication  details  that  allow  end-users  to  log  in  to  Liberator  (see
Master/Slave Limitations ).14



Creating a Permissioning DataSource Adapter

12© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Creating the Master

To designate a Permissioning DataSource as the master, your code must call methods that set the role of
the Permissioning DataSource as master.  In the following code sample, the master is set  in step 3.  The
code  is  identical  to  the  code  sample  described  in  Creating  a  Permissioning  DataSource  Adapter ,
except that user permissions and subject mappings are set in the slave (see Creating a Slave ).

// Step 1: Implement the PermissioningDataSourceListener interface
public class MyPermissioningSystemAdapter implements PermissioningDataSourceListener
{
   private PermissioningDataSource pdsm;

   public MyPermissioningSystemAdapter() throws IOException, SAXException
   {
      // Step 2: Instantiate a PermissioningDataSource, 
      // passing this adapter as a listener
      pdsm = new PermissioningDataSource(this, 
                                        <DataSource.Config.Stream>, 
                                        <Fields.Config.Stream>);

      // Step 3: Set this PermissioningDataSource as the master
      pdsm.setMasterRole();

      // Step 4: Start the PermissioningDataSource
      pdsm.start();
   }
    
   // Implement the onConnect() callback
   public void onConnect()
   {
      // start a PermissioningDataSource image transaction
      pdsm.startImageTransaction();

      // create some Rules
      pdsm.createActionRule( ... );
      pdsm.createActionRefRule( ... );

      // create some Users - permissions and subject mappings for these
      // Users are applied in the slave, but could be applied here
      User user1 = pdsm.createUser( ... );
      User user2 = pdsm.createUser( ... );

      // create some Groups and configure them
      Group group1 = pdsm.createGroup( ... );
      group1.applyPermission( ... );
      group1.addMember( user1 );

      Group group2 = pdsm.createGroup( ... );
      group2.applyPermission( ... );
      group2.addMember( user1 );
      group2.addMember( user2 );
        
      // send the permissioning data by committing the transaction
      pdsm.commitTransaction();
   }

   // Implement the onDisconnect() and onReconnect() callbacks
   ...
}

Note that permissions and subject mappings can be applied in the master or in a slave.

7

13



Creating a Permissioning DataSource Adapter

13© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Creating a Slave

To designate a Permissioning DataSource as a slave, your code must call a method that sets the role of
the Permissioning DataSource as a named slave. In the following code sample, the role is set in step 3.
The  rest  of  the  code  is  similar  to  the  code  sample  described  in  Creating  a  Permissioning  DataSource
Adapter , except that a slave can only send a limited set of permissioning data to Liberator (see Master/
Slave Limitations ). 

// Step 1: Implement the PermissioningDataSourceListener interface
public class MyPermissioningSystemAdapter implements PermissioningDataSourceListener
{
   private PermissioningDataSource pdss;

   public MyPermissioningSystemAdapter() throws IOException, SAXException
   {
      // Step 2: Instantiate a PermissioningDataSource, 
      // passing this adapter as a listener
      pdss = new PermissioningDataSource(this, 
                                        <DataSource.Config.Stream>, 
                                        <Fields.Config.Stream>);

      // Step 3: Set this PermissioningDataSource as a slave and set the name to "FX"
      pdss.setSlaveRole("FX");

      // Step 4: Start the PermissioningDataSource
      pdss.start();
   }
    
   // Implement the onConnect() callback
   public void onConnect()
   {
      // start a PermissioningDataSource image transaction
      pdss.startImageTransaction();

      // create some Users and apply permissions and subject mappings
      // Note: Users created here must also be created in the master
      User user1 = pdss.createUser( ... );
      user1.applyPermission( ... );
      user1.setSubjectMapping( ... );

      User user2 = pdss.createUser( ... );
      user2.applyPermission( ... );

      // send the permissioning data by committing the transaction
      pdss.commitTransaction();
   }

   // Implement the onDisconnect() callback
   public void onDisconnect()
   {
      System.out.println("Disconnected from Liberator!")
   }

   // Implement the onDisconnect() and onReconnect() callbacks
   ...
}

In the code sample above, a slave Permissioning DataSource is created with the name "FX". In this case
the slave applies permissions for two users (user1 and user2). A similar piece of code could be created
for the slave named "FI".

When  you  configure  Liberator,  you  must  also  include  the  name  of  the  slave  in  the  include-pattern
configuration  option  of  add-data-service  (see  "Configuring  Liberator  to  Connect  to  Multiple
Permissioning DataSources" in Caplin Xaqua: Installing Permissioning Components).

7

14



Creating a Permissioning DataSource Adapter

14© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Master/Slave Limitations

When permissioning  data  is  sent  to  Liberator  from master/slave  Permissioning  DataSources,  the  slaves
can only send a limited set of permissioning data. The following table indicates the permissioning data that
can be set in the master and slave Permissioning DataSources, where a "Y" indicates that data can be set
and an "N" indicates that data cannot be set.

Master/Slave permissioning data limitations

Master/
Slave

Rules Groups User
Permissions

User
Password

User
Attributes

Subject
Mapping

Master Y Y Y Y Y Y

Slave N Y Y N Y Y

In  addition  to  the  limitations  specified  in  the  table  above,  users  must  be  created  in  the  master
Permissioning DataSource before end-users can log in to Liberator. The permissions of users created in
the master can then be set in a slave, as shown in the following code samples.

First create the users "John Smith" and "Fred Dibble" in the master:

...

// start a PermissioningDataSource update transaction
pdsm.startUpdateTransaction();

// create two Users without permissions
// Note: Users created here can be given permissions in the slave or the master
User user1 = pdsm.createUser("John.Smith", "johnsPassword");
User user2 = pdsm.createUser("Fred.Dibble", "fredsPassword");

// send the permissioning data by committing the transaction
pdsm.commitTransaction();

...

Now give "John Smith" and "Fred Dibble" permissions in the slave:

...

// start a PermissioningDataSource update transaction
pdss.startUpdateTransaction();

// create Users and apply permissions
// Note: Users created here (without passwords) must also be created
// in the master (with passwords)
User user1 = pdss.createUser("John.Smith", "");
user1.applyPermission( ... );

User user2 = pdss.createUser("Fred.Dibble", "");
user2.applyPermission( ... );

// send the permissioning data by committing the transaction
pdss.commitTransaction();

...



Creating a Permissioning DataSource Adapter

15© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Note that the password for each user must be set in the master and not in the slave.

User Attributes and Subject Mappings

User attributes and subject mappings can be set in either the master or slave Permissioning DataSource,
but you must make sure that only one Permissioning DataSource sets a particular user attribute or subject
mapping.

User Attributes

If the same user attribute is set to different values in more than one Permissioning DataSource, then the
value retrieved by the Caplin Xaqua Client cannot be determined and could be either value.

For example, if the master sets MaxUSD to 5000 and the slave sets MaxUSD to 8000, then either 5000 or
8000 could be returned when the Caplin Xaqua Client retrieves the user attribute MaxUSD.

