
Caplin Trader XML Configuration Reference

February 2008

1.2
Confidential

i

Caplin Trader XML Configuration Reference

© Caplin Systems Ltd. 2007 – 2008

Contents

CONFIDENTIAL

Contents

1 .. 1Preface

... 11.1 What this document contains

... 11.2 Who should read this document

... 11.3 Related documents

... 21.4 Typographical conventions

... 21.5 Feedback

2 .. 3Getting Started

... 32.1 Technical assumptions and restrictions

... 32.2 Using the XML configuration markup

... 3About webcentric

... 5Files using the XML markup

... 6An example configuration file

... 9Ordering and nesting of tags

3 .. 11XML tag reference

... 113.1 <Application>

... 123.2 <Border>

... 143.3 <Declarations>

... 143.4 <Decorators>

... 153.5 <Frame>

... 173.6 <FrameItems>

... 173.7 <GUI>

... 183.8 <Handle>

... 193.9 <Panel>

... 223.10 <Stack>

... 243.11 <Tabstrip>

... 273.12 <Terrace>

... 303.13 <Tower>

4 .. 33Glossary of terms and acronyms

Preface

1© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

1 Preface

1.1 What this document contains

This reference document describes the XML-based configuration that defines the layout of the Caplin Trader
Client and other aspects of its appearance, through webcentric. The information in this document applies to Caplin
Trader version 1.2.

1.2 Who should read this document

This document is intended for System Administrators and Software Developers who need to configure the Caplin
Trader Client.

1.3 Related documents

Caplin Trader Client: Customizing the Appearance

This document describes how to use the XML detailed here to modify the layout of Caplin Trader Client
Reference Implementation. It also explains how to change aspects of the look and feel of the Caplin Trader
Client.

Preface

2© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

/AFolder/Afile.txt File names, folders and directories

 Some code; Code examples

value XML tag and attribute names

XYZ Product Overview Document name

Information bullet point

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of the
solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome any
comments, criticisms or suggestions you may have regarding this document.

Please email your thoughts to documentation@caplin.com.

mailto:documentation@caplin.com

Getting Started

3© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

2 Getting Started

This section explains briefly how the various XML tags may be combined to define the layout of the Caplin Trader
Client. For more information on how to use the XML tags and attributes defined in this document please refer to
Caplin Trader Client: Customizing the Appearance.

2.1 Technical assumptions and restrictions

XML

The XML markup defined in this document conforms to XML version 1.0 and the XML schema version defined at
http://www.w3.org/2001/XMLSchema.

2.2 Using the XML configuration markup

About webcentric

The Caplin Trader Client uses a client-side portal framework called webcentric to manage the look and feel of the
rendered pages. From the webcentric point of view, the Caplin Trader Client is just another webcentric application.
Webcentric controls the look and feel of this application according to XML markup that conforms to the definitions
in this document.

Model, Presentation and View

The architecture of webcentric is split into three tiers; model, presentation and view. The model tier is a
hierarchical data structure that contains the fully expanded XML layout data. Each data node in this structure
contains the name of the element and the various attribute values, but does not contain the syntax of the XML
layout data it was derived from. The logic contained in each node is restricted to generic functionality such as
cloning a node, creating a child node, deleting a child node etc. All operations are generic and have no specific
logic related to the semantic meaning of the node type. The model tier can be persisted at any time, at which point
it is simply translated back into XML.

The presentation tier contains analogs of each of the element nodes in the model-tier; each presentation object is
created at startup from the information in its corresponding model object. However, the presentation objects also
contain the functionality and logic relevant to that object's behaviour in the application; A Tower object has
methods related to the behaviour of Towers and a Panel has methods specific to Panel behaviour (for more
information on Towers and Panels see Caplin Trader Client: Customizing the Appearance.

