
How To Use Containers

October 2011

C O N F I D E N T I A L

Caplin Xaqua 1.0

i

How To Use Containers

© Caplin Systems Ltd. 2011

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 2Related documents1.3

.. 3Typographical conventions1.4

.. 3Feedback1.5

.. 3Acknowledgments1.6

.. 4About containers2

.. 4What is a container?2.1

.. 6Containers in a user interface

.. 7Container windowing2.2

.. 9When to use a container2.3

.. 10Summary of container features and benefits2.4

.. 11Containers in the Caplin Xaqua architecture2.5

.. 12Example: One DataSource adapter

.. 14Example: Multiple DataSource adapters

.. 17Defining and using containers3

.. 17Configuring container usage in Liberator3.1

.. 18One DataSource supplies the container and container data

.. 19Multiple DataSources supply the container and container data

.. 20Mapping containers3.2

.. 21Defining containers in a DataSource3.3

.. 21DataSource adapter design guidelines

.. 23Filtering and sorting containers using Caplin Refiner4

.. 25How container filtering works4.1

.. 26Configuring container filtering4.2

.. 26Installing Caplin Refiner

.. 29Configuring filtering in Liberator

.. 29Configuring Caplin Refiner

.. 33Using Caplin Refiner4.3

.. 33Filtering rules4.4

.. 34Sort rules4.5

.. 36Grouping4.6

ii

How To Use Containers

© Caplin Systems Ltd. 2011

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

.. 36The container placeholder4.7

.. 38Permissions and subject mappings for filtered containers5

.. 38Setting user permissions5.1

.. 38Setting subject mappings5.2

.. 40Permissioning documents5.3

.. 41Using advanced features of Caplin Refiner6

.. 41Custom sorting6.1

.. 42Custom sort lists6.2

.. 42Custom sort comparators6.3

.. 45Custom filter comparators6.4

.. 48Appendix A: StreamLink support for container filtering7

.. 49Glossary of terms and acronyms8

Preface

1© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

1 Preface

1.1 What this document contains

This document describes what containers are, and how Caplin Xaqua applications can use them to group
and manage objects such as financial instruments for manipulation in a user interface. It explains how the
elements of a container can be managed using the windowing feature of Caplin Liberator, and how Caplin
Refiner can be used to filter and sort the container elements on behalf of a client.

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for Developers who need to understand what containers are and how to use
them effectively.

http://support.microsoft.com/kb/896054/

Preface

2© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

1.3 Related documents

Caplin Xaqua: Caplin Refiner Benchmarks

Documents the results of a set of performance benchmarks for Caplin Refiner, and contains
recommendations for ensuring optimal performance when filtering and sorting using Caplin Refiner.

Caplin StreamLink Overview

A technical overview of Caplin StreamLink.

Caplin DataSource Overview

A technical overview of Caplin DataSource.

Caplin Liberator Administration Guide

Explains how to install, configure, and manage the Caplin Liberator server, and includes
configuration reference information.

Caplin Xaqua: Permissioning Overview And Concepts

Introduces permissioning concepts and terms, and shows the permissioning components of the
Caplin Xaqua architecture.

Caplin Xaqua: How to Create a Permissioning DataSource Adapter

Describes how you can use the Permissioning DataSource API to create a Permissioning
DataSource adapter.

Permissioning DataSource: API Reference

Documents the JavaTM classes and interfaces that allow you to integrate Caplin Xaqua with a
Permissioning System.

Caplin Trader: API Reference

Documents the JavaScript libraries that allow developers to extend Caplin Trader by writing custom
JavaScript code. It includes an API for filtering and sorting containers using Caplin Refiner.

StreamLink 5.0 Overview

A technical overview of Caplin StreamLink. Applies to StreamLink 5.0 and above (for example,
StreamLink.NET and StreamLink for Silverlight).

StreamLink .NET API Reference

The API reference documentation for StreamLink .NET (SL4N), which includes an API for container
filtering and sorting using Caplin Refiner.

StreamLink for Silverlight API Reference

The API reference documentation for StreamLink for Silverlight (SL4S), which includes an API for
filtering and sorting containers using Caplin Refiner.

StreamLink for Java API Reference

The API reference documentation for StreamLink for Java (SL4J), which includes an API for filtering
and sorting containers using Caplin Refiner.

Preface

3© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

Glossary term Items that appear in the “Glossary of terms and acronyms”

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

 Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

1.6 Acknowledgments

Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Java is a trademark or registered trademark of Oracle® Corporation in the U.S. and other countries.

https://support.caplin.com/documentfeedback/?product=Caplin Xaqua 1.0&doctitle=How To Use Containers&date=October 2011&release=1

About containers

4© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

2 About containers

The following sections explain what containers are and what they are used for, their features and benefits,
and how they work within the Caplin Xaqua architecture.

2.1 What is a container?

In Caplin Xaqua, containers are a useful way to group and manage objects, such as financial instruments,
for manipulation in a client user interface (UI). They save the client application from having to locally
manage and manipulate large lists of instruments.

Consider the following:

A bank wishes to make 200 common FX instruments (currency pairs) available to its trading customers
through a trading application that provides updated exchange rates in real time. The list of 200
instruments is too large to display in its entirety on an end-user's screen, so the trading client application
provides a scrollable UI grid window that allows the end-user to see just 6 instruments at a time.

The client could subscribe directly to all 200 instruments and manage this list itself, only displaying the 6
instruments that the end-user currently has in view in the displayed grid. However, the client still has to
keep images of the other 194 instruments in local memory. It also receives (in real time) all updates to
these instruments, and must maintain them even though the end-user only sees updates to the 6
instruments on view in the grid. This is clearly inefficient, and for a large list with frequent updates, the
client application could perform badly or even lock up entirely.

In a Caplin Xaqua client the instruments can be put in a container, which simplifies the management of
the list and reduces the load on the client application. A container object holds a list of subject names of
other objects – the elements of the container. For example the elements could be the subject names of
200 currency pair records (/GBPUSD, /USDCAD, and so on), as the following diagram shows.

About containers

5© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Structure of a container object

The client application subscribes to the container (requests it via StreamLink), and is then automatically
subscribed to the subjects that the container refers to. So when the client subscribes to the FX currency
pairs container, it is automatically subscribed to the 200 currency pair records, receiving updates for them
each time the field values change.

Typically some fields in the subscribed records are static, meaning they have a set value that does not
change, such as the Tradeable field (in this case the value of the Tradeable field would be determined
for each user when they log in, depending on which currencies they are authorized to trade and which
ones they can only view). Other fields are dynamic, meaning they change value; in this example, the
values of the Bid and Ask price fields will change throughout the day, perhaps as often as several times
a second.

The container is located within Caplin Xaqua and is managed by the Liberator (and sometimes other
Caplin Xaqua components) on behalf of all the subscribing clients. For example, the Liberator handles the
addition and deletion of container elements; it automatically adjusts client subscriptions accordingly and
communicates the changes to the clients via StreamLink.

The order of the elements within the container is defined by the DataSource that provides the container.
This ordering is known as “natural order” or “container order”.

About containers

6© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Containers in a user interface

Containers typically hold lists of financial instruments that are displayed in a grid format. For example:

Fixed Income – all the bonds held by the bank.

Foreign Exchange – all the major FX currency pairs traded by the bank, all the minor FX currency
pairs traded by the bank.

FI instruments (US Treasury Bonds)
displayed in a grid with an underlying container

Containers can also be used to manage the data displayed in trade blotters, since the blotter is typically
based on a grid. A trade blotter is a record of the details of trades made by an end-user. It shows the
status of trades in progress and the history of trades.

A trade blotter

About containers

7© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

2.2 Container windowing

A simple subscription to a container of 200 currency pairs would cause the Liberator to send images and
updates for all 200 instruments to the subscribing clients. This appears to offer little advantage over the
client subscribing to each of the instruments individually and managing them locally. However, containers
become really useful when you use their windowing mechanism.

The following example shows how container windowing works.

The client requests the Liberator to provide a windowed view of the elements in the container, say a
window of just 6 elements. The Liberator subscribes to just these 6 elements on the relevant DataSource
adapter(s), and sends the client images and updates for them.

The client maps the container window to a grid window in the client UI, so the end-user can see the 6
instruments being updated in real time. The following diagram shows a container window on elements 2
to 7 of a container that holds (for simplicity of illustration) 11 elements:

A container window

About containers

8© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

When the end-user scrolls down to the end of the displayed grid, the client changes the range of the
window to the last 6 container elements (numbers 5 to 10) and passes this information to the Liberator as
a container structure update request. (For example, a client using StreamLink for Browsers to
communicate with the Liberator would send the container structure update request by calling the
setContainerWindow() method on an instance of SL4B_AbstractRttpProvider.)

The Liberator stops sending client updates for the instruments that are no longer in the window (elements
2, 3, and 4), but continues to send updates for the elements that have remained in the window (elements
5, 6, and 7). It subscribes to the instruments that are newly in the scope of the window (elements 8, 9,
and 10), sending the client the initial images and subsequent updates for them.