Subject Mappings

If a subject is mapped in more than one Permissioning DataSource, even if wildcards are used to define
the subject,  then it  is  not possible to determine what mapping will  be applied by the Permissioning Auth
Module. 

For example, if the master maps /FX/EURGBP to tier1 and the slave maps /FX/EUR* to tier2, then
the Permissioning Auth Module could map a request for /FX/EURGBP to either tier1 or tier2.



Creating a Permissioning DataSource Adapter

16© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Setting the Master/Slave Roles

The  following  examples  show  you  how  to  set  the  roles  of  the  master  and  slave  Permissioning
DataSources.

Setting the Master Role

This example sets a PermissioningDataSource (pdsm) as the master Permissioning DataSource. 

// set the master role and name the slave ("FX")
pdsm.setMasterRole();
...

pdsm.startUpdateTransaction();
...
pdsm.commitTransaction();

There  can  only  be  one  master  but  there  can  be  more  than  one  slave  Permissioning  DataSource  (see
Setting the Slave Role ). 

The role of the master must be set before the transaction is started.

Setting the Slave Role

This example sets a PermissioningDataSource (pdss) as a slave Permissioning DataSource. 

// set the slave role and give the slave a name ("FX")
pdss.setSlaveRole("FX");
...

pdss.startUpdateTransaction();
...
pdss.commitTransaction();

In this example the setSlaveRole()method sets the role of the Permissioning DataSource to 'slave' and
names the slave "FX".

The role of the slave must be set before the transaction is started.

16



Creating a Permissioning DataSource Adapter

17© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

3.3 About Transactions

Transactions ensure that one or more operations on permissioning data are sent to Liberator as a single
atomic unit. A typical sequence of events would be:

1. Start a transaction.

2. Apply permissioning data to the PermissioningDataSource (for example add and remove users,
groups and permissions). 

3. Commit the transaction.

Permissioning  data  is  sent  from the  PermissioningDataSource  to  Liberator  when  the  transaction  is
committed.  The  Permissioning  Auth  Module  (which  is  embedded  in  Liberator)  will  not  apply  any
permissioning data until all the data for a transaction is received.

API methods for starting a transaction

The Permissioning DataSource API provides two methods for starting a transaction.

startImageTransaction()

Call  this  method  when  you  want  to  apply  a  new  set  of  permissioning  data  to  Liberator.  When  you
commit  the  transaction,  all  permissioning  data  in  the  PermissioningDataSource  is  sent  to
Liberator.  Liberator  replaces  any  permissioning  data  from  previous  transactions  with  this  new
permissioning data. Rules must be applied as part of an image transaction.

startUpdateTransaction()

Call  this  method  when  you  want  to  update  permissioning  data.  When  you  commit  the  transaction,
only changes to permissioning data are sent to Liberator. Liberator updates any permissioning data
from previous transactions with this new permissioning data. Rules cannot  be applied as part of an
update transaction.

When should an Image or Update transaction be used?

The table  below shows the  type of  transaction  that  is  required  (image or  update)  to  send permissioning
data  to  Liberator.  The  startImageTransaction()  method  starts  an  image  transaction,  and  the
startUpdateTransaction() method starts an update transaction (see About Transactions ).

Situation Type of transaction required

When an onConnect() callback is received. Start an image transaction. The permissioning data
that you send will replace any existing
permissioning data in Liberator.

When an onReconnect() callback is received. This callback is for information only, you do not
need to start a transaction or send permissioning
data to Liberator.

When permissioning data in your Permissioning
System changes (for example, when a new user is
added to your Permissioning System). 

Start an update transaction. The permissioning
data that you send will modify the existing
permissioning data in Liberator.

When you want to replace an existing set of
permissioning data with a new set of permissioning
data.

Start an image transaction. The permissioning data
that you send will replace any existing
permissioning data in Liberator.

17



Creating a Permissioning DataSource Adapter

18© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Situation Type of transaction required

When you want remove all permissioning data and
eject all users currently logged in to a Caplin
Xaqua Client and/or Liberator.

Send an empty image transaction. This will clear all
permissioning data from the 
PermissioningDataSource and from Liberator.

3.4 Creating Rules

Rules state the permissions that users must have for an action (see Master/Slave Limitations ).

In  this  example  the  user  must  have  "SPOT"  permission  for  the  product  in  the  "Instrument"  field  of  the
RTTP message, when the subject of the RTTP message matches the regular expression 
"/TradeChannel/.*" and the value of the "SIDE" field is "Buy".

pds.startImageTransaction();

Map<String,String> fieldMatchCriteria = new HashMap<String,String>();
fieldMatchCriteria.put("SIDE","Buy");
pds.createActionRule("/TradeChannel/.*", fieldMatchCriteria, "TradeType", 
                     "SPOT", "Instrument");

// add Users, Groups and Permissions for this image transaction
...

pds.commitTransaction();

Rules must be applied as part of an image transaction (see About Transactions ).

3.5 Updating Permissioning Data

The  following  examples  show  you  how  to  update  the  permissioning  data  that  has  already  been  sent  to
Liberator  (see  Master/Slave  Limitations ).  You  update  permissioning  data  as  part  of  an  update
transaction (see About Transactions ).

Creating Users

This  example  creates  a  new  user  in  the  PermissioningDataSource  (pds).  When  the  transaction  is
committed, the data for this user is sent to Liberator.

pds.startUpdateTransaction();
pds.createUser("John.Smith", "johnsPassword");
pds.commitTransaction();

The  getUser()  method  can  later  be  used  to  get  a  reference  to  the  user  "John  Smith"  (see  Setting  a
User's Password ).

14

17

14

17

20



Creating a Permissioning DataSource Adapter

19© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Applying Permissions

Permissions can either be applied as part of the same transaction in which the user is created, or in later
transactions.

The following example creates a new user and then gives this user the permission to "SPOT-TRADE" all
products in the "TradeType" namespace.

pds.startUpdateTransaction();
User newUser = pds.createUser("John.Smith", "johnsPassword");
Set products = new HashSet();
products.add("/.*");
newUser.applyPermission(products, "TradeType", "SPOT-TRADE", Authorization.ALLOW);
pds.commitTransaction();

We look at how to change the permissions of an existing user in Changing a User's Permissions .

Creating Groups

The following example creates a new group, applies a permission to the group, and then adds an existing
user to the group. When the transaction is committed, the data for this group is sent to Liberator.

pds.startUpdateTransaction();

// create a new Group
Group newGroup = pds.createGroup("RFQ-Traders");

// build up a product set
Set products = new HashSet();
products.add("/.*");

// apply the permission to the Group
newGroup.applyPermission(products, "TradeType", "RFQ", Authorization.ALLOW);

// retrieve an existing user from the permissioning datasource
User existingUser = pds.getUser("John.Smith");

//add the user as a member of the new Group
newGroup.addMember(existingUser);
pds.commitTransaction();

In  the  example  above,  pds.getUser()  retrieves  an  existing  user  from  the
PermissioningDataSource.  This user, who was created in an earlier transaction (see Creating Users)

,  now  inherits  the  permissions  of  the  new  group  to  "RFQ"  trade  all  products  in  the  "TradeType"
namespace.