The view tier is responsible for constructing the actual user interface components with which the user will interact.
These components are created as HTML. Any interaction with the HTML components is captured in the view
object that owns these HTML components, which then relays the event to the presentation layer. If this interaction
results in a layout change for that component, then the model is informed of the required change. If need be,
changes to the model object's data is then reflected back into the presentation and view.

http://www.w3.org/2001/XMLSchema

Getting Started

4© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

An example of a how a GUI layout is represented in the webcentric "model -
presentation - view" framework.

In the figure above, an XML layout configuration file has been loaded and a hierarchical node structure is created
in the model tier. Each node contains information about the XML tag that it represents; specifically a string
containing the tag name and string pairs containing the attribute names and values given in the XML source.

The information the model-tier structure is used to create an associated structure in the presentation tier. This
structure has the same number of objects as in the model tier, but in this case the type of each object matches the
XML tag name in the corresponding node of the model-tier. The attribute values stored in the model's node are
used to set parameters on the object in the presentation tier.

Only the objects that are not frame managers generate objects in the view tier; this includes Panel, Border, Handle
and Frame amongst others. Each of these view objects is responsible for generating the final HTML elements that
make up the interface. For example, a Border with four sides will spawn four HTML div elements. A Frame will
spawn an HTML iframe element. User interaction with these HTML elements causes events to be fed back to the
owning view object, which then passes them on to the presentation object.

Getting Started

5© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

If an event causes fundamental changes to the layout of the interface, then the required changes will be fed back
to the model object where the changes will be recorded. Webcentric then feeds the changes through the
presentation and view tiers and the users page is updated accordingly.

Files using the XML markup

The XML markup can be used in a number of files to determine the layout of an application in the
Caplin Trader Client. In the figure below, you can see the files that are used to do this.

Getting Started

6© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Tip: For more information on the permitted order and nesting of the XML tags, advanced users may wish to
examine the XML schema file webcentric.xsd (from which this document is derived)

An example configuration file

An example XML file describing a very simple layout is shown below. For more information on the concepts behind
this markup please refer to the document Caplin Trader Client: Customizing the Appearance.

The XML tag reference section defines the XML tags and attributes you can use to define the layouts of the
Caplin Trader Client pages and other aspects of the appearance of these pages (such as the colors used).

Note: To have full control over the colors used in the Caplin Trader Client pages, you may also need to
modify CSS files and possibly JavaScript code. For further information, see Caplin Trader Client:
Customizing the Appearance.

11

Getting Started

7© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

XML for a simple layout

<?xml version="1.0" encoding="ISO-8859-1"?>
<Application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="file:webcentric.xsd"
 xmlns=""
 xmlns:caplin="http://www.caplin.com"
 drag_container="//*[@id='application-layout']"
 maximize_target="GUI"
 auto_size="true"
 auto_save="false"
 permissioned="false">

 <!-- General purpose global declaration area - put anything at all in here
 and reference it from elsewhere in the document / application. -->
 <Declarations>
 <Decorators id="decorator1">
 <Border style="outer" border_width="2" />
 <Handle handle_height="22" drag_action="SNAP_FRAMEITEM"
 drop_target="SNAP_FRAMEITEM" />
 </Decorators>
 </Declarations>

 <!-- The layout -->
 <GUI>
 <FrameItems>
 <Tower>
 <FrameItems>
 <Panel height="100" background="#fcc" src="titlebar.html" />
 <Terrace>
 <FrameItems>
 <Panel width="200" background="#cfc" src="menu.html" />
 <Stack id="application-layout">
 <FrameItems>
 <Tower splitters="true">
 <FrameItems>
 <Panel background="#ccf" src="content.html"
 caption="Window1" drop_target="SNAP_FRAMEITEM">
 <Decorators
 xref="Declarations/Decorators[@id='decorator1']"/>
 </Panel>
 <Terrace splitters="true">
 <FrameItems>
 <Panel background="#cff" src="content.html"
 caption="Window2" drop_target="SNAP_FRAMEITEM">
 <Decorators ... />
 </Panel>
 <Frame src="http://www.caplin.com"
 caption="Window3" drop_target="SNAP_FRAMEITEM">
 <Decorators ... />
 </Frame>
 </FrameItems>
 </Terrace>
 </FrameItems>
 </Tower>
 </FrameItems>
 </Stack>
 </FrameItems>
 </Terrace>
 </FrameItems>
 </Tower>
 </FrameItems>
 </GUI>
</Application>