Moving the container window

When a large number of instruments need to be managed, the benefits of using containers with
windowing can be very significant.

About containers

9© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

2.3 When to use a container

Use containers to hold lists of items when:

The items that qualify for inclusion in a list are dynamically determined by a system that is external
to Caplin Xaqua, and the items can be obtained using a suitable DataSource adapter.

AND

Your Caplin Xaqua client needs to display a long list of items in a window.

The container windowing capability is ideal for managing large lists in this way. When using a
windowed container, the client does not need to locally manage the complete list, and so does not
waste resources in receiving and processing updates to the large number of items that are not in the
container window.

Containers can also be used when your Caplin Xaqua client needs to filter and/or sort the contents of a
list based on fields that do not update. The filtering and sorting capabilities of Caplin Refiner are ideal for
this purpose. See Filtering and sorting containers using Caplin Refiner .

7

23

About containers

10© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

2.4 Summary of container features and benefits

Caplin Xaqua containers support the following features:

Windowing
(see Container windowing).

Filtering of container elements using Caplin Refiner
(see Filtering and sorting containers using Caplin Refiner).

Sorting of container elements using Caplin Refiner
(see Filtering and sorting containers using Caplin Refiner).

Grouping of container elements using Caplin Refiner
(see Grouping in Filtering and sorting containers using Caplin Refiner).

Container snapshots:
Liberator can supply an image of a container's contents in CSV format, for export to spreadsheets
and other data analysis software.

Other features are:

Changes to individual items in the container are managed by a DataSource application.
The updates are automatically fed to the client in the same way as if the client had explicitly
subscribed to each item individually.

The source of a container can be independent of the source of the elements in the container.
(see Example: Multiple DataSource adapters).

Benefits

Auto subscription:
Once the client has subscribed to a container, the subjects referred to by the container's elements
are automatically subscribed to as well.

Dynamic list management:
The dynamic list of container elements is managed on the server side.

Windowing benefits:

– The client does not have to manage large lists of instruments (or other items) when most of
them are not seen by the end-user at any one time.

– The amount of data being processed through Caplin Xaqua is minimized; auto subscription
means that Liberator only subscribes to the items in the window.

– The number of round-trips between client and Liberator can be very much reduced, because
Liberator only needs to send images and updates for a subset of the elements in the container.

– Client performance is improved (for the same reasons as above), so the client application is
less likely to perform badly or lock up.

Filtering, sorting, and grouping: Using Caplin Refiner, lists of instruments can easily be filtered,
sorted, and grouped together, without needing to implement filtering and sorting algorithms in client
applications.

No size limits: There is no limit (other than system resources) on the size of a container from the
client perspective.

Tip: Some implementations of StreamLink provide an API for a record filtering capability that runs in
Caplin Liberator and does not use the container mechanism or Caplin Refiner. This facility pre-
dates Caplin Refiner and is not as flexible. It filters updates to records (including records in
containers), but unlike Caplin Refiner, it does not add/remove container elements according to
whether or not they match the filter.

For more information, see the StreamLink 5.0 Overview.

7

23

23

36 23

14

About containers

11© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

2.5 Containers in the Caplin Xaqua architecture

Several Caplin Xaqua components interact to provide container functionality:

Caplin Xaqua clients (applications) request container subscriptions using a StreamLink API.

Caplin Liberator manages containers on behalf of Caplin Xaqua client applications.

The container elements are defined by other DataSource applications – typically DataSource
adapters or a Caplin Transformer. These can be different DataSource adapters to the ones that
supply the data referenced by the container elements.

Transformer manages filtering, sorting, and grouping, through its Caplin Refiner module. For details
refer to Filtering and sorting containers using Caplin Refiner .

The following sections give some examples of how container functionality is implemented
in Caplin Xaqua.

23

About containers

12© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Example: One DataSource adapter

The following diagram shows the flow of data and processing within Caplin Xaqua components when a
client subscribes to a container. This is the simplest possible example, involving a Caplin Xaqua client
application (with StreamLink), a Caplin Liberator, and a DataSource adapter that supplies both the
container elements and the data that the elements refer to.

Container Architecture simple case

About containers

13© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

1. The Caplin Xaqua client subscribes, through StreamLink, to the container /CTR/FI/ALL, and this
request is sent to the Liberator.

2. The Liberator does not currently have a subscription to this container in its cache, so it looks in its
configuration for a data service that can supply the container elements.

In this simple example, the FI container elements for /CTR/FI/ALL and the data that the elements
refer to (the FI instruments) are all obtained from a single DataSource adapter called “FIDataSource”
. (For the details of how the Liberator is configured to select this particular DataSource adapter, see
One DataSource supplies the container and container data in Configuring container usage in
Liberator .)

3. FIDataSource receives the request for /CTR/FI/ALL, and recognizes from the /CTR prefix to the
subject name that this is a request for a container. Since this particular container is not in its cache
(not previously requested since the DataSource adapter was started up), FIDataSource obtains the
list of elements (subjects) that this particular container refers to, and populates the container with the
subject names – /FI/A, /FI/B, /FI/C, and so on.

The DataSource adapter returns the container elements to Liberator, where they are cached.

4. Liberator examines the container contents and subscribes to the subject of each container element
that is not already in its cache. (In this simple example, the container is not windowed, so all its
elements must be subscribed to.) For each unsubscribed subject it looks in its configuration for the
data service that can supply the data. In this example, the data service is defined to use the same
DataSource adapter FIDataSource as that which supplies the container itself. (For the details of the
required configuration, see One DataSource supplies the container and container data in
Configuring container usage in Liberator .)

5. FIDataSource receives the requests for the subjects /FI/A, /FI/B, /FI/C, and so on. It returns the
data images for the corresponding instruments, either from its cache (cached when the instrument
has previously been subscribed to since the DataSource adapter was started up), or, if it is not
already in the cache, by requesting the data from the relevant Bank system or external data feed.
Liberator receives the data images for the subscribed container elements and caches them.

6. Liberator sends the client the container image, and the data images of all the instruments referred to
by the container elements.

7. (This step is not shown in the diagram.) The Liberator sends the client all subsequent updates to the
subscriptions. These can be:

– Changes to the container structure; for example, new elements appearing in the container.

– Updates to the subjects that the container elements refer to; for example, a change to the
Yield field of instrument /FI/C.

18

17

18

17

About containers

14© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Example: Multiple DataSource adapters

More complex setups are possible. For example, the contents of a container can be defined by more than
one DataSource application, and the data that the elements refer to can be supplied by other DataSource
applications, thus decoupling the source of the data from the source of the container. Such decoupling
makes it easier to reconfigure a deployed Caplin Xaqua system to add additional sources of container
elements and additional sources of data.

The following diagram shows the flow of data and processing within Caplin Xaqua components when a
client subscribes to a container and there are several DataSources adapters supplying the data. In this
example, the data about Fixed Income instruments is sourced from both New York and London, but must
be made available to all end-users through a container called /CTR/FI/ALL. So the FI container and the
elements (FI instruments) that it refers to are all obtained from four DataSource adapters:

DataSource NYLists, located in New York, supplies the container elements for US instruments.

DataSource NYData, located in New York, supplies the data for the US instruments.

DataSource LONLists, located in London, supplies the container elements for European
instruments.

DataSource LONData, located in London, supplies the data for the European instruments.

About containers

15© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Container Architecture multiple DataSource adapters

1. The Caplin Xaqua client subscribes, through StreamLink, to the container /CTR/FI/ALL, and this
request is sent to the Liberator.

The Liberator does not currently have a subscription to this container in its cache, so it looks in its
configuration for a data service that can supply the container elements. The data service is
configured so that the Liberator sends the subscription request for /CTR/FI/ALL to both the
NYLists and LONLists DataSources. (For the details of how the Liberator is configured to select
these particular DataSource adapters, see Multiple DataSources supply the container and container
data in Configuring container usage in Liberator .)19 17

About containers

16© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

2a. The DataSource adapter NYLists receives the request for /CTR/FI/ALL. Since this particular
container is not in its cache (not previously requested since the DataSource adapter was started up),
NYLists obtains the list of elements (subjects) that this particular container refers to, and populates
the container with just the subject names that it knows about – the US ones, /FI/US/A, /FI/US/B,
 /FI/US/C, and so on.

2b. The DataSource adapter LONLists also receives the request for /CTR/FI/ALL. As for NYLists, this
particular container is not in its cache, so LONLists obtains the list of elements (subjects) that this
particular container refers to, and populates the container with just the subject names that it knows
about – the European ones, /FI/EU/A, /FI/EU/B, /FI/EU/C, and so on.

In reality, the requests for /CTR/FI/ALL are sent to both DataSource adapters at the same time, so
the natural order of the elements in the returned container depends on which DataSource Adapter
responds first.

3a. The NYLists DataSource returns the container elements for the US instruments to Liberator, where
they are cached.

3b. The LONLists DataSource returns the container elements for the European instruments to Liberator,
where they are cached.

