
Customizing The XMC

December 2009

C O N F I D E N T I A L

Caplin Xaqua 1.0

i

Customizing The XMC

© Caplin Systems Ltd. 2009

Contents

CONFIDENTIAL

Caplin Xaqua 1.0

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 2Related documents1.3

.. 2Typographical conventions1.4

.. 3Feedback1.5

.. 3Acknowledgments1.6

.. 4Overview2

.. 5Implementing Required Java Classes3

.. 6Actions3.1

.. 7Implementing ConsoleListener3.2

.. 7Inter-view communication3.3

.. 9Writing the Required XML4

.. 9View XML4.1

.. 11Console XML4.2

.. 12Creating a Help Guide5

.. 12ParentHelpMap.jhm5.1

.. 13ParentHelp.hs5.2

.. 13CustomHelpTOC.xml5.3

.. 14File Locations6

.. 15Code Examples7

.. 15Example View class7.1

.. 19Example View XML configuration file7.2

.. 19Example Console XML configuration file7.3

.. 20Glossary8

Preface

1© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

1 Preface

1.1 What this document contains

This document describes how to customize the Caplin Xaqua Management Console (XMC).

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for people who want to customize the XMC to monitor components of Caplin
Xaqua.

http://support.microsoft.com/kb/896054/

Preface

2© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

1.3 Related documents

Caplin Xaqua: Getting Started With The XMC

Describes how to configure the Caplin Xaqua Management Console.

Caplin Xaqua: Monitoring And Management Overview

Describes the Caplin Xaqua Management and Monitoring solution and its place in the Caplin Xaqua
architecture.

Caplin Xaqua Management Console: API Reference

The API reference documentation provided with the Caplin Xaqua Management Console.

Caplin Xaqua: Monitoring Socket Interface Specification

Describes the commands and responses of the Monitoring Socket Interface.

Caplin Liberator: Administration Guide

Describes how to install and configure Caplin Liberator.

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

Preface

3© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Please email your feedback to documentation@caplin.com.

1.6 Acknowledgments

Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Java and JMX are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or other
countries.

mailto:documentation@caplin.com

Overview

4© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

2 Overview

The Caplin Xaqua Management Console (XMC) has been designed to allow customization of its displays
and in particular the inclusion of user defined views. Configuration of the console is defined via a set of
XML files. By implementing certain interfaces and writing a small amount of XML, a user can install their
own views into the console.

User views are hosted as tabbed pages within the console, each tab can have its own name, icon, tooltip,
menu options, toolbar options, and help text. Views are loaded dynamically and on demand for
performance reasons. To add a new view to the console the user must perform the following actions
(described in more detail in the rest of this document):

1. Create a JPanel derived class that implements the View Interface:

void init(Console console, Properties properties)
void save()
Properties getProperties()
List getActions()
Console getConsole()
void processMessage(String messageId, Map messageData)

This view should use the Console object passed into its init() method to obtain a JMXConnection.
The actions (Swing Action objects) exposed via the getActions() method can be used to populate
menu and toolbar options. Properties that configure the view can be loaded and saved via the init() and
 getProperties() methods.

2. Create an XML file named view_<NameOfView>.xml that defines the view, its classname, tabname,
icon, menus, toolbar, help topic, and so on.

3. Edit one or more of the console_<datasourceType>.xml files to reference this view; that is, specify
that a console of the given type should load and display this view.

4. Link in the help text.

Implementing Required Java Classes

5© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

3 Implementing Required Java Classes

There is one interface that must be implemented in order to create a new view. There is also an optional
interface which is described below. The required interface is com.caplin.view.View.

More details on this interface can be found by looking at the Caplin Xaqua Management Console: API
Reference, supplied with the XMC. The interface comprises the following methods:

void init(Console console, Properties properties);

void save();

Properties getProperties();

List getActions();

Console getConsole();

void processMessage(String messageId, Map messageData);

The class that implements this interface should extend a suitable JComponent class such as javax.
swing.JPanel. So for example, the declaration of a class that implements a view for a component would
have the following declaration:

public class ExampleView extends JPanel implements View

This class should be specified in the view_<NameOfView>.xml file (see Creating a Help Guide for
further information). In this file, the developer may specify a number of actions to be performed. Each of
these actions need to be implemented in the Java code (see Actions).

12

6

Implementing Required Java Classes

6© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

3.1 Actions

Each <Action Name="..."/> tag in the view_<NameOfView>.xml file needs to correspond to an
action in the Java code. This should be achieved by constructing an inner class within the class that
implements com.caplin.view.View. This inner class should extend javax.swing.
AbstractAction.