21

18



Creating a Permissioning DataSource Adapter

20© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Removing Users and Groups

In  this  example  we  remove  the  user  and  group  that  we  created  in  previous  transactions  (see  Creating
Users  and Creating Groups) .

pds.startUpdateTransaction();
Group group = pds.getGroup("RFQ-Traders");
pds.removeGroup(group);

User user = pds.getUser("John.Smith");
pds.removeUser(user);
pds.commitTransaction();

When  you  remove  a  group  that  has  members,  the  members  are  not  removed  from  the  inheritance
hierarchy but they no longer inherit permissions from the removed group or any of its parents.

When you remove a user, the user is automatically removed from all parent groups and will no longer be
able to log in to a Caplin Xaqua Client. If the removed user was already logged in to a Caplin Xaqua Client,
then they will be disconnected.

When you remove a user or group, references to the removed user or group object can no longer be used
and  should  be  de-referenced  so  that  the  object  can  be  garbage  collected.  If  you  need  to  re-create  a
removed  user  or  group,  use  createUser()  or  createGroup()  inside  a  transaction  to  create  a  new
object for that user or group.

Setting a User's Password

In this example we change a user's password.

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");

// set the new password
user.setPassword("new-password");
pds.commitTransaction();

If  a  user's  password  is  changed  when  the  user  is  logged  in  to  Liberator,  they  will  be  disconnected
immediately and will have to log back in using the new password.

18 19



Creating a Permissioning DataSource Adapter

21© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Changing a User's Permissions

The User.applyPermissions()  method can either  be used to add a new permission to a user or  to
modify an existing permission. 

In  this  example  the  permission  to  "OneClick"  trade  the  "FX/GBPUSD"  product  in  the  "TradeType"
namespace is added to the permissions already assigned to this user. 

pds.startUpdateTransaction();

// acquire a reference to the User
User user = pds.getUser("John.Smith");

// build up the product set
Set products = new HashSet();
products.add("/FX/GBPUSD");

// apply the permission
user.applyPermission(products, "TradeType", "OneClick", Authorization.ALLOW);
pds.commitTransaction();

This permission would replace any other permission the user had for this product, action and namespace.

Removing a Permission from a User

In this example we remove the permission to "OneClick" trade the "FX/GBPUSD" product that we assigned
in the previous transaction (see Changing a User's Permissions ).

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");
Set products = new HashSet();
products.add("/FX/GBPUSD");

// remove the OneClick permission in the TradeType namespace for /FX/GBPUSD
user.removePermission(products, "TradeType", "OneClick");
pds.commitTransaction();

Attempting to remove a permission that has not been assigned has no effect.

Changing a Group's Permissions

The Group.applyPermissions() method can either be used to add a new permission to a group or to
modify an existing permission. 

In this example we remove the permission to trade all FX products, and add a permission to trade a small
set of FX products.

21



Creating a Permissioning DataSource Adapter

22© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

pds.startUpdateTransaction();

// acquire a reference to the group
Group group = pds.getGroup("JuniorTraders");

// remove the promiscuous permission for all FX products
Set oldProducts = new HashSet();
oldProducts.add("/FX/.*");
group.removePermission(oldproducts, "TradeType", "OneClick");

// allow "OneClick" action on a small, explicit set of FX products
Set newProducts = new HashSet();
newProducts.add("/FX/GBPUSD");
newProducts.add("/FX/GBPAUD");
group.applyPermission(newProducts, "TradeType", "OneClick", Authorization.ALLOW);

pds.commitTransaction();

Attempting to remove a permission that has not been assigned has no effect.

Changing the Subject Mapping for a User

A  default  subject  mapper  is  provided  with  the  Permissioning  software  that  allows  one  subject  to  be
mapped for each user. 

If you want to provide multiple subject mappings for a user, or if you want to provide customized mapping
logic, then you must create a custom subject mapper.

You will  find  further  information  about  subject  mapping  in  the  document  Caplin  Xaqua:  Permissioning
Overview And Concepts.

Using the default subject mapper

With  the  default  subject  mapper,  the  setSubjectMapping()method  adds  a  new  subject  mapping  or
changes an existing subject mapping.

The following example shows a subject mapping being changed for one user, and a subject mapping being
removed for another user. 

pds.startUpdateTransaction();

// modify User with existing subject-mapping
User userWithChangedMapping = pds.getUser("John.Smith");
userWithChangedMapping.setSubjectMapping("/FX/.*", "-tier2");

// remove a User's subject-mapping
User userWithRemovedMapping = pds.getUser("Jane.Davis");
userWithRemovedMapping.removeSubjectMapping();
pds.commitTransaction();

Because a user can only have one subject mapping, the removeSubjectMapping()  method does not
require any parameters. 

Attempting to remove a subject mapping that has not been assigned has no effect.



Creating a Permissioning DataSource Adapter

23© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Using a custom subject mapper

If  you  want  to  map  subjects  using  a  custom  subject  mapper,  then  the  setSubjectMapper()  method
specifies the class that  implements the subject  mapper,  and the addSubjectMapping()  method adds
the subject mappings.

The  following  example  maps  prices  for  FX  and  FI  instruments.  The  example  assumes  that  a  custom
subject  mapper  has  been  created  and  that  Liberator  has  been  configured  to  use  this  custom  subject
mapper.

pds.startUpdateTransaction();

// specify the User
User userWithCustomMapping = pds.getUser("Pauline.Jones");

// specify the class that implements the custom subject mapper for this User
userWithCustomMapping.setSubjectMapper("com.mydomain.MyCustomSubjectMapper");

// add some subject mappings for FX trades
Map<String,String> fxMappings = new HashMap<String,String>();
fxMappings.put("USDGBP","-tier1");
fxMappings.put("USDEUR","-tier2");
userWithCustomMapping.addSubjectMapping(“FX”, fxMappings);

// add some subject mappings or FI trades
Map<String,String> fiMappings = new HashMap<String,String>();
fiMappings.put(“DEFAULT”,”-tier1”);
fiMappings.put(“ORCL”,”-tier2”);
fiMappings.put(“MSFT”,”-tier3”);
userWithCustomMapping.addSubjectMapping(“FI”, fiMappings);

pds.commitTransaction();

In  this  example  the  prices  shown  to  the  user  will  be  from  tier  1,  tier  2,  or  tier  3,  depending  on  the
instrument  requested.  Note  that  addSubjectMapping()  maps  subjects  when  you  are  using  a  custom
subject  mapper,  but  setSubjectMapping()  maps  subjects  when  you  are  using  the  default  subject
mapper.

To remove subject  mappings from a custom subject  mapper,  call  setSubjectMapper()  as  part  of  an
update transaction. When this method is called a new instance of the subject mapper is created with no
mappings (effectively removing existing mappings). 

To create your own subject mapper, see Creating a Custom Subject Mapper .