4a/b.Liberator examines the container contents and subscribes to the subject of each container element
that is not already in its cache. For each unsubscribed subject it looks in its configuration for data
services that can supply the data.

In contrast to the example of one DataSource adapter , there are two data services defined for
obtaining the instrument data, which result in the Liberator obtaining the data for subjects of the form
 /FI/US/ from the New York DataSource adapter NYData, and data for subjects of the form
/FI/EU/ from the London DataSource adapter LONData. (For the details of how the Liberator is
configured to select these particular DataSource adapters, see Multiple DataSources supply the
container and container data in Configuring container usage in Liberator .)

5a. DataSource NYData receives the requests for the US instruments (subjects /FI/US/A, /FI/US/B,
/FI/US/C, and so on). It returns the data images for the corresponding instruments, either from its
cache (cached when the instrument has previously been subscribed to since the DataSource
adapter was started up), or by requesting the data from the relevant Bank system or external data
feed if it is not already in the cache. Liberator receives the data images for the subscribed container
elements and caches them.

5b. DataSource LONData receives the requests for the European instruments (subjects /FI/EU/A,
/FI/EU/B, /FI/EU/C, and so on). It returns the data images for the corresponding instruments, in
the same way as the NYData DataSource, and Liberator receives the data images and caches
them.

6. Liberator sends the client the container image, and the data images of all the instruments referred to
by the container elements.

7. (This step is not shown in the diagram.) The Liberator sends the client all subsequent updates to the
subscriptions, as in the example of one DataSource adapter .

Also see DataSource adapter design guidelines .

12

19 17

12

21

Defining and using containers

17© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

3 Defining and using containers

To support container subscriptions, a number of code and configuration changes must be made to Caplin
Xaqua components. Once this has been done, client code can use the relevant StreamLink API to
subscribe to containers, receive updates to their structure and content, and define and manipulate
container windows.

Tip: The exact way in which your Caplin Xaqua client application should subscribe to and
manipulate containers depends on which StreamLink library you are using. For details, consult
the API Reference document for your particular StreamLink implementation.

Note: Avoid implementing containers with very large numbers of elements (typically more than
50,000). Although Liberator is optimized for performance and uses multiple execution threads,
intensive client access to containers of this size can increase the latency of data updates.

3.1 Configuring container usage in Liberator

When a Caplin Xaqua client requests a container, the Liberator connected to it receives the subscription
request and must determine which DataSource application can provide the container, so it can pass the
request on to that DataSource. This selection is determined through configuration, as shown in the
following examples.

Defining and using containers

18© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

One DataSource supplies the container and container data

Here is the Liberator configuration that would route requests for the container /CTR/FI/ALL, as shown in
the One DataSource adapter example of Containers in the Caplin Xaqua architecture .

In this simple example, the FI container elements and data that the elements refer to (the FI instruments)
are all obtained from a single DataSource adapter called “FIDataSource”.
The corresponding Liberator configuration looks like this:

add-peer
 remote-id 1
 remote-name FIDataSource
 label FIDataSource
end-peer

add-data-service
 service-name ContainersFI
 include-pattern ^/CTR/FI/
 add-source-group
 required true
 add-priority
 label FIDataSource
 end-priority
 end-source-group
end-data-service

 service-name InstrumentsFI
 include-pattern ^/FI/
 add-source-group
 required true
 add-priority
 label FIDataSource
 end-priority
 end-source-group
end-data-service

The container subject /CTR/FI/ALL matches the include-pattern ^/CTR/FI/, so the required data
service is ContainersFI. This service definition has a single add-priority group with the label
FIDataSource; which directs the Liberator to the DataSource called FIDataSource, defined in the
add-peer group with the remote-id of 1. The Liberator therefore sends a subscription request for the
container /CTR/FI/ALL to the DataSource called FIDataSource.

Considering the container element /FI/A, and referring to the above configuration, the subject name
/FI/A matches the include-pattern ^/FI/, so the data service that can supply the data for the subject
/FI/A is InstrumentsFI. This service definition has a single add-priority group with the label
FIDataSource; which also directs the Liberator to the DataSource called FIDataSource.

12 11

Defining and using containers

19© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Multiple DataSources supply the container and container data

In the Multiple DataSource adapters example of Containers in the Caplin Xaqua architecture , two
DataSource adapters provide the elements for a single container /CTR/FI/ALL, and two other
DataSource adapters supply the data for the instruments in the container:

DataSource NYLists, located in New York, supplies the container elements for US instruments.

DataSource LONLists, located in London, supplies the container elements for European
instruments.

DataSource NYData, located in New York, supplies the data for the US instruments.

DataSource LONData, located in London, supplies the data for the European instruments.

In this more complex example, the Liberator configuration that routes subscription requests for
/CTR/FI/ALL to these DataSource adapters looks like this:

Liberator configuration for NYLists and LONLists

add-peer
 remote-id 1
 remote-name NYLists
 label NYLists
end-peer

add-peer
 remote-id 2
 remote-name LONLists
 label LONLists
end-peer

add-data-service
 service-name ContainersFI
 include-pattern ^/CTR/FI/
 add-source-group
 required true
 add-priority
 label NYLists
 end-priority
 end-source-group
 add-source-group
 required true
 add-priority
 label LONLists
 end-priority
 end-source-group
end-data-service

As in the configuration where one DataSource supplies the container and container data , the
container subject /CTR/FI/ALL matches the include-pattern ^/CTR/FI/, so the required data service is
again ContainersFI. However, this service definition has two add-source-group entries, one
specifying the NYLists DataSource, and the other specifying the LONLists DataSource. So the Liberator
sends the subscription request for /CTR/FI/ALL to both DataSources.

14 11

18

Defining and using containers

20© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Liberator configuration for NYData and LONData

add-peer
 remote-id 3
 remote-name NYData
 label NYData
end-peer

add-peer
 remote-id 4
 remote-name LONData
 label LONData
end-peer

add-data-service
 service-name InstrumentsFIUS
 include-pattern ^/FI/US/
 add-source-group
 required true
 add-priority
 label NYData
 end-priority
 end-source-group
end-data-service

add-data-service
 service-name InstrumentsFIEU
 include-pattern ^/FI/EU/
 add-source-group
 required true
 add-priority
 label LONData
 end-priority
 end-source-group
end-data-service

In contrast to the configuration where one DataSource supplies the container and container data ,
there are two data services defined for obtaining the instrument data. The subject name /FI/US/A
matches the include-pattern ^/FI/US/ so the data service for this subject is InstrumentsFIUS and its
data is therefore obtained from the New York DataSource adapter NYData. The subject name /FI/EU/A
matches the include-pattern ^/FI/EU/ so the data service for this subject is InstrumentsFIEU and its
data is therefore obtained from the London DataSource adapter LONData.

3.2 Mapping containers

The name of a container can be mapped within Liberator in the same way as other subject names.

For example, a client request for the container /CTR/FI/ALL could be mapped to a request for
/CTR/FI/ALL/<tier>, where <tier> is the price tier for the requesting user. When the mapped
request is passed to the DataSource application that supplies the container, the DataSource can respond
by populating the container with just the instruments that can be traded within the indicated price tier.

In this particular case, the mapping would typically be done by a Liberator Auth module that determines
users' price tiers. Simple mappings can be configured in Liberator using the object-map configuration
item (for more information see the Liberator Administration Guide).

18

Defining and using containers

21© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

3.3 Defining containers in a DataSource

A container is defined (created) in a DataSource application. This is typically a DataSource adapter that
interfaces to a bank system, or other external data feed, that supplies the list of items that go in the
container. For example, the external system could provide a list of Fixed Income instruments that can be
traded.

Container operations in DataSource APIs

The DataSource APIs allow you to perform various operations on containers.

You can:

Add an element to a container. The element is appended to the end of the container.

Insert an element into a container at a specified position.

Remove an existing element from a container.

Remove (“clear down”) all elements from a container that match a specified subject prefix.

Tip: The exact way in which your DataSource application should subscribe to and manipulate
containers depends on which DataSource SDK you are using. For details, consult the API
Reference document for your particular DataSource SDK.

DataSource adapter design guidelines

When coding DataSource adapters that supply containers, apply the following design guidelines as
appropriate.

Responding to container subscription requests

When the DataSource adapter receives a subscription request for a container, it can be better to send the
container elements back to Liberator / Transformer as an update, rather than as an initial image (as is
usually the case when a DataSource responds to a subscription request).

Where you have more than one DataSource adapter supplying the container elements, the DataSources
would normally be unaware of each other's role. When the container was first subscribed to, if the
DataSources were to send the container elements as an image (“image” flag set on the DataSource
message), the later images would overwrite the earlier ones.

For example, referring to the example with multiple DataSource adapters , DataSource NYLists sends
Liberator a container image with elements /FI/US/A, /FI/US/B, and /FI/US/C. Then DataSource
LONLists, which is unaware of NYLists, sends Liberator a container image with elements /FI/EU/A,
/FI/EU/B, and /FI/EU/C. These elements would overwrite the elements /FI/US/A, /FI/US/B and
/FI/US/C in the container, because receipt of an image implicitly causes a clear down of the container.