Getting Started

8© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

The XML markup on the previous page translates into the following Caplin Trader layout (with the exception of the
HTML content and graphical details such as the logo and rounded tabs):

Rendering of the simple XML layout

Getting Started

9© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Ordering and nesting of tags

Each top level tag is shown below, together with the child tags that it can typically contain (the children are in no
particular order).

Tip: Advanced users may wish to consult the XML Schema for definitive information on the ordering and
nesting of tags.

For valid attributes see the XML Tag reference section

<Application> is the outermost tag that contains the layout.

<Application/>

<Application>
<Declarations></Declarations>
<GUI></GUI>

</Application>

<Declarations/>

<Declarations>
<Decorators/>

</Declarations>

<GUI/>

<GUI>
<Decorators/>
<FrameItems></FrameItems>

</GUI>

<FrameItems> is a nesting component that serves to encapsulate a number of components that will be grouped
visually by the parent of the <FrameItems> tag.

<FrameItems/>

<FrameItems>
<Stack></Stack>
<Tower></Tower>
<Terrace></Terrace>
<Panel/>
<Frame/>

</FrameItems>

The three layout components, Stack, Tower and Terrace allow for different orientations of components, for
example layered on top of one another (a "Stack"). They can also be arranged vertically (a "Tower"), or arranged
horizontally (a "Terrace").

<Stack/>

<Stack>
<Decorators/>
<FrameItems></FrameItems>

</Stack>

11

Getting Started

10© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

<Tower/>

<Tower>
<Decorators/>
<FrameItems></FrameItems>

</Tower>

<Terrace/>

<Terrace>
<Decorators/>
<FrameItems></FrameItems>

</Terrace>

A Panel is a content component that is used for displaying internal content.

<Panel/>

<Panel>
<Decorators/>

</Panel>

A Frame is a content component that is used for displaying external content.

<Frame/>

<Frame>
<Decorators/>

</Frame>

Decorators are used to add various functional embellishments to the components above, such as Borders,
Handles and Tabstrips (both Handle and Tabstrip act functionally like title bars at the top of a component).

<Decorators/>

<Decorators>
<Border/>
<Handle/>
<Tabstrip/>

</Decorators>

XML tag reference

11© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

3 XML tag reference

The following sections describe the XML tags. They are arranged in alphabetical order of tag name.

For each tag the attributes you can use within it are listed and described in a table. The “Req?” column indicates
whether the attribute is always required (“Y”) or is optional (“N”). Most attributes are optional. If you do not supply
an optional attribute within an instance of the tag then webcentric’s behavior depends on whether or not the
attribute has a default value. If there is a default, webcentric use this value. If there is no default (as specified by
“(none)” in the Default column), webcentric will not execute the behavior governed by the attribute.

For tags where a table is presented with a heading row only, this means that there are no attributes for that tag.

3.1 <Application>

<Application>

This is the root element of the webcentric application document. As well as acting as the container for all other
markup elements, the Application element carries attributes which help define the behaviour and presentation of
the application. This element has a direct JavaScript counterpart in the presentation-tier Application object. In turn,
the JavaScript Application object makes the underlying model accessible through its own 'model' property - this
gives a direct reference to the root Application element and through that, to the entire model.

Attributes:

Name Type Default Req? Description

auto_save string true N Save user preferences and application state
on exit.

The application exits when user closes
browser or navigates to another url. If
auto_save is true, any user preferences that
have changed will be saved along with state
changes for layouts or components.

auto_size boolean true N Determines whether the application resizes
when the browser window is resized.

drag_container xpath (none) N Identifies the container element that defines
the drag boundaries for a drag operation. It
is not possible to drag an element outside
this constrained area. Individual draggable
elements can define specific drag
containers, though it is often be more
convenient to define this once for the entire
application, on the application node. The
value must be an xpath expression that
when evaluated identifies a frameset or
component.

layout string (none) N This attribute specifies the initial layout or
layouts to be loaded, if not overridden by a
value from the user preferences.