So for example, if a developer creates a view_example.xml file with the action tag
<Action Name="SayHello"/>, then the Java code in the inner class could be similar to the following:

class RefreshAction extends AbstractAction
{
 public RefreshAction()
 {
 this.putValue(Action.ACTION_COMMAND_KEY, "SayHello");
 this.putValue(Action.NAME, "Say Hi");
 this.putValue(Action.SHORT_DESCRIPTION,"Say hi to the user");
 this.putValue(Action.MNEMONIC_KEY,
 new Integer(java.awt.event.KeyEvent.VK_F5));
 this.putValue(Action.SMALL_ICON,
 ResourceManager.getInstance().getImage(
 "resources/images/Refresh16.gif"));
 }
 public void actionPerformed(ActionEvent e)
 {
 //perform processing to achieve goals of action
 }
}

The first line of the constructor tells the XMC to call this class to perform the action described in the
<Action .../> tag. Notice that the two strings are the same. This is very important as otherwise the
XMC will not be able to tell what class should be used to perform the task, and will output an error to the
command prompt and act as if the user never asked for the action to be performed.

The second line tells the XMC what text to display on the drop down menu.

The third line tells the XMC what text to display in the tooltip for the action. The tooltip will be displayed for
both a drop down menu option and a toolbar button.

The fourth line specifies a keyboard shortcut key to use for this action. The XMC will listen for this
keystroke and will call the class when it receives it.

The fifth line specifies an icon to be used for this action. If this action is to be added to the toolbar then the
icon will act as a button. If the action is to be added to a drop down menu, then the icon will be displayed
next to the text as specified in the second line.

The code in actionPerformed(ActionEvent e) performs the action. The XMC calls this method
when the user requests the action corresponding to this class (by selecting a menu item or clicking a
toolbar button).

Implementing Required Java Classes

7© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

3.2 Implementing ConsoleListener

The interface com.caplin.console.ConsoleListener should be implemented if the view needs to
perform processing when the XMC starts up or shuts down. The interface should also be implemented if
the view needs to be notified when another view is updated or the JMX connection changes.

A detailed description of each method to be implemented is available in the JavaDoc which is supplied as
standard with the XMC. For completeness the method declarations are also supplied here, and are as
follows:

void viewChanged(View view);

void viewLoaded(View view);

void connectionStateChanged(boolean connected);

void closing();

3.3 Inter-view communication

Since each view class is loaded dynamically and on demand (via the class name in the associated
view_<NameOfView>.xml file), you should not directly access one view from another.

Inter-view communication is handled via the following three methods, two on the Console class and one
on the View class.

Console Class: showView()

/**
* Shows the given view, the view must be defined in the console
* XML configuration file
* @param toViewClassName
* @return true if view shown
*/
boolean showView(String toViewClassName);

Console Class: postMessage()

/**
* Posts a message to the given view, used for inter-view communication
* @param toViewClassName the class name of the view to receive the message
* @param messageId a String identifying the message
* @param messageData a Map of name, value pairs representing messages data
*/
void postMessage(String toViewClassName, String messageId, Map messageData);

View Class: processMessage()

/**
* Processes a message from another view, used for inter-view
communication
* @param messageId a String identifying the message
* @param messageData a Map of name, value pairs representing messages data
 */
void processMessage(String messageId, Map messageData);

Implementing Required Java Classes

8© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

This mechanism is used throughout the standard views supplied with the XMC, to link items to the

associated MBean tab in the Explorer view. The following code snippet shows how to perform this link
from a View class:

protected void onShowInExplorer(ObjectName objName)
{
 getConsole().showView("com.caplin.view.explorer.ExplorerView");
 HashMap dataMap = new HashMap();
 dataMap.put("MBeanName", objName);
 getConsole().postMessage("com.caplin.view.explorer.ExplorerView",
 "ShowMBean", dataMap);
}

Writing the Required XML

9© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

4 Writing the Required XML

If a custom view is to be created for a particular component (for example Liberator), then a developer will
need to complete the tasks described in View XML and Console XML in order to get the XMC to
use the custom view.

4.1 View XML

A new file called view_<NameOfView>.xml will need to be created. This file defines what a view will look
like. The file takes the following form.