To avoid this problem, send the container elements as an update; DataSource LONLists then appends
elements /FI/EU/A, /FI/EU/B, /FI/EU/C to the existing elements from NYLists /FI/US/A,
/FI/US/B, /FI/US/C.

Forcing container clear down

In order to recover properly from error situations (lost connections, and so on), a DataSource adapter may
need to clear down (empty) any containers for which it supplies elements. The obvious way to do this is
just send the Liberator / Transformer an empty image of the container. However, this simple approach will
not work when multiple DataSources populate the same container.

14

Defining and using containers

22© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Referring to the example with multiple DataSource adapters , when DataSource NYLists needs to
clear down the container, rather than sending an empty image of the container, it should send the client a
container “clear down” response for /FI/US. This forces a clear down of just the container elements that
particular DataSource is responsible for (/FI/US/A, /FI/US/B, /FI/US/C ...). Similarly, DataSource
LONLists should a clear down response for /FI/EU, which forces a clear down of just the /FI/EU/A,
/FI/EU/B, /FI/EU/C ... elements in the container.

14

Filtering and sorting containers using Caplin Refiner

23© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

4 Filtering and sorting containers using Caplin
Refiner

The contents of a container can be filtered and sorted according to criteria supplied by the client
application. Clients can specify both a filter and a sort in the same request. The filtering and sorting are
done by the Caplin Refiner module of Caplin Xaqua's Transformer component.

Caplin Refiner can also group container records together, with extra records added to the container that
act as headers for the blocks of grouped records (see Grouping).

Note: Avoid filtering or sorting on record fields that are subject to updates.
Frequent updates can have an adverse affect on the performance of Caplin Refiner, Liberator,
and the requesting clients.

Examples

The bank may offer a wide range of bonds for customers to trade. The list of bonds is supplied in a
container for the trading client application to display in a scrollable grid. However, an end-user is typically
only interested in a subset of the available bonds, so they can apply a filter via the UI to the field values of
the records within the container. Only information about the bonds selected by the filter is sent back to
the client application.

Examples of filters are:

All the bonds that mature in the forthcoming 2 year period.

All the bonds with a coupon greater than a particular value.

All the bonds with a rating greater than a particular value.

The end-user will usually want the filtered list to be sorted as well; for example, in descending order of the
coupon.

Example filter

Assume that without filtering, the /CTR/FI/ALL container has the following six records:

Container /CTR/FI/ALL

Subject Field
Description

Field
CpnRate

Field
MaturityDate

Field
BidPrice

Field
AskPrice

/FI/US/A US TREASURY 11.25 20141115 116 121/256 116 249/256

/FI/US/B US TREASURY 11.75 20150215 150 117/256 150 127/256

/FI/US/C US TREASURY 10.62 20150815 148 196/256 148 206/256

/FI/EU/A AUSTRIA 4.35 20140715 103.948 103.984

/FI/EU/B AUSTRIA 6.25 20270715 122.890 122.974

/FI/EU/C GERMANY 4.92 20130328 101.859 101.858

Note that the MaturityDate field is in the format YYYYMMDD; for example the maturity date of
/FI/US/A is 20141115, meaning “15 Nov 2014”. This allows the records to be filtered and sorted on
maturity date without needing to implement custom filter comparators and custom sort comparators

.

36

45

42

Filtering and sorting containers using Caplin Refiner

24© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Typically some fields are static, meaning they have a set value that does not change, such as the
Description, CouponRate, and MaturityDate fields. Other fields are dynamic, meaning they can
change value. In this example, the values of the BidPrice and AskPrice fields can change throughout
the day, perhaps as often as several times a second.

When the client application subscribes to this container, the application is automatically subscribed to the
constituent records and receives updates for them each time any field values change.

Assuming the values of the CpnRate fields remain unchanged for the time being, a request for the
/CTR/FI/ALL container with a filter of "CpnRate>11" would return a container with only two of the six
records:

Container /CTR/FI/ALL filtered by CpnRate>11

Subject Field
Description

Field
CpnRate

Field
MaturityDate

Field
BidPrice

Field
AskPrice

/FI/US/A US TREASURY 11.25 20141115 116 121/256 116 249/256

/FI/US/B US TREASURY 11.75 20150215 150 117/256 150 127/256

In this example, /FI/US/C, /FI/EU/A, FI/EU/B, and /FI/EU/C have been removed from the
container because the values of their CpnRate fields do not match the filter criteria.

Example sort

Clients can specify sort criteria to change the order of the records within a container.

For example, a client might request the /CTR/FI/ALL container with a sort on the numeric field called
CpnRate in descending order. The result of the sort would look like this:

Container /CTR/FI/ALL sorted by descending CpnRate

Subject Field
Description

Field
CpnRate

Field
MaturityDate

Field
BidPrice

Field
AskPrice

/FI/US/B US TREASURY 11.75 20150215 150 117/256 150 127/256

/FI/US/A US TREASURY 11.25 20141115 116 121/256 116 249/256

/FI/US/C US TREASURY 10.62 20150815 148 196/256 148 206/256

/FI/EU/B AUSTRIA 6.25 20270715 122.890 122.974

/FI/EU/C GERMANY 4.92 20130328 101.859 101.858

/FI/EU/A AUSTRIA 4.35 20140715 103.948 103.984

The following sections show how these features can be used by client applications.
Also see Using advanced features of Caplin Refiner 41

Filtering and sorting containers using Caplin Refiner

25© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

4.1 How container filtering works

The following diagram illustrates how container filtering works. It shows the Caplin Xaqua components
involved in filtering the contents of a container, and the flow of subscriptions and data through the system.
The actual filtering and sorting of the container is performed by the Transformer's Caplin Refiner module,
which is a Java Transformer Module. In this example, the Caplin Xaqua client application has already
subscribed to the container /CTR/FI/ALL, and the instruments referred to in the container are displayed
to the end-user in a grid (see the gray box at the top left of the diagram). Subsequently the end-user sets
up a filter that restricts the instruments displayed in the container to those where the Coupon
(CpnRate field) is greater than 6. For simplicity, the container is not windowed in this example.

Example of container filtering

Filtering and sorting containers using Caplin Refiner

26© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

1. The Caplin Xaqua client calls the StreamLink Container Filtering API to add the filter (CpnRate>6)
to the subscription for the container /CTR/FI/ALL. Liberator receives the filter as a request for the
subject /FILTER/CTR/FI/ALL?(CpnRate>6).

2. Liberator passes the container filter subscription request on to Transformer, where it is retained by
Caplin Refiner, which sets up the filter. (If the base container – in this case /CTR/FI/ALL – is not
in the Transformer's cache, Transformer requests it from the relevant DataSource adapter.)

3. At the same time, the DataSource adapter that handles the subscriptions to the instruments in the
container passes back to Transformer a new container element, referring to a new instrument
FI/US/C.

4. In Transformer, Caplin Refiner applies the filter to the container according to the latest set of
instruments. In this example, the value of the CpnRate field for /FI/EU/A and /FI/EU/C is less
than 6, so these instruments no longer meet the filter criteria, and must be removed from the filtered
container. The new instrument /FI/US/C, with its CpnRate of 10.62, matches the filter, so it is
retained in the filtered container.

Transformer sends a container structure change message to Liberator, specifying that the subject
names /FI/EU/A and /FI/EU/C be removed from the container, and the subject name /FI/US/C
be added to the container.

5. Liberator makes the changes to the container and passes the corresponding container structure
change messages on to StreamLink. StreamLink then informs the Caplin Xaqua client about the
change to the filtered container so that it can remove the instruments /FI/EU/A and /FI/EU/C
from the filtered grid on the display, and add /FI/US/C.

6. Any updates to the instruments /FI/EU/B, and the image for the new instrument /FI/US/C, are
also fed back to the client, by the usual Caplin Xaqua mechanism for propagating such updates via
Liberator and StreamLink. The client updates the instruments in the filtered grid – see the gray box
at the top right of the diagram.

This example shows how the filter criteria are applied when the filter is first defined, and how they are also
dynamically applied to the container as changes are received to the instruments in the container.

4.2 Configuring container filtering

These sections explain how to set up Caplin Xaqua to enable container filtering using Caplin Refiner.

In summary:

Install the Transformer's Caplin Refiner .

Configure the Liberator .

Configure Caplin Refiner (optional).

Installing Caplin Refiner

1. Ensure the Transformer is licensed to use the Java Transformer Module.

The Transformer license file is in <Transformer root>/etc/license-transformer.conf and should
contain the line:

module jtm transformer

If the license does not contain this line, please contact Caplin Support.