Typical use is to specify a default layout to
be loaded first time a user launches the

XML tag reference

12© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

application. If preferences are being saved
on a per-user basis, this attribute will
normally be ignored on subsequent use of
the application by the same user - the last
loaded layout will be saved as a user
preference.

maximize_target xpath GUI N The default maximize boundary. This
identifies the application region to which
FrameItems are maximized. It must be an
xpath expression identifying a frameset or
component.

If this attribute is not specified, the default
value will be the main content area of the
application, excluding any application
decorators - heading, menu, toolbars, and
so on, but including any components open
within the application workspace - navigation
panels, consoles and so on. This value will
be used to define the maximized size of any
FrameItem that is maximized and that does
not explicitly declare a maximize_target
attribute. In the case of FrameItems that do
include a maximize_target attribute
declaration, the local declaration takes
precedence over the global attribute.

3.2 <Border>

<Border>

This describes a single border around a frameset or component. The border may completely enclose the target or
may be limited to one, two or three sides only. The color and width of each side can be specified individually, if
required. Multiple borders can be specified for the same target, if required for visual effect.

Attributes:

Name Type Default Req? Description

border_bottom_color string (none) N The hex color value (or color constant value)
for the bottom border.

border_color string (none) N The hex color value (or color constant value)
for the whole border.

border_left_color string (none) N The hex color value (or color constant value)
for the left border.

border_right_color string (none) N The hex color value (or color constant value)
for the right border.

border_top_color string (none) N The hex color value (or color constant value)
for the top border.

XML tag reference

13© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

border_left_width integer (none) N The width in pixels for the left border.

border_right_width integer (none) N The width in pixels for the right border.

border_top_width integer (none) N The width in pixels for the top border.

border_width integer (none) N The width in pixels for the whole border.

style string (none) N This attribute allows for fine-grained control
over the visual presentation aspects of
components and decorators. The attribute
value allows the element to be given a
custom appearance or behavior via CSS or
JavaScript respectively.

In HTMLView, which is the base object for
defining the HTML markup of components in
the GUI, the value of the style attribute will
be incorporated into the CSS class name of
the rendered HTML object. In this way,
custom visuals can be defined for this
element in CSS.

For example, using style="outer" in a Border
element, results in the rendered HTML
element being given the Border_outer CSS
class name. In this way CSS visuals can be
applied to '.Border_outer' to differentiate
from the CSS class of '.Border' in general.

Additionally, in JavaScript, a custom view
implementation can be provided for a
component or decorator. The name of the
custom view object is
HTML<ElementName>_<style>, where
<style> is the value of this attribute and
<ElementName> is the name of the element,
for example 'Border' or 'Tabstrip' for
example. Methods on this view object can
provide custom HTML construction
mechanisms for the actual HTML
components used in the element's display.

XML tag reference

14© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

3.3 <Declarations>

<Declarations>

This is a general-purpose container intended for content that may be referenced from elsewhere in the document
or loaded dynamically by the application at runtime. For example, common sets of decorator declarations, may be
declared once here and may then be referenced by multiple components/framesets, avoiding duplication within the
markup. Another example is Dialog definitions, which can be declared here and then be referenced by the
showDialog action, to be loaded and displayed on demand at runtime. Any content can be hosted here, to be used
as seen fit by the application.

Attributes:

Name Type Default Req? Description

3.4 <Decorators>

<Decorators>

The Decorators tag serves to group a number of Decorators to be used on a particular component. Examples of
Decorators are Handle, Tabstrip, Border. Any of these may be used in the markup as children of the <Decorators>
tag.

Attributes:

Name Type Default Req? Description

id unique id (none) N This is a unique identifier. It must be unique
within the current application document.

xref string (none) N This pulls in content from another location
within the model.