Changing User Attributes

A user can be assigned any number of attributes in the form of name/value pairs. 

In this example we change the value of the "MaxTradeDollars" attribute to 3 million for an existing user.

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");

// modify an existing attribute (assumes MaxTradeDollars already set – not shown here)
user.setAttribute("MaxTradeDollars", "3000000");
pds.commitTransaction();

25



Creating a Permissioning DataSource Adapter

24© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

The next example shows how to remove the "MaxTradeDollars" attribute from the same user.

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");

// remove an attribute
user.removeAttribute("MaxTradeDollars");
pds.commitTransaction();

Attempting to remove an attribute that has not been assigned has no effect.

Changing the Members of a Group

The members of a group can be changed using the methods Group.addMember() and 
Group.removeMember(). Adding and removing group members affects every child that inherits from the
group.

In this example we give an existing user a new parent and grandparent. 

pds.startUpdateTransaction();
User user = pds.getUser("John.Smith");

// create the parent Group and add the User as a member
Group parent = pds.createGroup("Parent");
parent.addMember(user);

// create the grandparent group and add the earlier parent group as a member
Group grandparent = pds.createGroup("Grandparent");
grandparent.addMember(parent);

pds.commitTransaction();

The  user  will  now  inherit  permissions  (not  shown  in  this  example)  from  both  the  parent  and  the
grandparent.

We now remove the parent group from the grandparent group. 

pds.startUpdateTransaction();

// acquire a reference to the two groups that are to be detached from each other
Group parent = pds.getGroup("Parent");
Group grandparent = pds.getGroup("Grandparent");

// sever the relationship
grandparent.removeMember(parent);
pds.commitTransaction();

The user continues to inherit  permissions from the parent  group but  no longer  inherits  permissions from
the grandparent group, because the grandparent is no longer an ancestor of this user.



Creating a Custom Subject Mapper

25© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

4 Creating a Custom Subject Mapper

Subject mapping allows the subject of an RTTP message to be modified by Liberator. Subject mapping is
transparent to the user and could be used, for example, to provide preferential data to selected users (see
Caplin Xaqua: Permissioning Overview And Concepts for further details).

Subjects are modified in the Permissioning Auth Module from mappings that you set in the Permissioning
DataSource. For example the subject "FX/USDGBR" could be changed to "FX/USDGBR-tier2", so that the
end user is shown tier 2 prices when they request the "FX/USDGBR" instrument.

The default subject mapper provided with the Permissioning software allows one subject to be mapped for
each  user.  If  you  want  to  map  more  than  one  subject  for  a  user,  or  if  you  want  to  provide  your  own
mapping logic, then you must create a custom subject mapper. 

To create a custom subject mapper you must:

Write  custom  Java  code  that  implements  the  SubjectMapper  Interface  of  the  Permissioning
DataSource API.

Compile  the  custom Java  code  and  deploy  it  to  the  Permissioning  Auth  Module ,  and  configure
Liberator to use the compiled code.

4.1 Implementing the SubjectMapper Interface

When  you  create  a  custom  subject  mapper,  the  Java  code  that  you  write  must  implement  the
SubjectMapper interface of the Permissioning DataSource API. This interface provides two methods.

updateMappings(String key, Map<String, String> updateMap)

This method is called by the Permissioning Auth Module when subject mappings are received from
the Permissioning DataSource. The method is passed a key and the subject mappings for that key. 

The key and subject mappings are set in the Permissioning DataSource using the 
User.setSubjectMapper()  and  User.addSubjectMappings()  methods,  and  sent  to  the
Permissioning Auth Module as part of a transaction. 

The updateMappings() method has no return value but allows you to store the received keys and
subject  mappings,  and to  make them available  to  mapSubject().  Each  subject  mapping  typically
consists of a subject pattern and subject suffix, and the key associated with the mapping.

mapSubject(String subject)

This method is called by the Permissioning Auth Module when Liberator receives an RTTP message
from the user. 

The  subject  passed  to  this  method  is  the  RTTP  message  received  by  Liberator,  and  must  be
parsed to determine whether or not a key is present in the RTTP message.

If a mapping exists for the subject (and any identified key), then return the modified RTTP message
to  Liberator  as  a  string.  Liberator  will  use  the  modified  RTTP  message  to  communicate  with  the
DataSource and to check user permissions. 

If a mapping does not exist for the subject, then return null. In this case Liberator will use the original
RTTP message to communicate with the DataSource and to check user permissions.

The  SubjectMapper  interface  that  you  implement  must  either  provide  a  default  (no  argument)
constructor,  or  let  the  compiler  create  the  default  constructor.  A  default   constructor  is  required  so  that
instances of the custom SubjectMapper class can be created dynamically.

25

29



Creating a Custom Subject Mapper

26© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Example Implementation of SubjectMapper

The following is an example of a custom subject mapper that implements the SubjectMapper interface
of the Permissioning DataSource API. Comments in the example describe how it works.

import java.util.HashMap;
import java.util.Map;
import com.caplin.permissioning.SubjectMapper;

public class MyCustomSubjectMapper implements SubjectMapper
{
  // The subject passed to mapSubject() could contain these parameters
  public static final String DEFAULT_MAPPING = "DEFAULT";
  public static final String TRIGGER_PARAM = "TRIGGER_PARAM";

  // Set up a Map that will store the keys and subject mappings passed 
  // to updateMappings()
  private final Map<String,Map<String,String>> mappings = 
          new HashMap<String,Map<String,String>>();

  // Do not provide a constructor, but allow the compiler to create the default 
  // (no-arg) constructor (so that instances of the custom SubjectMapper class 
  //can be created dynamically)

  // implement updateMappings()
  // this method is called by the Permissioning Auth Module 
  // when new key and subject mappings received from the Permissioning DataSource
  public void updateMappings(String key, Map<String, String> updateMap)
  {
    Map<String,String> keyedMap = mappings.get(key);
    // add the key and subject mappings if the key does not exist
    if(keyedMap == null)
    {
      mappings.put(key,new HashMap<String,String>(updateMap));
    }
    // add subject mappings for this key if the key does exist
    else
    {
      keyedMap.putAll(updateMap);
    }
  }

  // implement mapSubject()
  // called by the Permissioning Auth Module when RTTP message received from a user
  public String mapSubject( String subject )
  {
    // parse the passed in subject. 
    // The subject is a String containing the subject body and a list of parameters
    ParsedSubject parsedSubject = new ParsedSubject(subject);
    Map<String,String> params = parsedSubject.getParameters();
    // does a parameter identify a key
    String triggerParam = params.get(TRIGGER_PARAM);
    // return null if no key present in the subject
    if(triggerParam == null)
    {
      return null;
    }



Creating a Custom Subject Mapper

27© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

    // if there is a key, set mapping to the key value 
    Map<String,String> mapping = mappings.get(triggerParam);
    // look for the key mapping and subject mapping in the store 
    return findTier(mapping, parsedSubject.getSubject());
  }