26

29

29

Filtering and sorting containers using Caplin Refiner

27© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

2. Verify that the Transformer is set up to use Java.

There should be lines in
<Transformer root>/etc/transformer.conf
or in
<Transformer root>/etc/java.conf
that look like this:

Set jvm-location as a fully qualified pathname to the preferred JVM
#
jvm-location <JVM-pathname>

For example:

jvm-location /usr/local/java/jre/lib/i386/libjvm.so

3. Verify that the transformermodule.jar is available and configured on the classpath.

There should be a line in
<Transformer root>/etc/transformer.conf
or in
<Transformer root>/etc/java.conf
that looks like this:

jvm-global-classpath %r/lib/java/transformermodule.jar

4. Caplin Refiner is deployed in the same way as all other Transformer Modules: put the file container-
filtering-module.jar on the server that hosts Transformer.

Typically it is placed in the directory

<Transformer root>/lib-ext

5. Add the following configuration to
<Transformer root>/etc/transformer.conf or <Transformer root>/etc/java.conf:

add-javaclass
 class-name com.caplin.transformer.refiner.Refiner
 class-id jtm
 classpath %r/lib-ext/refiner.jar
end-javaclass

6. Add a file <Transformer root>/etc/java.conf with the following content:

log-level INFO
module-logfile jtm.log
module-classid jtm

Filtering and sorting containers using Caplin Refiner

28© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

7. Start Transformer.

Navigate to the Transformer root directory.

Run the command:

./etc/start transformer

8. Examine the log file <Transformer root>/var/jtm.log

If the Transformer is working correctly, this log contains the version number of the Transformer
Module library:

2011/09/12-15:41:05.633 +0000: CRIT: Thread [main/1]:
Product: Java Transformer Module
Version : 5.0.1
Build Date : dd-Mon-yyyy
Build Time : hh:mm
Build Number : nnnnnn
Copyright : Copyright 1995-2011 Caplin Systems Ltd

In the same log file, you should also see Caplin Refiner registering as a provider for the namespace
it uses:

2011/12/16-15:41:05.703 +0000: INFO: Registering as a provider of </FILTER/*>

9. Examine the log file Transformer root>/var/refiner.log

If Caplin Refiner is working correctly, this log contains its version number:

[SEVERE|main|15:42:38.903]: Refiner 5.0.0-204042

Filtering and sorting containers using Caplin Refiner

29© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Configuring filtering in Liberator

Liberator must be configured to support container filtering.

Assuming Liberator and Transformer are correctly configured to connect to each other, there will already
be a section in the Liberator configuration file (rttpd.conf) that defines the data service for Transformer.

Add the ^/FILTER/ pattern to the Liberator's Transformer data service, as in the following example:

add-data-service
 service-name market-data
 include-pattern ^/FI/
 include-pattern ^/CONTAINER/
 include-pattern ^/FILTER/

 add-source-group
 required true
 add-priority
 label transformer
 end-priority
 end-source-group
end-data-service

This pattern ensures that when client applications make requests for subjects that begin with
/FILTER, the Liberator requests them from Transformer and the requests are handled by the
Transformer's Caplin Refiner module.

Configuring Caplin Refiner

Transformer's Caplin Refiner module has default configuration settings that allow it to work without further
configuration. However, you can modify the configuration properties if required (for example, to improve
filtering and sorting performance). To do this:

Create an empty configuration properties file:

<Transformer root>/etc/refiner.properties

Add configuration property values to the file from the following set, as required.

The format is:

property-name=value

Filtering and sorting containers using Caplin Refiner

30© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Configuration properties

The following configuration properties are available in Caplin Refiner:

Property name Default value Description

batch.time 0 milliseconds The duration in milliseconds for which Caplin Refiner
waits before publishing any changes it has received
since the last time it published.

The default value causes Caplin Refiner to immediately
publish any new updates as soon as it has finished
publishing the previous batch.

If batch.time is negative or not a number, the default
value is used.

Run Caplin Refiner initially with the default setting for
batch.time (no batching of updates). If in your system,
the rate at which Caplin Refiner has to publish updates
causes performance problems with Caplin Refiner itself
or for clients, increase batch.time as required to give
acceptable performance.

For more information on tuning the performance of
Caplin Refiner, see the document
Caplin Xaqua: Caplin Refiner Benchmarks.

filtering.algorithm.
<filter-name>

No default Defines a custom filter comparator.

<filter-name> is the name of the custom filter
comparator.
You can define multiple custom filter comparators;
each filtering.algorithm.<filter-name> must
have a unique <filter-name>.

The property value is the fully qualified class name of
the custom filter comparator class.
For example:
filtering.algorithm.BondRating=
com.example.BondRatingComparator

For more information, see Custom filter comparators
.45

Filtering and sorting containers using Caplin Refiner

31© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Property name Default value Description

log.file.count 1 The number of Caplin Refiner log files to keep when
log.file.limit is not 0.

Log files are cycled according to this count; when the
number of log files matches the count, and the log.
file.limit is reached, the current log file is closed
and the oldest log file is reopened and overwritten with
new log messages. Then the next oldest log file is
reused, and so on.

A value of 0 means there is no limit on the number of
successive log files produced.

The default value of 1, causes Caplin Refiner to
overwrite the current log file as soon as the log.file.
limit is reached.

If you set log.file.limit to a (positive) value other
than 0, set log.file.count to at least 2, otherwise the
contents of the current log file will be overwritten as
soon as the log.file.count is reached.

log.file.level CONFIG Defines the log level for messages written to the Caplin
Refiner log file. The log levels are the standard Java
ones:

SEVERE (highest level)

WARNING

INFO

CONFIG

FINE

FINER

FINEST (lowest level)

log.file.limit 0 The maximum size of a Caplin Refiner log file in bytes.

When the current log file reaches this limit, it is closed
and a new log file is started (see log.file.count).

The default value of 0 means the same log file is always
used.

If you set log.file.limit to a (positive) value other
than 0, set log.file.count to at least 2, otherwise the
contents of the current log file will be overwritten as
soon as the log.file.count is reached.

Filtering and sorting containers using Caplin Refiner

32© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Property name Default value Description

max.update.size 1000 updates As Transformer receives updates to the records in a
container, it creates (via Caplin Refiner) individual
container record removal and record insertion
messages according to how the updates match the filter
and sort criteria. If the resulting number of record
insertions is high, this can load the Liberator
excessively.

The max.update.size property helps to reduce such
loading on the Liberator. It defines the maximum
number of container record inserts that Caplin Refiner
sends in a single batch period (as defined by batch.
time). If the number of such updates exceeds
max.update.size, the changes are sent as a single
container image instead.

If max.update.size is negative, zero or not a number,
this feature is turned off and all updates are sent as
inserts.

nodata.records.
rerequest.timer

60,000

milliseconds
The period between re-requests made by Caplin
Refiner for any records that were not previously
successfully subscribed to on a supplying DataSource.

If this value is negative, 0, or not a number, this feature
is turned off.

placeholder.timeout 1,000 milliseconds Defines how long Caplin Refiner waits for results before
removing the placeholder record.
See The container placeholder .

sorting.algorithm.
<sort-name>

No default Defines a custom sort list or custom sort comparator.

<sort-name> is the name of the custom sort.
You can define multiple custom sort lists and sort
comparators; each sorting.algorithm.<sort-name>
must have a unique <sort-name>.

For custom sort lists, the property value is a list of sort
attributes of the form
list: <item1>,<item2>,...

in ascending sort order.
For example:
sorting.algorithm.TenorSort=list:SPOT,ON,TN,
SN,1W,2W,1M,2M,6M,1Y

For more information, see Custom sort lists .

For custom sort comparators, the property value is of
the form
class:<comparator-class>

where <comparator-class> is the fully qualified class
name of the custom comparator class.
For example:
sorting.algorithm.BondRating=
class:com.example.BondRatingComparator

For more information see Custom sort comparators .

36

42

42

Filtering and sorting containers using Caplin Refiner

33© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

4.3 Using Caplin Refiner

To use Caplin Refiner, a client application subscribes to (requests) a subject, where the subject name
indicates to the Transformer that a container is to be filtered and/or sorted. The Transformer passes the
subscription request to its Caplin Refiner module, which then parses information from the subject in order
to perform its functions.

The client does not create such subscription requests directly, but instead calls dedicated API methods to
construct filter and sort directives, which are then passed on to Caplin Refiner.

To use Caplin Refiner from a Caplin Trader application, call the Caplin Trader API methods on
particular display components (such as grids) that allow you to filter and sort the data displayed.
For details, see the document Caplin Trader: API Reference.

To use Caplin Refiner from a client that is not a Caplin Trader application, call the API methods
provided in the StreamLink library that your application uses. These methods allow you to build up
the request in an object oriented way, and the request string itself is then generated by the
StreamLink library.

Tip: For a list of the StreamLink implementations have an API for using Caplin Refiner, see
Appendix A: StreamLink support for container filtering .

4.4 Filtering rules

To filter container elements, you use API calls to build up a filter expression that is then sent to Caplin
Refiner. A simple filter expression would be:

CpnRate>6

where:

CpnRate is the record field to be filtered.

6 is the value to compare against.

> is the operator (in this case “greater than”).

This filter expression therefore means: “Supply only those container records where the CpnRate field has
a value greater than 6.”

Filters can be applied to both text and numeric fields.