This attribute can contain an IDREF or an
xpath expression used to locate the content.

XML tag reference

15© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

3.5 <Frame>

<Frame>

Frame allows the user to present external content via a URL specified in the src attribute.

Attributes:

Name Type Default Req? Description

height integer (none) N This value normally determines the height of
the element in pixels. However, if this
component is a child of a Tower frameset, its
height in pixels is determined by considering
the other children of the Tower.

Specifically, if the heights of all the children
have been defined, then for each child the
fraction calculated by dividing its height by
the sum total of all the children's heights is
multiplied by the vertical space in pixels to
be filled by the Tower. This calculated value
is the height in pixels for that child. If
however, the heights of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the height of this element will be the
specified height in pixels and the other
children will fill up the remaining space.

width integer (none) N This value normally determines the width of
the element in pixels. However, if this
component is a child of a Terrace frameset,
its width in pixels is determined by
considering the other children of the
Terrace.

Specifically, if the widths of all the children
have been defined, then for each child the
fraction calculated by dividing its width by
the sum total of all the children's widths is
multiplied by the horizontal space in pixels to
be filled by the Terrace. This calculated
value is the width in pixels for that child. If
however, the widths of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the width of this element will be the specified
width in pixels and the other children will fill
up the remaining space.

caption string (none) N This is a short, descriptive piece of text
which may be used by view for handle titles,
tab text, and so on.

It is best to keep this to just one or two
words.

fixed_size boolean false N This provides a hint to webcentric that this
frameItem should retain its significant size

XML tag reference

16© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

attribute (width or height, depending upon
whether the frameset is a Terrace or Tower),
even when the containing frameset is
resized.

If the frameset is a stack, no size attribute is
significant, as all dimensions are dictated by
the Stack itself. In an MDI frameset both
width and height are significant.

img string (none) N The URL for an image file.

This should generally be a small image
suitable for display: for example, within the
handle or within a tab. A custom JavaScript
View object would have to be written to
access this stored URL and use it in the
tabs, for example. The image cannot be
used as a background image for the frame
content.

maximized boolean (none) N Set this value to true if the frameItem should
be displayed in the maximized state.

minimized boolean (none) N Set this value to true if the frameItem should
be displayed in the minimized state.

src string (none) Y src specifies the external URL that is to be
loaded into the Frame

style string (none) N This attribute allows for fine-grained control
over the visual presentation aspects of
components and decorators. The attribute
value allows the element to be given a
custom appearance or behavior via CSS or
JavaScript respectively.

In HTMLView, which is the base object for
defining the HTML markup of components in
the GUI, the value of the style attribute will
be incorporated into the CSS class name of
the rendered HTML object. In this way,
custom visuals can be defined for this
element in CSS.

For example, using style="outer" in a Border
element, results in the rendered HTML
element being given the Border_outer CSS
class name. In this way CSS visuals can be
applied to '.Border_outer' to differentiate
from the CSS class of '.Border' in general.

Additionally, in JavaScript, a custom view
implementation can be provided for a
component or decorator. The name of the
custom view object is
HTML<ElementName>_<style>, where
<style> is the value of this attribute and

XML tag reference

17© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

<ElementName> is the name of the element,
for example 'Border' or 'Tabstrip' for
example. Methods on this view object can
provide custom HTML construction
mechanisms for the actual HTML
components used in the element's display.

3.6 <FrameItems>

<FrameItems>

 Container object for child FrameItems within a Frameset.

Attributes:

Name Type Default Req? Description

3.7 <GUI>

<GUI>

This element, with its children, fully describes the graphical interface of the application. The GUI element is
actually a specialized form of MDI Frameset, one of several frameset types. The GUI element hosts the main
Application Stack and any dialogs.

Attributes:

Name Type Default Req? Description

id unique id (none) N This is a unique identifier. It must be unique
within the current application document.

XML tag reference

18© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

3.8 <Handle>

<Handle>

This decorator is used to provide the user with a draggable strip along the top of another component. This Handle
also displays the caption of the parent component.