  // search the store for the key mapping and subject mapping
  private String findTier(Map<String,String> mapping, String subject)
  {
  // return null if the key is not in the store
    if(mapping == null)
    {
      return null;
    }
    // if the key and subject mapping exists in the store, return concatenated 
    // subject pattern and subject suffix from store
    String mappedTier = mapping.get(subject);
    if(mappedTier != null)
    {
      return subject + mappedTier;
    }
    // if the key mapping exists in the store but not subject mapping, return
    // concatenated subject pattern and default subject mapping
    String defaultTier = mapping.get(DEFAULT_MAPPING);
    if(defaultTier != null)
    {
      return subject + defaultTier;
    }
    return null;
  }

  // Class that parses the subject passed to mapSubject(String subject),
  // where subject is of the form: 
  // "subjectBody;param1=value, param2=nalue, ... , paramN=value"
  // Instantiated class consists of the subjectBody and a Map of parameters
  // (param1 to paramN)
  private static class ParsedSubject
  {
    private final Map<String,String> params;
    private final String fullSubject;
    private final String subject;
    private static final String PARAM_START_CHAR = ";";
    private static final String PARAM_SEPERATOR_CHAR = ",";

    public ParsedSubject(String fullSubject)
    {
      this.fullSubject = fullSubject;
      int paramStart = this.fullSubject.indexOf(PARAM_START_CHAR);
      this.subject = this.fullSubject.substring(0, paramStart);
      this.params =parseParams(this.fullSubject.substring(paramStart+1));
    }

    private Map<String,String> parseParams(String paramString)
    {
      Map<String,String> paramMap = new HashMap<String,String>();
      if(paramString == null || paramString.length() == 0)
      {
        return paramMap;
      }
      String[] split = paramString.split(PARAM_SEPERATOR_CHAR);
      for(String element : split)
      {
        String[] keyValue = element.split("=");
        paramMap.put(keyValue[0],(keyValue.length > 1)? keyValue[1]: "");
      }
      return paramMap;
    }



Creating a Custom Subject Mapper

28© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

    // return subjectBody
    public String getSubject()
    {
      return subject;
    }

    // return map of parameters (param1 to paramN)
    public Map<String,String> getParameters()
    {
      return params;
    }
  }
}

The following is an example of how the custom subject mapper could be used, after it has been deployed
to the Permissioning Auth Module.

At the Permissioning DataSource

The  Permissioning  DataSource  sends  a  subject  mapping  for  the  key="FX".  The  subject  mapping  maps
"EUDUSD" to "-tier1". The key and subject mappings are sent as part of a transaction to the Permissioning
Auth Module using the methods User.setSubjectMapper() and User.addSubjectMappings().

At the Permissioning Auth Module

When  the  transaction  is  received  from  the  Permissioning  DataSource,  the  Permissioning  Auth  Module
calls  the  interface  method  updateMappings(),  passing  in  the  key  and  subject  mapping.  The
updateMappings()method creates a map of the key ("FX") and subject mapping ("EUDUSD" to "-tier1"),
and stores this mapping.

When the user requests a price for an FX instrument,  the Permissioning Auth Module calls the interface
method  mapSubject(),  passing  in  the  subject  (the  RTTP  message)  that  requested  the  price.  In  this
example  the  subject  takes  the  from "subjectBody;param1, param2, ... paramN",  where  one  of
the parameters (param1 to paramN) identifies the "FX" key.

The mapSubject()  method parses the passed in subject, finds the "FX" key in the parsed parameters,
and  looks  for  the  matching  "FX"  key  in  the  map  of  stored  keys.  Mapped  against  this  stored  key  is  the
subject mapping "EURUSD" to "-tier1". If  subjectBody  is "EURUSD", then mapSubject()  returns the
concatenated string "EURDUSD-tier1". If  subjectBody  is  not "EURUSD", then mapSubject()  returns
null.



Creating a Custom Subject Mapper

29© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

4.2 Deploying a custom Subject Mapper

If  you  create  a  custom  subject  mapper  that  implements  the  SubjectMapper  interface  of  the
Permissioning DataSource API, then you must deploy the compiled class file, or a JAR file containing the
compiled class, to a classpath of the Permissioning Auth Module. To deploy the compiled subject mapper
class:

Copy the class or JAR file to a directory that Liberator can access.

Add the directory as a classpath in the Liberator configuration file java.conf.

Deploying Class Files to the Permissioning Auth Module

Class files are typically copied to /lib/java in the Liberator installation directory, and in a directory structure
that corresponds to the package location. When you have copied the class file, add the classpath for this
directory to the Liberator configuration file java.conf.

add-javaclass
    class-name   com.caplin.permissioning.PermissioningAuthModule
    class-id     authenticator    
    classpath    %r/../kits/permissioning-auth-module-latest-jar-
                            with-dependencies.jar
    classpath    %r/lib/java/
end-javaclass

In the example configuration above, %r is a symbolic reference to the Liberator installation directory.

Deploying JAR Files to the Permissioning Auth Module

JAR  files  are  typically  copied  directly  to  /lib/java  in  the  Liberator  installation  directory.  When  you  have

copied the JAR file, add the classpath for the JAR file to the Liberator configuration file java.conf.

add-javaclass
    class-name   com.caplin.permissioning.PermissioningAuthModule
    class-id     authenticator    
    classpath    %r/../kits/permissioning-auth-module-latest-jar-
                            with-dependencies.jar
    classpath    %r/lib/java/MyCustomSubjectMapper.jar
end-javaclass

In the example configuration above, %r is a symbolic reference to the Liberator installation directory.



The Demo Permissioning DataSource

30© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

5 The Demo Permissioning DataSource

The Demo Permissioning DataSource is an example of a Permissioning DataSource application that gets
its permissioning data from an XML file. The application sends the permissioning data to Liberator when a
connection to Liberator is established.

Demo Permissioning DataSource and XML
File

From Caplin Trader release 1.2.8 onwards, the reference implementation of Caplin Trader is installed with
a Permissioning Auth Module and Demo Permissioning DataSource example application.  If  you have an
earlier  release of  Caplin  Trader,  then you must  manually  install  and configure  these  components  before
you  start  using  the  Demo  Permissioning  DataSource  (see  Caplin  Xaqua:  Installing  Permissioning
Components for further information).



The Demo Permissioning DataSource

31© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

5.1 Starting and Stopping the Demo Permissioning
DataSource

The  Demo  Permissioning  DataSource  is  supplied  with  scripts  that  you  can  run  to  start  and  stop  the
example application.

Starting the Demo Permissioning DataSource

To  start  the  Demo  Permissioning  DataSource,  navigate  to  the  apps/caplin/PermissioningDataSource
directory and run the following command.

$ ./start.sh

This starts the application, passing the following files as arguments.

conf/Permissions.xml (permissioning data in XML format)

conf/DataSource.xml (DataSource configuration file)

conf/Fields.xml (DataSource field mapping file)

When  a  connection  to  Liberator  is  established,  the  Demo  Permissioning  DataSource  sends  the
permissioning data to Liberator.