48

Filtering and sorting containers using Caplin Refiner

34© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

The following operators can be used in a filter expression:

Filter expression operators

Operator Meaning Applies to

= equals (field value must match exactly) text or numeric fields
(usually used for text)

!= not equals text or numeric fields
(usually used for text)

== numeric equals numeric fields only

!== numeric not equals numeric fields only

< less than numeric fields only

> greater than numeric fields only

<= less than or equal to numeric fields only

>= greater than or equal to numeric fields only

~ regular expression match text or numeric, usually text

case insensitive regular expression match text or numeric, usually text

Filters can contain any number of expressions, joined with AND or OR.
For example:

AND and OR in a filter expression

MaturityDate=20130328 OR (CpnRate>6 AND CpnRate<11)

The MaturityDate field is "28 March 2013" in the format YYYDDMM.

4.5 Sort rules

To sort container elements, you use API calls to build up a sort rule (the set of criteria for the sort) that is
then sent to Caplin Refiner. Container sort rules consist of three parts:

The name of the field to sort by.

The type of the field, which can be text, number, or a custom type (see Custom sorting).
Text sorts are case-insensitive.

The sort sequence, either ascending or descending.

An example of a sort rule is:

sort=MaturityDate:number:ascending

This sort rule specifies that the filtered records are to be sorted in ascending numeric order of the
MaturityDate field.

41

Filtering and sorting containers using Caplin Refiner

35© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

You must specify the type of the field so that Caplin Refiner can correctly sort the records in the intended
order . For example, assume there are three records A, B, C to be sorted on a particular field, and this
field has values 10, 20, and 100 respectively. If the field type is specified as numeric, an ascending sort
returns the records in the following (numeric) order:

A: 10

B: 20

C: 100

However if the field type is specified as text, the records are sorted alphabetically. An ascending sort
therefore returns the above records in a different order:

A: 10

C: 100

B: 20

Containers can only be sorted by one field, so it is not possible to apply a secondary sort. In cases where
two or more records have the same value in the sort field, those records are sorted relatively into the
natural order as defined by the DataSource adapter that supplies that container (or part of the container).
This is the order in which the DataSource would return records with this field value to the client if no sort
were specified.

Consider the container /CTR/FI/ALL discussed in Filtering and sorting containers using Caplin Refiner
. Sorting this container by the Description text field results in the following ordering, where the

order of the records within the same Description value is the natural order:

Container /CTR/FI/ALL sorted by Description

Subject Field
Description

Field
CpnRate

Field
MaturityDate

Field
BidPrice

Field
AskPrice

/FI/EU/A AUSTRIA 4.35 20140715 103.948 103.984

/FI/EU/B AUSTRIA 6.25 20270715 122.890 122.974

/FI/EU/C GERMANY 4.92 20130328 101.859 101.858

/FI/US/A US TREASURY 11.25 20141115 116 121/256 116 249/256

/FI/US/B US TREASURY 11.75 20150215 150 117/256 150 127/256

/FI/US/C US TREASURY 10.62 20150815 148 196/256 148 206/256

23

Filtering and sorting containers using Caplin Refiner

36© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

4.6 Grouping

Grouping adds extra records to the container that act as headers for blocks of records with the same field
value. For example, referring to the FI container described in Filtering and sorting containers using Caplin
Refiner , if you sort by the Description field and also group by the Description field, the returned
container looks like this:

Container: /FILTER/FI/ALL?sort=Description:text:ascending&groupBy=Description

/FILTER/META/CTR/FI/ALL/GROUPHEADER/groupby=Description/AUSTRIA
SubHeaderText=AUSTRIA
/FI/EU/A Description=AUSTRIA CpnRate=4.35 MaturityDate=20140715 BidPrice=103.948 ...
/FI/EU/B Description=AUSTRIA CpnRate=6.25 MaturityDate=20270715 BidPrice=122.890 ...

/FILTER/META/CTR/FI/ALL/GROUPHEADER/groupby=Description/GERMANY
SubHeaderText=GERMANY
Description=GERMANY /FI/EU/C CpnRate=4.92 MaturityDate=20130328 BidPrice=101.859 ...

/FILTER/META/CTR/FI/ALL/GROUPHEADER/groupby=Description/US TREASURY
SubHeaderText=US TREASURY
/FI/US/A Description=US TREASURY CpnRate=11.25 MaturityDate=20141115 BidPrice=...
/FI/US/B Description=US TREASURY CpnRate=11.75 MaturityDate=20150215 BidPrice=...
/FI/US/C Description=US TREASURY CpnRate=10.62 MaturityDate=20150815 BidPrice=...

Each of the header records (/FILTER/META/CTR/FI/ALL/GROUPHEADER/ and so on) contains one
field, SubHeaderText, that contains the value of the field that you are grouping by. When the client
application receives the sorted and grouped container, it typically displays the header rows in the grid with
different styling to the data rows.

Tip: The exact way in which record grouping is added to a container subscription depends on which
StreamLink library you are using. For details consult the API Reference document for your
particular StreamLink implementation.

4.7 The container placeholder

The process of subscribing to a container, subscribing to all the records in it, and then Caplin Refiner
processing each of the records can take longer than the active request timeout configured in Liberator. If
Caplin Refiner were to wait until it had processed all the results before sending a response, the active
request timeout might trigger first and Liberator would then discard the container.

To prevent this happening, as soon as Caplin Refiner receives a filter or sort request, it sends back a
container response with a single special subject name in it: "/FILTER/META/PLACEHOLDER". This is
called the container placeholder record. It tells the Liberator that Caplin Refiner has received the request,
preventing the container subscription from being discarded.

Handling container placeholders in the client

Typically a client application displays a loading indicator while waiting for a response to a sort or filter
request, and it removes the loading indicator when a response is received. If the first response received is
a container of size 1 that contains a placeholder record, the client should ignore the response and leave
the loading indicator in place. The next container update received will either be a container image of the
results, or an explicit removal of the placeholder record that indicates there are no matching results. The
client should respond by removing the loading indicator.

23

Filtering and sorting containers using Caplin Refiner

37© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Caplin Refiner explicitly removes the placeholder record when the time taken to filter the container
exceeds the timeout defined in the configuration property placeholder.timeout (see Configuration
properties in Configuring Caplin Refiner). In this case, the client can still subsequently receive
results from the filter request until such time as it discards the filter.

30 29

Permissions and subject mappings for filtered containers

38© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

5 Permissions and subject mappings for filtered
containers

In Caplin Xaqua deployments that use a Permissioning DataSource for user permissions and subject
mappings, additional permissions and subject mappings need to be set up if Caplin Refiner is used to
filter or sort container subscriptions.

5.1 Setting user permissions

When Caplin Refiner receives a request for a filtered or sorted container, it requests the base container
from the providing DataSource application. For example, if Caplin Refiner receives a request for:

 /FILTER/CTR/FI/ALL?filter=(CpnRate>5)

it requests the following base container from the providing DataSource application:

/CTR/FI/ALL

When the base container is returned, Caplin Refiner requests the constituent records of the container,
and then applies the filter (in this example CpnRate>5) before responding to the container request.

This means that users must be permissioned for:

The constituent records of the base container.

The unfiltered container subject /CTR/FI/ALL.

This permission is required for unfiltered container requests.

The filtered container subject prefix /FILTER/*

This permission is required for filtered container requests. The /* at the end of /FILTER means that
users are permissioned for all filtered container subjects.

Tip: In this example, users could be permissioned for the filtered container subject
/FILTER/CTR/FI/ALL instead of the subject prefix /FILTER/*.
The permissions are equivalent, allowing the same container to be filtered.

5.2 Setting subject mappings

Subject mappings allow Liberator to change the subject of a record before the record is requested from
the providing DataSource. Subject mappings are typically used to support price tiering. For example, if the
container /CTR/FI/ALL has the constituent record:

/FI/US/A

Liberator could map the subject of this record to:

/FI/US/A/TIER1

before it requests the record from the providing DataSource.

Price tiering allows users in different price tiers to receive different prices for the same instrument. In this
example, the user receives the price for /FI/US/A/TIER1 and not /FI/US/A when the container
/CTR/FI/ALL is requested. A different user could receive the price for /FI/US/A/TIER2.

Subject mappings for the constituent records of a container are normally applied by the Auth Module at
Liberator, but Caplin Refiner must also apply these mappings if it filters or sorts the container.

Permissions and subject mappings for filtered containers

39© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

This means that the following subject mappings must be set up:

The subject of the container to be filtered or sorted (including the filter or sort string) must be
mapped to <container-subject>;mapsuffix=<suffix-to-map>.

In this example, <container-subject> is /FILTER/CTR/FI/ALL?filter=(CpnRate>5) and
<suffix-to-map> is /TIER1. The mapped subject is therefore:

/FILTER/CTR/FI/ALL?filter=(CpnRate>5);mapsuffix=/TIER1.

This subject mapping informs Caplin Refiner that it must map the subjects of constituent records to
/TIER1 before it requests the records from the providing DataSource.

Subject mappings for the constituent records of the container.