Attributes:

Name Type Default Req? Description

align string top N This value defines the alignment of this
decorator relative to the main content area
of the parent component. 'top' means the
Handle will be displayed along the top of the
parent; similarly, 'bottom', 'left' and 'right'
display accordingly.

handle_height integer (none) N This defines the 'depth' of this decorator,
which may be either the height or the width,
depending on whether the alignment of the
Handle is a horizontal alignment or vertical
one.

The default alignment is generally top (a
horizontal alignment), but this varies from
decorator to decorator (for example the
default alignment of StatusBar is bottom).
When alignment is top or bottom (that is,
horizontal), handle_height defines the
height, otherwise it defines the width.

drag_action string (none) N This defines the manner in which this
decorator and its parent component can be
dragged. The value 'SNAP_FRAMEITEM'
allows the component to be dragged and
dropped on any other component that has
the 'drop_target' attribute also set to
'SNAP_FRAMEITEM'. the value
'MDI_DRAG' allows the decorator and its
parent component to be dragged and
dropped anywhere.

drag_container xpath (none) N Identifies the container element that defines
the drag boundaries for a drag operation. It
is not possible to drag an element outside
this constrained area. Individual draggable
elements can define specific drag
containers, though it is often be more
convenient to define this once for the entire
application, on the application node. The
value must be an xpath expression that
when evaluated identifies a frameset or
component.

drop_target string (none) N If this attribute is set to 'SNAP_FRAMEITEM'
then other components being dragged can
be dropped onto this decorator or
component.

XML tag reference

19© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

style string (none) N This attribute allows for fine-grained control
over the visual presentation aspects of
components and decorators. The attribute
value allows the element to be given a
custom appearance or behavior via CSS or
JavaScript respectively.

In HTMLView, which is the base object for
defining the HTML markup of components in
the GUI, the value of the style attribute will
be incorporated into the CSS class name of
the rendered HTML object. In this way,
custom visuals can be defined for this
element in CSS.

For example, using style="outer" in a Border
element, results in the rendered HTML
element being given the Border_outer CSS
class name. In this way CSS visuals can be
applied to '.Border_outer' to differentiate
from the CSS class of '.Border' in general.

Additionally, in JavaScript, a custom view
implementation can be provided for a
component or decorator. The name of the
custom view object is
HTML<ElementName>_<style>, where
<style> is the value of this attribute and
<ElementName> is the name of the element,
for example 'Border' or 'Tabstrip' for
example. Methods on this view object can
provide custom HTML construction
mechanisms for the actual HTML
components used in the element's display.

3.9 <Panel>

<Panel>

The Panel is simple component into which local HTML content can be rendered.

Attributes:

Name Type Default Req? Description

defer boolean (none) N This attribute determines whether external
content expressed with the 'src' attribute is
pulled in on first use as opposed to at
loadtime. The src attribute specifies a URL
from which further XML layout can be
loaded.

background string (none) N This hex color value defines the
component's background color.

height integer (none) N This value normally determines the height of

XML tag reference

20© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

the element in pixels. However, if this
component is a child of a Tower frameset, its
height in pixels is determined by considering
the other children of the Tower.

Specifically, if the heights of all the children
have been defined, then for each child the
fraction calculated by dividing its height by
the sum total of all the children's heights is
multiplied by the vertical space in pixels to
be filled by the Tower. This calculated value
is the height in pixels for that child. If
however, the heights of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the height of this element will be the
specified height in pixels and the other
children will fill up the remaining space.

width integer (none) N This value normally determines the width of
the element in pixels. However, if this
component is a child of a Terrace frameset,
its width in pixels is determined by
considering the other children of the
Terrace.

Specifically, if the widths of all the children
have been defined, then for each child the
fraction calculated by dividing its width by
the sum total of all the children's widths is
multiplied by the horizontal space in pixels to
be filled by the Terrace. This calculated
value is the width in pixels for that child. If
however, the widths of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the width of this element will be the specified
width in pixels and the other children will fill
up the remaining space.

caption string (none) N This is a short, descriptive piece of text
which may be used by view for handle titles,
tab text, and so on.