Stopping the Demo Permissioning DataSource

To  stop  the  Demo  Permissioning  DataSource,  navigate  to  the  apps/caplin/PermissioningDataSource
directory and run the following command.

$ ./stop.sh

This stops the application and terminates the connection with Liberator.



The Demo Permissioning DataSource

32© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

5.2 Overview of the Demo Permissioning DataSource

The Demo Permissioning DataSource consists of one interface and two classes.

PermissionsLoader: This interface defines a service that will load permissioning data from a
permissioning system. 

XMLPermissionsLoader:  This  class  implements  the  PermissionsLoader  interface  to  load

permissioning data into the PermissioningDataSource from the file conf/Permissions.xml.

DemoPermissioningDataSource: This class is initialized with an XMLPermissionsLoader. It creates
a  PermissioningDataSource  to  send  the  permissioning  data  to  Liberator  when  a  connection  to
Liberator is established. The class implements the PermissioningDataSourceListener  interface of
the Permissioning DataSource API. The principal methods of the class are summarized below.

main(String[] args)

Creates the DemoPermissioningDataSource using the passed in arguments.

Starts the DemoPermissioningDataSource.

start() Retrieves permissioning data from the permissioning system and initiates a connection to
Liberator.

onConnect()  Called  by  the  PermissioningDataSource  when  a  Liberator  connection  is
established.

terminate() Shuts down the DemoPermissioningDataSource.

You  will  find  fully  commented  source  code  for  the  Demo Permissioning  DataSource  in  apps/caplin/kits/
permissioning-datasource-<version>/example-application (where <version> = version number).

Tip: The  PermissioningDataSourceListener  interface  and  PermissioningDataSource
class are described in the Permissioning DataSource: API Reference.



The Demo Permissioning XML

33© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

6 The Demo Permissioning XML

The Demo Permissioning DataSource gets its permissioning data from an XML file, and then sends that
permissioning data to Liberator when a connection to Liberator is established. This part of the document
describes the XML-based elements that define the structure and content of this permissioning data.

If you want to experiment with the demo by adding or modifying permissioning data for users, groups, or
rules, then you must edit the file apps/caplin/PermissioningDataSource/conf/Permissions.xml. 

The  Demo  Permissioning  DataSource  is  a  master  Permissioning  DataSource  and  does  not  have  any
slaves. If you create a slave Permissioning DataSource  that also gets its permissioning data from XML,
then you will need to create a separate XML file containing the permissioning data for that slave.

6.1 Technical Assumptions and Restrictions

XML

The XML markup defined here conforms to XML version 1.0 and the XML schema version defined at 
http://www.w3.org/2001/XMLSchema.

6.2 Ordering and Nesting of Tags

Each top level tag is shown below, together with the child tags that it can contain.

Tip: Advanced  users  may  wish  to  consult  the  Relax  NG  Schema  (Permissions.rnc)  for  definitive
information  on  the  ordering  and  nesting  of  tags.  This  file  is  supplied  with  the  permissioning
software.

For a description of each tag and its attributes, see the XML Reference Information  section.

<permissioning>

This is the outermost tag.

<permissioning>
   <rules></rules> (zero or one)
   <users></users> (zero or one)
   <groups></groups> (zero or one)
      <role></role> (zero or one)
</permissioning>

<rules>

<rules>
   <rule></rule> (one or more)
</rules>

11

36



The Demo Permissioning XML

34© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<users>

<users>
   <user></user> (one or more)
</users>

<groups>

<groups>
   <group></group> (one or more)
</groups>

<role>

<role> (must contain only one of the following)
   <master />
   <slave />
</role>

<rule>

<rule>
   <fieldMatchCriteria></fieldMatchCriteria>  (zero or one)
</rule>

<user>

<user> (children in any order)
   <subjectMapping /> (zero or one)
   <attributes></attributes> (zero or one)
   <permissionSet></permissionSet> (zero or one)
</user>

<group>

<group>
   <permissionSet></permissionSet> (zero or one)
   <members></members> (zero or one)
</group>

<fieldMatchCriteria>

<fieldMatchCriteria>
   <match /> (one or more)
</fieldMatchCriteria>

<attributes>

<attributes>
   <userAttribute /> (one or more)
</attributes>



The Demo Permissioning XML

35© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<permissionSet>

<permissionSet>
   <productPermissionSet></productPermissionSet> (one or more)
</permissionSet>

<members>

<members>
   <userRef /> (zero or more)
   <groupRef /> (zero or more)
</members>

<productPermissionSet>

<productPermissionSet>
   <permission /> (one or more)
</productPermissionSet>

<groupRef> (no children)

<match> (no children)

<master> (no children)

<slave> (no children)

<subjectMapping> (no children)

<userAttribute> (no children)

<userRef> (no children)



The Demo Permissioning XML

36© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

6.3 XML Reference Information

The following sections describe the Permissioning XML tags.  They are arranged in alphabetical  order  of
tag name. 

For each tag the attributes you can use within it are listed and described in a table. The "Req?" column
indicates whether the attribute is always required ("Y") or is optional ("N"). If you do not supply an optional
attribute within an instance of the tag then the runtime behavior will be according to the default value of the
attribute.

<attributes>

<attributes>

A collection of one or more user attributes, with one attribute per child <userAttribute> tag.

Attributes: This tag has no attributes.

<fieldMatchCriteria>

<fieldMatchCriteria>

Contains  a  list  of  field  match  criteria.  A  rule  can  have  zero  or  more  field  match  criteria  that  map  RTTP
message fields and values. All defined field mappings must be present in the RTTP message, otherwise
the rule will not match the message. Individual field mappings are defined using <match>.

Attributes: This tag has no attributes.

<group>

<group>

Defines  a  single  permissioning  group.  A  group  can  have  zero  or  one  <permissionSet>  and  zero  or  one
<members>.  Groups  allow  product  permissions  to  be  applied  to  the  members  of  the  group  in  an
inheritance hierarchy. A user can be a member of more than one group, and groups can be members of
other groups.

Attributes:

Name Type Default Req? Description

name string (none) Y The name of the group, which must be
unique to each group. Other groups and
users can become members of this group by
referring to the group by this name.



The Demo Permissioning XML

37© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<groupRef>

<groupRef>

 Adds a group member to the group (see <group>). Groups can be members of more than one group, but
cannot be members of their own or child groups.

Attributes:

Name Type Default Req? Description

nameRef string (none) Y The name of the group that you want to add.
Only groups that have been defined using
the name attribute of the <group> tag can be
added to a group. Therefore nameRef must
match the name attribute of a <group> tag.

<groups>

<groups>

Contains a list of one or more permissioning groups, with one group per child <group> tag.

Attributes: This tag has no attributes.

<master>

<master>

Sets the <role> of the Permissioning DataSource to master.

Attributes: This tag has no attributes.

<match>

<match>

A child  of  <fieldMatchCriteria> that  defines an individual  field  mapping for  a  key/value pair.  The rule  will
only match the RTTP message if the field identified by criteria has the value identified by value.