These mappings are applied at the Liberator Auth Module. In this example, the container has only
one record (with subject /FI/US/A) that must be mapped to /FI/US/A/TIER1.

Subject mappings for each user are normally set up in the Permissioning DataSource, and the default
subject mapper provided with the permissioning software provides a User.setSubjectMapping()
method for doing this.

The following code examples show how this method is used to set up subject mappings for the container
/FILTER/CTR/FI/ALL and for the constituent record /FI/US/A described above.

Setting the subject mapping for the container

myUserInstance.setSubjectMapping("/FILTER/CTR/FI/ALL.*", ";mapsuffix/TIER1")

Tip: The .* at the end of the regular expression /FILTER/CTR/FI/ALL.* matches any filter or
sort string. In the example shown above, it matches the filter string ?filter=(CpnRate=5).

Setting the subject mapping for the constituent record

myUserInstance.setSubjectMapping("/FI/US/A", "/TIER1")

Note: While Caplin Refiner can apply suffix subject mappings for the constituent records of
containers that it filters, it cannot apply any other kind of container or record subject mapping.

Note: Users must be permissioned for the mapped subject of constituent records. In the example
above, the container has only one constituent record and the mapped subject is
/FI/US/A/TIER1. For further information about subject mapping and permissioning, please
refer to the Permissioning documents .40

Permissions and subject mappings for filtered containers

40© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

5.3 Permissioning documents

The following documents provide additional information about user permissions and subject mapping.

Caplin Xaqua: Permissioning Overview And Concepts

Introduces permissioning concepts and terms, and provides an overview of subject mapping.

Caplin Xaqua: How to Create a Permissioning DataSource Adapter

Describes how you can use the Permissioning DataSource API to create a Permissioning
DataSource adapter, and describes how to set up subject mappings for a user.

Permissioning DataSource: API Reference

Documents the JavaTM classes and interfaces that allow you to integrate Caplin Xaqua with a
Permissioning System.

Using advanced features of Caplin Refiner

41© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

6 Using advanced features of Caplin Refiner

Caplin Refiner offers the following advanced features:

Custom sorting

Custom sort lists

Custom sort comparators

Custom filter comparators

6.1 Custom sorting

When sorting a container, you can specify whether the field type is numeric or text. However in some
cases you might want to use your own logic to order field values, rather than a simple alphabetic or
numeric comparison.

One example would be sorting a container of bonds by their credit ratings. The ordering used by Standard
& Poor’s for upper-medium grade bonds and higher is:

A Lowest rating

A+

AA-

AA

AA+

AAA Highest rating

However, if you sort these ratings with a normal ascending alphabetic sort, the resulting order is
quite different:

A Lowest rating

A+

AA

AA+

AA-

AAA Highest rating

To deal with problems such as this, you can customize the sort order. There are two ways to do this:

For simple cases, use custom sort lists .

For more complex sorts, you can write your own custom sort comparators .

41

42

42

45

42

42

Using advanced features of Caplin Refiner

42© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

6.2 Custom sort lists

Custom sort lists provide a simple way to specify a custom sort order.

For example, assume you need to sort container records on the value of the Tenor (settlement date)
field, where the ordered list of tenor values is (earliest date first):

SPOT,ON,TN,SN,1W,2W,1M,2M,6M,1Y

To define a custom sort based on an ordered list of values:

Create the <Transformer root>/etc/refiner.properties configuration file if it does not exist already.

Add a line of the form:

sorting.algorithm.<sort-name>=list:<item1>, <item2>,...

For the tenor example:

sorting.algorithm.TenorSort=list:SPOT,ON,TN,SN,1W,2W,1M,2M,6M,1Y

Tip: For the full definition of the sorting.algorithm.<sort-name> property, see Configuration
properties in Configuring Caplin Refiner .

6.3 Custom sort comparators

When you need to sort records where the logic defining the sort order is more complex than just a simple
text / numeric comparison or ordered list of values, you can write your own custom sort comparator for
Caplin Refiner.

Writing a custom sort comparator

The custom sort comparator is a Java class that implements the java.util.Comparator<String> interface.
For detailed information on how to implement such a class, see the API reference documentation for the
Java Platform Standard Edition.

During the sorting process, Caplin Refiner calls the compare() method of the custom sort
comparator class:

int compare(String object1, String object2)

The method compares object1 against object2, and returns:

A negative integer if object1 is deemed to be less than object2.

Zero if object1 is deemed to be equal to object2.

A positive integer if object1 is deemed to be greater than object2.

When Caplin Refiner calls compare(), object1 and object2 are the field values of two records to be
compared.

30 29

Using advanced features of Caplin Refiner

43© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

As an example, consider filtering a container of bonds by their credit ratings, where the Standard & Poor’s
grading applies for upper-medium grade bonds and higher (see Custom Sorting):

A Lowest rating

A+

AA-

AA

AA+

AAA Highest rating

You could implement a custom sort comparator for this scheme, where the implemented compare()
method would behave according to the following examples:

compare("AA", "AAA") returns -1 (AA is less than AAA)
compare("AA", "AA+") returns -1 (AA is less than AA+)
compare("AA", "AA") returns 0 (AA is equal to AA)
compare("AA", "AA-") returns 1 (AA is greater than AA-)
compare("AA", "A+") returns 1 (AA is greater than A+)
compare("AA", "A") returns 1 (AA is greater than A)
compare("AA-", "AA") returns -1 (AA- is less than AA)
compare("AA+", "A+") returns 1 (AA+ is greater than A+)

For example purposes, the following sections assume the custom sort comparator class that implements
this scheme is called com.example.BondRatingComparator.

Tip: If correctly implemented according to the specification of the java.util.Comparator<String>
interface, a custom sort comparator can also be used as a custom filter comparator for the
same record field (see Custom filter comparators).

Deploying the custom sort comparator

The custom comparator class must be available on the classpath for Caplin Refiner. The easiest way to
achieve this is to compile the class and put it in a JAR file, then deploy it to the
<Transformer root>/lib-ext directory:

1. Compile BondRatingComparator.java to BondRatingComparator.class

2. Place BondRatingComparator.class in a JAR called custom-comparators.jar

3. Move the jar file to <Transformer root>/lib-ext

41

45

Using advanced features of Caplin Refiner

44© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Adding the JAR to the classpath

Add configuration to make the new custom comparator class known to Caplin Refiner.

Installing Caplin Refiner describes how to add to the Transformer configuration file a section that
defines Caplin Refiner. Add to this configuration another classpath line specifying the location of
the JAR for the new custom comparator class:

add-javaclass
 class-name com.caplin.transformer.refiner.Refiner
 class-id jtm
 classpath %r/lib-ext/refiner.jar
 classpath %r/lib-ext/custom-comparators.jar
end-javaclass

Configuring the custom sort comparator

Assign the custom comparator a unique name that Caplin Refiner uses to determine when to use it for
sorting:

Create the <Transformer root>/etc/refiner.properties configuration file if it does not exist already.

Add a line of the form:

sorting.algorithm.<sort-name>=class:<comparator-class>

where <comparator-class> is the fully qualified class name of your custom comparator.

For example:

sorting.algorithm.BondRating=class:com.example.BondRatingComparator

Tip: For the full definition of the sorting.algorithm.<sort-name> property, see Configuration
properties in Configuring Caplin Refiner .

Using a custom sort in client code

To use a custom sort in a client application, call the appropriate API methods provided in the StreamLink
library that your application uses.

Tip: For a list of the StreamLink implementations have an API for using Caplin Refiner,
see Appendix A: StreamLink support for container filtering .

26

30 29

48

Using advanced features of Caplin Refiner

45© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

6.4 Custom filter comparators

You may need to filter records where the logic defining the how the records match the filter is more
complex than just a simple text / numeric comparison. In this case, you can write your own custom filter
comparator for Caplin Refiner.

Writing a custom filter comparator

The custom filter comparator is a Java class that implements the java.util.Comparator<String>
interface. For information on how to implement such a class, see the API reference documentation for the
Java Platform Standard Edition.

During the filtering process, Caplin Refiner calls the compare() method of the custom filter comparator
class, passing the value of the criterion you are filtering against and the field value of the record to be
compared. Your custom code must return a value which represents how the record value compares to the
filter criterion:

int compare(String object1, String object2)

The method compares object1 against object2, and returns:

A negative integer if object1 is deemed to be less than object2.

Zero if object1 is deemed to be equal to object2.

A positive integer if object1 is deemed to be greater than object2.

When Caplin Refiner calls compare(), object1 is the value of the filter criterion, and object2 is the
corresponding field value of the record being filtered.