It is best to keep this to just one or two
words.

fixed_size boolean false N This provides a hint to webcentric that this
frameItem should retain its significant size
attribute (width or height, depending upon
whether the frameset is a Terrace or Tower),
even when the containing frameset is
resized.

If the frameset is a stack, no size attribute is
significant, as all dimensions are dictated by
the Stack itself. In an MDI frameset both
width and height are significant.

XML tag reference

21© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

img string (none) N The URL for an image file.

This should generally be a small image
suitable for display: for example, within the
handle or within a tab. A custom JavaScript
View object would have to be written to
access this stored URL and use it in the
tabs, for example. The image cannot be
used as a background image for the frame
content.

maximized boolean (none) N Set this value to true if the frameItem should
be displayed in the maximized state.

script string (none) N Specifies the URL of a script to be loaded at
runtime to be used by the Panel. Note that if
HTML content is also specified (via the 'src'
attribute), this HTML content is fully loaded
into the Panel before the script is run.

src string (none) N Specifies a file whose contents will be
loaded at runtime and written into the
content area of the Panel. The intended use
is to load static html content into the panel.

style string (none) N This attribute allows for fine-grained control
over the visual presentation aspects of
components and decorators. The attribute
value allows the element to be given a
custom appearance or behavior via CSS or
JavaScript respectively.

In HTMLView, which is the base object for
defining the HTML markup of components in
the GUI, the value of the style attribute will
be incorporated into the CSS class name of
the rendered HTML object. In this way,
custom visuals can be defined for this
element in CSS.

For example, using style="outer" in a Border
element, results in the rendered HTML
element being given the Border_outer CSS
class name. In this way CSS visuals can be
applied to '.Border_outer' to differentiate
from the CSS class of '.Border' in general.

Additionally, in JavaScript, a custom view
implementation can be provided for a
component or decorator. The name of the
custom view object is
HTML<ElementName>_<style>, where
<style> is the value of this attribute and
<ElementName> is the name of the element,
for example 'Border' or 'Tabstrip' for
example. Methods on this view object can
provide custom HTML construction
mechanisms for the actual HTML

XML tag reference

22© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

components used in the element's display.

xml string (none) N Specifies an xml document to be loaded and
stored as a property of the Panel. Usually
this attribute is used in conjunction with the
'xsl' attribute. The xslt stylesheet is applied
to this xml file and the output from the
transformation is written into the content
area of the Panel.

If no xsl value is given, no processing is be
performed on the xml file, and nothing is be
written to the content area of the Panel.
However, the xml data remains accessible
via a property of the Panel through
JavaScript.

xsl string (none) N Specifies an xslt stylesheet to be applied
either to the xml document specified in the
src attribute, or to the xml persisted form of
the contextNode. The output from the
transformation is written into the content
area of the Panel.

3.10 <Stack>

<Stack>

The stack is a layout component that arranges child frameItems on top of each other like sheets or pages. Each
child fills the same space as the Stack itself, but only one is visible at a time. Typically Stacks are used with
Tabstrib decorators that allow the user to switch between child sheets.

Attributes:

Name Type Default Req? Description

height integer (none) N This value normally determines the height of
the element in pixels. However, if this
component is a child of a Tower frameset, its
height in pixels is determined by considering
the other children of the Tower.

Specifically, if the heights of all the children
have been defined, then for each child the
fraction calculated by dividing its height by
the sum total of all the children's heights is
multiplied by the vertical space in pixels to
be filled by the Tower. This calculated value
is the height in pixels for that child. If
however, the heights of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the height of this element will be the
specified height in pixels and the other
children will fill up the remaining space.

XML tag reference

23© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

width integer (none) N This value normally determines the width of
the element in pixels. However, if this
component is a child of a Terrace frameset,
its width in pixels is determined by
considering the other children of the
Terrace.