Example Code

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE View SYSTEM "dtd/View.dtd">
<View>
 <Class>com.company.view.OverviewViewTab</Class>

 <Name>Overview</Name>
 <LongDescription>This tab gives an overview of the new component...
 </LongDescription>

 <HelpTopic>overview.mainpage</HelpTopic>

 <Icon>resources/myIcon.gif</Icon>

 <Menus>
 <Menu Name="Tools">
 <Action Name="PerformAction" />
 </Menu>
 </Menus>

 <ToolBar>
 <Action Name="PerformAction" />
 <Divider/>
 <Action Name="PerformOtherAction" />
 </ToolBar>
</View>

XML Tag Descriptions

<Class>

The <Class> tag defines the Java class that will be used to display this view (see Implementing Required
Java Classes). The XMC calls this class when a user double-clicks the component in the main page of
the XMC. If it cannot find/load the class, then it will output an error message to the command prompt and
fail to launch the component (as if the user had performed no action).

<Name>

The <Name> and <LongDescription> tags are used by the XMC to display information about this view
to the user. The text entered between the opening and closing <Name> tags is displayed in the tab for this
view.

9 11

5

Writing the Required XML

10© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

<LongDescription>

If the user hovers over the tab, then the text between the opening and closing <LongDescription> tags
is displayed as a tooltip. This gives the user more information about the view without having to open it.

<HelpTopic>

The <HelpTopic> tag is used by the XMC to reference the appropriate section in the help guide for this
view. A developer can easily add help for a custom component to the XMC. This is covered in more detail
in Creating a Help Guide .

<Icon>

The <Icon> tag is used to specify the location of an image file that the XMC displays next to the name of
the view (see the <Name> tag). This file can be a relative path or an absolute path. The base directory will
be the directory in which the XMC was started.

<Menus> and <Menu>

The <Menus> tag lists the menus that are displayed by the XMC. Each menu is defined by a <Menu> tag
and each menu option by an <Action /> tag (see Actions). In the example above, the XMC will

create a drop down menu called Tools. The display name for each menu option is defined by Java code
(see Implementing Required Java Classes).

<Divider>

It is possible to have dividers in drop down menus and toolbars. For example, if you want to separate out
different types of operation in a single menu, then you could add a <Divider /> tag between two
<Action /> tags. This causes the XMC to insert a horizontal line between the two items in the drop
down menu. In the code example above, a <Divider /> tag is inserted in a <Toolbar> section to
separate two toolbar buttons.

<Toolbar>

The <ToolBar> tag is used by the XMC to display buttons on the toolbar. The developer also needs to
implement this action in the class specified for this view (see Implementing Required Java Classes).
When the user clicks a button the XMC calls the relevant Java code (see Actions).

When a <Divider /> tag is used to separate buttons from each other, the XMC inserts a small vertical
line between the buttons.

12

6

5

5

6

Writing the Required XML

11© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

4.2 Console XML

First the developer needs to go to the correct XML file for the component. This file will be called
console_<ComponentName>.xml (for example, console_liberator.xml). This file tells the XMC what views
to create for the component. The format of the file will be similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ConsoleConfig SYSTEM "dtd/ConsoleConfig.dtd">

<ConsoleConfig>
 ...

 <Views>
 <View Id="ExplorerView">
 <Properties>
 <Property Name="SplitPos" Value="...."/>
 <Property Name="SortOrder" Value="...."/>
 </Properties>
 </View>
 <View Id="OverviewView"/>
 <View Id="PermissionView"/>
 <View Id="PageEditorView"/>
 </Views>
</ConsoleConfig>

For every view defined in the <Views> section, an accompanying file needs to be created (see View XML
). The developer should also add any required properties for the new view in the <Properties>

section of the <View> tag. The XMC will create a java.util.Properties object from the
<Properties> section, and pass the object to each view (see Implementing Required Java Classes
for further information).

9

5

Creating a Help Guide

12© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

5 Creating a Help Guide

As a final but important section on creating a customized view, it is important to create a help guide for the
new view, that users can refer to in order to learn how to use the view or if they encounter problems. The
XMC uses JavaHelp (http://java.sun.com/products/javahelp/) to provide an interactive help guide. This
guide does not go into the details of how to create the various files required, instead it describes how to
modify the help files that are distributed with the XMC to reference the help files that a developer needs to
create.

In the view_<NameOfView>.xml file the developer needs to specify a help section for the view. The XMC
will then use this to provide help to the user on the current view they are using.

The developer will also need to add entries to the following files:

resources/help/ParentHelpMap.jhm

resources/help/ParentHelp.hs

5.1 ParentHelpMap.jhm

In this file, the developer will need to add a link to the HelpSet file (file.hs) that should be created for the
custom view.