Attributes:

Name Type Default Req? Description

criteria string (none) Y The field to match.

value string (none) Y The value to match.



The Demo Permissioning XML

38© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<members>

<members>

Defines  zero  or  more  members  of  a  group,  where  each  member  can  be  a  user  (<userRef>)  or  another
group (<groupRef>).

Attributes: This tag has no attributes.

<permission>

<permission>

Defines a single permission.  A permission determines whether an action on a product will  be allowed or
denied. When you define a permission you can also define a namespace that will restrict the scope of the
permission. If you do not define a namespace, then the permission will reside in the default namespace.

Attributes:

Name Type Default Req? Description

action string (none) Y The action that the permission applies to.
This value should match the action defined
by a matching rule (see <rule>).

auth string (none) Y Whether the action will be allowed or denied.
Permitted values are "ALLOW", "DENY", and
"NO PERMISSION" (permission neither
allowed nor denied).

namespace string (none) N The namespace in which the permission
resides. This value should match the
namespace for the action defined by a
matching rule (see <rule>). If not defined,
the permission will reside in the default
namespace.

<permissioning>

<permissioning>

The outermost permissioning tag, with zero or one <role>,with zero or one <rules>, zero or one <users>,
and zero or one <groups>.

Attributes: This tag has no attributes.

<permissionSet>

<permissionSet>

Contains a list of one or more product permission sets, with one set per child <productPermissionSet> tag.

Attributes: This tag has no attributes.



The Demo Permissioning XML

39© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<productPermissionSet>

<productPermissionSet>

Contains  a  list  of  one  or  more  permissions  for  a  set  of  products,  with  one  permission  per  child
<permission> tag. 

Attributes:

Name Type Default Req? Description

productSet string (none) Y A comma delimited string. Each delimited
section of the string must identify a single
product (typically a product symbol such as
"/FX/GBPUSD") or a regular expression that
matches multiple products (such as ".
*USD").

<role>

<role>

Defines  the  role  of  the  Permissioning  DataSource.  The  <role>  tag  must  contain  a  <master>  tag  if  the
PermissioningDataSource is the master, or a <slave> tag if the Permissioning DataSource is a slave. If the
<role> tag is omitted from the XML definition, then the PermissioningDataSource will use version 1 of the
Permissioning message protocol (see Upgrading the Permissioning DataSource library ).

Attributes: This tag has no attributes.

10



The Demo Permissioning XML

40© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<rule>

<rule>

Defines  a  single  permissioning  rule.  Every  rule  must  define  either  an  action  attribute  or  an  actionRef
attribute, but not both.

Attributes:

Name Type Default Req? Description

action string (none) N The user must have permission for this
action if the rule matches the RTTP
message. This attribute can be used to
match an RTTP message to a single
action, such as "Trade" or "SPOT". If the
action attribute is used then the actionRef
attribute must not be used, otherwise the
XML will not be valid.

actionRef string (none) N The name of the field in the RTTP
message that identifies the action. The
user must have permission for this action
if the rule matches the RTTP message.
This attribute can be used to match the
rule when the RTTP message could define
one of several alternative actions. An
example would be when the value of the
TradeType field could be one of SPOT,
FORWARD or SWAP. If the actionRef
attribute is used then the action attribute
must not be used, otherwise the XML will
not be valid.

permissionNamespace string (none) N The namespace in which the user
permission for the action must reside. If a
namespace is not defined, then the user
must have a permission for the action in
the default namespace.

productRef string (none) Y The name of the field in the RTTP
message that identifies the product that
the user must have a permission to action.
The reserved value ALL_PRODUCTS
means that the rule will apply to any
product.

ruleType string (none) Y This value must always be WRITE.
WRITE rules apply when data is being
contributed to Liberator, and READ rules
when data is being requested from
Liberator. At present a default READ rule
is implemented by the Permissioning Auth
Module when a user attempts to view
data, but in future releases of Caplin
Trader it may be possible to define READ
rules in XML.

subjectNameMatch string (none) Y The subject of the RTTP message that will
match this rule. The value can be a
regular expression. For example "/F."
would match "/FT" and "/FI", since the "."
metacharacter will match any single
character.



The Demo Permissioning XML

41© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<rules>

<rules>

Contains a list of one or more permissioning rules, with one rule per child <rule> tag.

Attributes: This tag has no attributes.

<slave>

<slave>

Sets the <role> of the PermissiongDataSource to slave.

Attributes:

Name Type Default Req? Description

name string (none) Y A name that uniquely identifies this slave
from all other slaves of the <master>. The
reserved name MASTER cannot be used to
name a slave.

<subjectMapping>

<subjectMapping>

Maps an RTTP message subject to a subject suffix. If the user attempts to VIEW data where the subject of
the  RTTP  message  matches  subjectPattern,  then  subjectSuffix  will  be  appended  to  the  subject  of  the
RTTP message before Liberator requests the data from a DataSource. Subject mappings can be used to
get pricing data from different pricing tiers, depending on the user that requested the data.

Attributes:

Name Type Default Req? Description

subjectPattern string (none) Y A regular expression that will be compared
with the subject of the RTTP message. If a
match is found, then subjectSuffix will be
appended to the subject of the RTTP
message.

subjectSuffix string (none) Y The suffix that will be appended to the
subject of the RTTP message.



The Demo Permissioning XML

42© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<user>

<user>

Defines a single user and the user's name and password. A user can have zero or one <permissionSet>,
which allows product permissions to be applied to the user; zero or one <subjectMapping>, which allows
data to be requested from a pricing tier; and zero or one <attributes>, which map user attribute names to
user attribute values.

Attributes:

Name Type Default Req? Description

name string (none) Y The user's login name.

password string (none) Y The user's login password. The reserved
value "keymaster" indicates that the Caplin
Keymaster single sign-on system will
validate the user's password.

<userAttribute>

<userAttribute>

Defines a single user attribute. A user attribute maps an attribute name to an attribute value.

Attributes:

Name Type Default Req? Description

key string (none) Y The attribute name or key.

value string (none) Y The attribute value.

<userRef>

<userRef>

Adds a user member to the group (see <group>). Users can be members of more than one group.

Attributes:

Name Type Default Req? Description

nameRef string (none) Y The name of the user that you want to add.
Only users that have been defined using the
name attribute of the <user> tag can be
added to a group. Therefore nameRef must
match the name attribute of a <user> tag.



The Demo Permissioning XML

43© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

<users>

<users>

Contains  a  list  of  one  or  more  users,  with  one  user  per  child  <user>  tag.  Users  can  have  product
permissions applied to them. 

Attributes: This tag has no attributes.



Further Reading

44© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

7 Further Reading

If  you  would  like  an  introduction  to  permissioning  concepts  and  terms  or  to  consult  reference
documentation  for  the  Permissioning  DataSource  API,  then  the  following  documents  provide  this
information. You may also be interested in reading some of the other Related documents .

An introduction to permissioning concepts and terms

The  document  Caplin  Xaqua:  Permissioning  Overview  And  Concepts  introduces  permissioning
concepts and terms, and shows the permissioning components of the Caplin Xaqua architecture.