As an example, consider filtering a container of bonds by their credit ratings, where the Standard & Poor’s
grading applies for upper-medium grade bonds and higher (see Custom Sorting):

A Lowest rating

A+

AA-

AA

AA+

AAA Highest rating

The implemented compare() method should behave according to the following examples:

compare("AA", "AAA") returns -1 (AA is less than AAA)
compare("AA", "AA+") returns -1 (AA is less than AA+)
compare("AA", "AA") returns 0 (AA is equal to AA)
compare("AA", "AA-") returns 1 (AA is greater than AA-)
compare("AA", "A+") returns 1 (AA is greater than A+)
compare("AA", "A") returns 1 (AA is greater than A)
compare("AA-", "AA") returns -1 (AA- is less than AA)
compare("AA+", "A+") returns 1 (AA+ is greater than A+)

At run-time, Caplin Refiner's filtering software calls the compare() method as:

compare(value, record-field);

So, if at run-time the filter is (rating<AA), the method is called as

compare("AA", rating);

and all comparisons returning 1 pass the filter.

41

Using advanced features of Caplin Refiner

46© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Therefore only bonds with rating AA-, A+, or A are returned to the client.

If instead the filter is (rating>=AA), all comparisons returning -1 or 0 pass the filter, so only bonds with
rating AA, AA+, or AAA are returned to the client.

Tip: If correctly implemented according to the specification of the java.util.Comparator<String>
interface, a custom filter comparator can also be used as a custom sort comparator for the
same record field (see Custom sort comparators).

For example purposes, the following sections assume the custom filter comparator class is called
com.example.BondRatingComparator.

Deploying the custom filter comparator

The custom comparator class must be available on the classpath for Caplin Refiner. The easiest way to
achieve this is to compile the class and put it in a JAR file, then deploy it to the
<Transformer root>/lib-ext directory:

1. Compile BondRatingComparator.java to BondRatingComparator.class

2. Place BondRatingComparator.class in a JAR called custom-comparators.jar

3. Move the jar file to <Transformer root>/lib-ext

Adding the JAR to the classpath

Add configuration to make the new custom comparator class known to Caplin Refiner.

Installing Caplin Refiner describes how to add to the Transformer configuration file a section that
defines Caplin Refiner. Add to this configuration another classpath line specifying the location of
the JAR for the new custom comparator class:

add-javaclass
 class-name com.caplin.transformer.refiner.Refiner
 class-id jtm
 classpath %r/lib-ext/refiner.jar
 classpath %r/lib-ext/custom-comparators.jar
end-javaclass

42

26

Using advanced features of Caplin Refiner

47© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Configuring the custom filter comparator

Assign the custom comparator a unique name that Caplin Refiner uses to determine when to use it for
filtering:

Create the <Transformer root>/etc/refiner.properties configuration file if it does not exist already.

Add a line of the form:

filtering.algorithm.<filter-name>=<comparator-class>

where <comparator-class> is the fully qualified class name of your custom comparator.

For example:

filtering.algorithm.BondRating=com.example.BondRatingComparator

Tip: For the full definition of the filtering.algorithm.<filter-name> property, see
Configuration properties in Configuring Caplin Refiner .

Using a custom filter in client code

To use a custom filter in a client application, call the appropriate API methods provided in the StreamLink
library that your application uses.

Tip: For a list of the StreamLink implementations have an API for using Caplin Refiner, see
Appendix A: StreamLink support for container filtering .

30 29

48

Appendix A: StreamLink support for container filtering

48© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

7 Appendix A: StreamLink support for container
filtering

The following table indicates which StreamLink For Browsers implementations have a specific API for
filtering and sorting using Caplin Refiner. This list was correct at the time of publication, but for the latest
version, please contact Caplin Support.

StreamLink Implementation Filtering and Sorting
API?

StreamLink.NET

StreamLink for Java

StreamLink for Silverlight

StreamLink for Browsers
(see Tip below)

StreamLink for Flex

StreamLink for iOS

Tip: Caplin Trader (which uses StreamLink For Browsers) has an API for container filtering and
sorting using Caplin Refiner.

Glossary of terms and acronyms

49© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

8 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms relating to the use of containers in
Caplin Xaqua.

Term Definition

CSV Comma Separated Values.
A set of file formats used to store tabular data, in which numbers
and text are stored in plain-text form that can be easily written and
read in a text editor.
(Source: Wikipedia
http://en.wikipedia.org/wiki/Comma-separated_values)

Base container The name of the container as specified in a Caplin Refiner filter or
sort request.

Blotter A record of the details of transactions made by an end-user, such
as instrument trades in a trade blotter.

Caplin Liberator A real-time financial internet hub that delivers trade messages and
market data to and from subscribers over any network.

Caplin Trader A web application framework for financial trading.

Caplin Trader application A Caplin Xaqua client that has been built using Caplin Trader.

Caplin Xaqua A framework for building single-dealer platforms that enables
banks to deliver multi-product trading direct to client desktops.

Caplin Xaqua client A client desktop or web application that interfaces with Caplin
Xaqua to deliver multi-product trading to end users.

Caplin Refiner A module of Caplin Transformer that filters, sorts, and groups the
contents of a container on behalf of Caplin Xaqua clients. Caplin
Refiner is a Java Transformer Module.

See Filtering and sorting containers using Caplin Refiner .

Caplin Trader A web application framework for financial trading.

An application constructed with Caplin Trader is a Caplin Xaqua
client.

Caplin Transformer An event-driven real-time business rules engine.

Container A data structure in Caplin Xaqua that allows Caplin Liberator to
manage lists of data (such as lists of financial instruments) on
behalf of Caplin Xaqua clients.

See What is a container?

Container order The order of the elements within a container is defined by the
DataSource that provides the container. This ordering is known as
“container order” or “natural order”.

Container windowing See the section Container windowing .

Data service A Caplin Liberator configuration facility that allows you to define
where Liberator data comes from, based on its subject name, and
allowing for priority, failover, and load balancing.

DataSource DataSource is the internal communications infrastructure used by
Caplin Xaqua's server components such as Caplin Liberator,
Caplin Transformer, and DataSource adapters.

23

4

7

http://en.wikipedia.org/wiki/Comma-separated_values

Glossary of terms and acronyms

50© Caplin Systems Ltd. 2011

How To Use Containers

CONFIDENTIAL

Caplin Xaqua 1.0

Term Definition

DataSource adapter A DataSource application that integrates with an external (non-
Caplin) system, exchanging data and/or messages with that
system.

DataSource application A Caplin Xaqua application that uses the Caplin DataSource APIs
to communicate with other Caplin Xaqua applications via the
DataSource protocol.

Display component A GUI component of Caplin Trader that can be rendered in a page
on the screen. The term also refers to the JavaScript code that
generates the component and handles its user interaction.

Filter expression A mathematical expression that defines how Caplin Refiner is to
filter the elements of a container.
For example CpnRate>6 AND CpnRate<11

See Filtering rules .

Grid A display component that displays data in a tabular format.

Java Transformer Module A Transformer module that is implemented in the Java language..

Liberator Auth module A Caplin Liberator module that performs authentication and
authorization.

Natural order Alternative term for container order.

Permissioning Auth Module A Liberator auth module that allows Liberator to integrate with
the Caplin Xaqua permissioning system.

For more information, see the document Caplin Xaqua:
Permissioning Overview and Concepts.

Permissioning DataSource A DataSource application that provides permissioning information
for Caplin Xaqua that conforms to the permissioning model
described in Caplin Xaqua: Permissioning Overview and
Concepts.

RTTP Real Time Text Protocol.

Caplin's protocol for streaming real-time financial data from Caplin
Liberator servers to Caplin Xaqua clients, and for transmitting
trade messages and other messages between clients and
Liberator in both directions.

StreamLink The StreamLink libraries connect client applications to Caplin
Liberator via the RTTP protocol. They provide an object oriented
API that gives access to RTTP functionality.

StreamLink for Browsers StreamLink for Browsers is a JavaScript implementation of
StreamLink that runs in Web browsers. It allows Ajax applications,
such as Caplin Trader applications, to communicate with Caplin
Liberator.

Sort rule The set of criteria for a container sort in Caplin Refiner.

See Sort rules .

Transformer module A processing module in Caplin Transformer.

33

34

© Caplin Systems Ltd. 2011

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Xaqua 1.0: How To Use Containers, October 2011, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	About containers
	What is a container?
	Containers in a user interface

	Container windowing
	When to use a container
	Summary of container features and benefits
	Containers in the Caplin Xaqua architecture
	Example: One DataSource adapter
	Example: Multiple DataSource adapters

	Defining and using containers
	Configuring container usage in Liberator
	One DataSource supplies the container and container data
	Multiple DataSources supply the container and container data

	Mapping containers
	Defining containers in a DataSource
	DataSource adapter design guidelines

	Filtering and sorting containers using Caplin Refiner
	How container filtering works
	Configuring container filtering
	Installing Caplin Refiner
	Configuring filtering in Liberator
	Configuring Caplin Refiner

	Using Caplin Refiner
	Filtering rules
	Sort rules
	Grouping
	The container placeholder

	Permissions and subject mappings for filtered containers
	Setting user permissions
	Setting subject mappings
	Permissioning documents

	Using advanced features of Caplin Refiner
	Custom sorting
	Custom sort lists
	Custom sort comparators
	Custom filter comparators

	Appendix A: StreamLink support for container filtering
	Glossary of terms and acronyms