The file will look similar to the following:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE map
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"
 "http://java.sun.com/products/javahelp/map_1_0.dtd">

<map version="1.0">
 <mapID target="toplevelfolder" url="images/toplevel.gif" />
 <mapID target="pricemaster" url="PM4_help/IdeHelp.hs" />
 <mapID target="explorer.tab" url="html/explorer.html" />
</map>

The developer needs to add another <mapID ... /> tag to point to the new HelpSet file created for the
custom view.

http://java.sun.com/products/javahelp/

Creating a Help Guide

13© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

5.2 ParentHelp.hs

This file is quite large but the developer only needs to edit one section within the file.

Under the <view> section there are <subhelpset> tags; the developer needs to add the help set file
that has been created for the custom view to this section. For example:

...

<subhelpset location="CMCHelp.hs" />
<subhelpset location="PM4_help/IdeHelp.hs" />
<subhelpset location="customView_help/IdeHelp.hs" />

...

The location of the help set file should be specified if it is not in the same directory as ParentHelp.hs. An

example of this can be seen above. The help set file IdeHelp.hs is located in a directory under the current

one called PM4_help.

5.3 CustomHelpTOC.xml

In the Table of Contents for the custom view, two <tocitem> tags should be present; one for an
introduction section to the custom view, and one providing the actual help for the custom view. An example
of this can be seen in the file CMCHelpToc.xml. In this file the table of contents items are as follows:

<tocitem text="Introduction">
 <tocitem text="Management Console" target="top"/>
</tocitem>

<tocitem text="Tabs" target="tab.folder">
</tocitem>

The target values are defined in CMCMap.jhm.

The developer should not need to make any further changes to provide help for the custom view.

File Locations

14© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

6 File Locations

Java class files should be rooted in the same directory as the xmc.jar file (that is, if your class is com.

acme.MyView, then you should place the class file in the directory com/acme under the

CaplinXaquaManagementConsole directory).

XML configuration files go in the conf directory and help files should be rooted in the resources/help
directory (which must be created under the CaplinXaquaManagementConsole directory).

Code Examples

15© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

7 Code Examples

7.1 Example View class

The following code example implements the View class.

package com.caplin.view;

import java.awt.Color;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.logging.Logger;

import javax.swing.AbstractAction;
import javax.swing.Action;
import javax.swing.JButton;
import javax.swing.JPanel;

import com.caplin.console.Console;
import com.caplin.console.ConsoleListener;

/**
 * A simple Test class that implements View:
 *
 * <pre>
 *
 * - logs the calls to View methods
 * - logs property values passed in
 * - uses property to load/save background colour
 * - exposes action to set background color
 * - listens and logs console events
 *
 * </pre>
 *
 */

public class TestView extends JPanel implements View
{
 private static Logger log = Logger.getLogger(TestView.class.getName());

 private Console console;
 private List actions;
 private Color backColor;

 public TestView()
 {
 backColor = Color.WHITE; // set default value

 // load list of actions to be exposed
 actions = new ArrayList();
 actions.add(new SetBlueAction());

Code Examples

16© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

 // put something on panel
 JButton b = new JButton("make it white!");
 add(b);
 b.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 backColor = Color.white;
 setBackground(backColor);
 console.setDirty(TestView.this, false);
 }
 });
 }

 /**
 * Called by console to initialize this view
 */
 public void init(Console console, Properties properties)
 {
 this.console = console;
 log.info("---");

 // add delay to simulate time taken to load state from server
 delay();

 // try to read color property
 String colorProperty = (String)properties.get("Color");
 if (colorProperty != null)
 {
 if (colorProperty.equals("White"))
 {
 backColor = Color.WHITE;
 }
 else if (colorProperty.equals("Blue"))
 {
 backColor = Color.BLUE;
 }
 }

 setBackground(backColor);

 // listen and log console events
 console.addConsoleListener(new ConsoleListener()
 {
 public void viewChanged(View view)
 {
 log.info("viewChanged");
 }

 public void viewLoaded(View view)
 {
 log.info("viewLoaded");
 }

 public void closing()
 {
 log.info("closing");
 }
 public void connectionStateChanged(boolean connected)
 {
 log.info("connection changed");
 }
 });

Code Examples

17© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

 // log all properties passed in
 Enumeration en = properties.keys();
 while (en.hasMoreElements())
 {
 String name = (String)en.nextElement();
 String value = (String)properties.get(name);
 log.fine(name + "= " + value);
 }

 }

 /**
 * Called by console to save this view (that is, save data to
 * persistent storage) if it has set its state to dirty
 */
 public void save()
 {
 log.info("---");
 delay();
 }