Reference documentation for the Permissioning DataSource API

Reference material for this API can be found in the Permissioning DataSource: API Reference.

2



Glossary of terms and acronyms

45© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

8 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms used in this document.

Term Definition

Action The interaction that a user can have with a product.

API Application Programming Interface

Caplin Trader A Caplin Xaqua client application written in Ajax that provides a
framework and comprehensive set of components for constructing
browser-based trading applications. 

Caplin Trader was formerly called "Caplin Trader Client".

Caplin Xaqua A single-dealer platform that enables banks to deliver multi-product
trading direct to client desktops. 

Caplin Xaqua was formerly called "the Caplin Platform".

Caplin Xaqua client A client desktop application that interfaces with Caplin Xaqua to
deliver multi-product trading to end users. The application can be
implemented in any technology that is supported by Caplin Xaqua;
for example Ajax, Microsoft .NET, Microsoft Silverlight™, Adobe
Flex™, and Java™.

DataSource DataSources are software adapters within Caplin Xaqua that
connect Xaqua to external sources of real time data and external 
Permissioning Systems. In other Caplin documents DataSources
are also called DataSource adapters.

Demo Permissioning DataSource The Demo Permissioning DataSource  is an example of a
Permissioning DataSource application that gets its permissioning
data from an XML file.

Group A logical grouping of zero or more users and other groups, such
that each group can be assigned zero or more permissions.

Liberator Caplin Liberator is a bidirectional streaming push server designed
to deliver market data and trade messages over any network that
supports Web traffic.

Master When permissioning data is sent to Liberator from multiple 
Permissioning DataSource adapters, one of the Permissioning
DataSource adapters is designated the master, and the others are
designated as slaves.

Permission Determines whether an action on a product will be allowed or
denied.

Permissioning Auth Module One of several authentication modules that are supplied with 
Caplin Xaqua.

Permissioning DataSource A DataSource adapter that acts as the interface between Caplin
Xaqua and your Permissioning System.

Permissioning System The source of the permissioning data that you want to integrate
with Caplin Xaqua.

Product In permissioning documentation (including this document) a
"product" is any entity on which a User may be assigned
permissions (including financial instruments). In other Caplin
Trader and Caplin Xaqua documentation, a "product" is a term

30



Glossary of terms and acronyms

46© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Term Definition

that refers only to a financial instrument.

Role Roles determine whether a Permissioning DataSource is
designated as a master or slave Permissioning DataSource.

Rule Rules link permissions to user interactions, and are used by
Liberator to decide which of the many permissions that have been
defined will apply when a user attempts to interact with a product.

SDK Software Development Kit

Slave When permissioning data is sent to Liberator from multiple 
Permissioning DataSource adapters, one of the Permissioning
DataSource adapters is designated the master, and the others are
designated as slaves.

User An end user of a Caplin Xaqua client application such as Caplin
Trader.



Index

47© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Index

- A -

Abbreviations, definitions     45

Acronyms, definitions     45

API    

Permissioning DataSource     6

Applying data to a PermissioningDataSource    
17

Architecture     5

- C -

committing a transaction     7, 11, 17

creating a Permissioning DataSource     7

creating multiple Permissioning DataSources    
11

custom subject mapper    

compiling     29

creating     25

deploying     29

example     26

custom subject mapping     22

- D -

DataSource Adapter     7, 11

demo permissioning     30

DataSource protocol     5

Demo Permissioning DataSource     30

overview     32

Permissioning XML     33

scripts to start and stop     31

starting     31

stopping     31

Demo Permissioning XML     33

ordering and nesting of tags     33

reference information     36

tags and attributes     36

- E -

example application     30

example transactrions     18, 19, 20, 21, 22, 23,
24

- G -

Glossary     45

Groups     19, 20

- I -

image transaction     17

- L -

limitations     14

live permissioning updates     17

- M -

master     12

master role     16

multiple Permissioning DataSources     11

- P -

permissioning data    

limitations     14

Permissioning DataSource    

demo     30

roles     16

Permissioning DataSource API    

using     6

permissions    

assigning     18, 19

changing     21

changing group members     24

password setting     20

removing     21

subject mapping     22

User Attributes     23

- R -

Readership     1

real time updates     17

role setting     16



Index

48© Caplin Systems Ltd. 2009

How To Create A Permissioning DataSource Adapter

CONFIDENTIAL

Caplin Xaqua 1.0

Roles     16

Rules     18

- S -

single Permissioning DataSource     7

slave     13

slave role     16

starting a transaction     7, 11, 17

steps to create an application     7, 11

SubjectMapper interface     25

- T -

tags and attributes     36

Terms, glossary of     45

transaction    

commit     7, 11, 17

image     17

update     17

transactions     17

- U -

update transaction     17

Users     18, 20



© Caplin Systems Ltd. 2009

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Triton Court

14 Finsbury Square

London  EC2A 1BR

Telephone: +44 20 7826 9600

Fax:             +44 20 7826 9610

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved.  No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications.  All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks.  You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice.  Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Xaqua 1.0: How To Create A Permissioning DataSource Adapter, November 2009, Release 1


	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments
	Code samples in this document

	What is a Permissioning DataSource?
	The Permissioning DataSource API

	Creating a Permissioning DataSource Adapter
	Creating a Single Permissioning DataSource
	Upgrading the Permissioning DataSource library

	Creating Multiple Permissioning DataSource Adapters
	Creating the Master
	Creating a Slave
	Master/Slave Limitations
	User Attributes and Subject Mappings

	Setting the Master/Slave Roles
	Setting the Master Role
	Setting the Slave Role


	About Transactions
	API methods for starting a transaction
	When should an Image or Update transaction be used?

	Creating Rules
	Updating Permissioning Data
	Creating Users
	Creating Groups
	Removing Users and Groups
	Setting a User's Password
	Changing a User's Permissions
	Removing a Permission from a User
	Changing a Group's Permissions
	Changing the Subject Mapping for a User
	Changing User Attributes
	Changing the Members of a Group


	Creating a Custom Subject Mapper
	Implementing the SubjectMapper Interface
	Example Implementation of SubjectMapper

	Deploying a custom Subject Mapper

	The Demo Permissioning DataSource
	Starting and Stopping the Demo Permissioning DataSource
	Starting the Demo Permissioning DataSource
	Stopping the Demo Permissioning DataSource

	Overview of the Demo Permissioning DataSource

	The Demo Permissioning XML
	Technical Assumptions and Restrictions
	Ordering and Nesting of Tags
	XML Reference Information
	<attributes>
	<fieldMatchCriteria>
	<group>
	<groupRef>
	<groups>
	<master>
	<match>
	<members>
	<permission>
	<permissioning>
	<permissionSet>
	<productPermissionSet>
	<role>
	<rule>
	<rules>
	<slave>
	<subjectMapping>
	<user>
	<userAttribute>
	<userRef>
	<users>


	Further Reading
	Glossary of terms and acronyms