 /**
 * Helper for 1 second delay
 */

 private void delay()
 {
 try
 {
 Thread.sleep(1000);
 }
 catch (InterruptedException e1)
 {
 e1.printStackTrace();
 }
 }

 /**
 * Called by console to retrieve the set of properties that must be saved
 * in the xml for this view
 */
 public Properties getProperties()
 {
 log.info("---");

 // save background color as property
 Properties properties = new Properties();

 if (backColor == Color.WHITE)
 {
 properties.put("Color", "White");
 }
 else if (backColor == Color.BLUE)
 {
 properties.put("Color", "Blue");
 }

 return properties;
 }

Code Examples

18© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

 /**
 * Called by console to retrieve the list of actions exposed by this view.
 * The action names of these actions are used, via the view xml file, to
 * populate menu and toolbar options
 */
 public List getActions()
 {
 log.info("---");
 return actions;
 }

 /**
 * convenience method for passing console instance to other classes
 */
 public Console getConsole()
 {
 return console;
 }

 /**
 * Called by the console to send messages from other views,
 * not implemented here
 */
 public void processMessage(String messageId, Map messageData)
 {
 }

 /**
 * An example action to set the background color to blue
 *
 */
 class SetBlueAction extends AbstractAction
 {
 public SetBlueAction()
 {
 this.putValue(Action.ACTION_COMMAND_KEY, "SetBlue");
 // this is the action name used in the view xml to
 // populate menu and toolbar options
 this.putValue(Action.NAME, "Set Blue");
 // menu item name
 this.putValue(Action.SHORT_DESCRIPTION, "Set the background blue");
 // tooltip
 this.putValue(Action.MNEMONIC_KEY,
 new Integer(java.awt.event.KeyEvent.VK_B));
 }

 public void actionPerformed(ActionEvent e)
 {
 backColor = Color.BLUE;
 TestView.this.setBackground(backColor);
 console.setDirty(TestView.this, true);
 }
 }

}

Code Examples

19© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

7.2 Example View XML configuration file

The following is an example of a View XML configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE View SYSTEM "dtd/View.dtd">

<View>
 <Class>com.caplin.view.TestView</Class>
 <Name>A Test View</Name>
 <LongDescription>This is a test view</LongDescription>
 <HelpTopic>testview</HelpTopic>
 <Icon>/conf/folder_view.png</Icon>

 <Menus>
 <Menu Name="Edit">
 <Action Name="SetBlue"/>
 </Menu>
 </Menus>

 <ToolBar>
 <Action Name="SetBlue"/>
 </ToolBar>
</View>

7.3 Example Console XML configuration file

The following is an example of a Console XML configuration file with test view added.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ConsoleConfig SYSTEM "dtd/ConsoleConfig.dtd">
<ConsoleConfig>
 <Properties>
 </Properties>
 <Views>
 <View Id="datasource_overview"/>
 <View Id="datasource_peers"/>
 <View Id="datasource_logging"/>
 <View Id="liberator_users"/>
 <View Id="liberator_objects"/>
 <View Id="explorer"/>
 <View Id="test"/>
 </Views>
</ConsoleConfig>

Glossary

20© Caplin Systems Ltd. 2009

Customizing The XMC

CONFIDENTIAL

Caplin Xaqua 1.0

8 Glossary

This section contains a glossary of terms, abbreviations, and acronyms relating to the XMC.

Term Definition

Tooltip This is a common feature used in Java to provide extra information
without cluttering up the user interface. If a user moves a mouse
pointer over a component that has a tooltip, and lets the pointer rest
over the component for a second or two, then a text description of the
component appears at the end of the mouse pointer. This is called a
tooltip.

View A view is defined as a panel displayed in the XMC for an individual
component. A view is implemented as a tab by default (for example,
the Explorer view is implemented as a tab).

XMC Caplin Xaqua Management Console

© Caplin Systems Ltd. 2009

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Triton Court

14 Finsbury Square

London EC2A 1BR

Telephone: +44 20 7826 9600

Fax: +44 20 7826 9610

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Xaqua 1.0: Customizing The XMC, December 2009, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	Overview
	Implementing Required Java Classes
	Actions
	Implementing ConsoleListener
	Inter-view communication

	Writing the Required XML
	View XML
	Console XML

	Creating a Help Guide
	ParentHelpMap.jhm
	ParentHelp.hs
	CustomHelpTOC.xml

	File Locations
	Code Examples
	Example View class
	Example View XML configuration file
	Example Console XML configuration file

	Glossary