Specifically, if the widths of all the children
have been defined, then for each child the
fraction calculated by dividing its width by
the sum total of all the children's widths is
multiplied by the horizontal space in pixels to
be filled by the Terrace. This calculated
value is the width in pixels for that child. If
however, the widths of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the width of this element will be the specified
width in pixels and the other children will fill
up the remaining space.

maximized boolean (none) N Set this value to true if the frameItem should
be displayed in the maximized state.

minimized boolean (none) N Set this value to true if the frameItem should
be displayed in the minimized state.

padding integer (none) N The pixel value for the space left between
the interior perimeter of a frameset and its
children.

The same effect can always be achieved
with a Border, but padding is more efficient
and uses less markup.

selected_ind integer (none) N The index position of the 'active' or 'selected'
child frameItem.

All framesets have the concept of a selected
child frameItem. For a Stack, it is the visible
frameItem (the 'top' item on the Stack). For
other framesets the distinction is not so
obvious, but it is the selected frameItem that
is activated when the frameset is activated.
In the case of an MDI frameset, the frameset
manages the z-index of the child
frameItems; the selected frameItem will
appear in front of other frameItems.

style string (none) N This attribute allows for fine-grained control
over the visual presentation aspects of
components and decorators. The attribute
value allows the element to be given a
custom appearance or behavior via CSS or
JavaScript respectively.

In HTMLView, which is the base object for
defining the HTML markup of components in

XML tag reference

24© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

the GUI, the value of the style attribute will
be incorporated into the CSS class name of
the rendered HTML object. In this way,
custom visuals can be defined for this
element in CSS.

For example, using style="outer" in a Border
element, results in the rendered HTML
element being given the Border_outer CSS
class name. In this way CSS visuals can be
applied to '.Border_outer' to differentiate
from the CSS class of '.Border' in general.

Additionally, in JavaScript, a custom view
implementation can be provided for a
component or decorator. The name of the
custom view object is
HTML<ElementName>_<style>, where
<style> is the value of this attribute and
<ElementName> is the name of the element,
for example 'Border' or 'Tabstrip' for
example. Methods on this view object can
provide custom HTML construction
mechanisms for the actual HTML
components used in the element's display.

3.11 <Tabstrip>

<Tabstrip>

The Tabstrip is a Stack decorator that is used to facilitate the selection of child components in the Stack. When
one of the tabs is selected the corresponding child component of the Stack is brought to the front and becomes
visible.

Attributes:

Name Type Default Req? Description

handle_height integer (none) N This defines the 'depth' of this decorator,
which may be either the height or the width,
depending on whether the alignment of the
Handle is a horizontal alignment or vertical
one.

The default alignment is generally top (a
horizontal alignment), but this varies from
decorator to decorator (for example the
default alignment of StatusBar is bottom).
When alignment is top or bottom (that is,
horizontal), handle_height defines the
height, otherwise it defines the width.

drag_action string (none) N This defines the manner in which this
decorator and its parent component can be
dragged. The value 'SNAP_FRAMEITEM'
allows the component to be dragged and

XML tag reference

25© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

dropped on any other component that has
the 'drop_target' attribute also set to
'SNAP_FRAMEITEM'. the value
'MDI_DRAG' allows the decorator and its
parent component to be dragged and
dropped anywhere.

drag_container xpath (none) N Identifies the container element that defines
the drag boundaries for a drag operation. It
is not possible to drag an element outside
this constrained area. Individual draggable
elements can define specific drag
containers, though it is often be more
convenient to define this once for the entire
application, on the application node. The
value must be an xpath expression that
when evaluated identifies a frameset or
component.

drop_target string (none) N If this attribute is set to 'SNAP_FRAMEITEM'
then other components being dragged can
be dropped onto this decorator or
component.

selection string (none) N An xpath reference to a target element within
the document, which allows the current
element to listen for changes in the target,
firing a SelectionChanged event when this
occurs.

This attribute can be used to establish
interdependencies between components.

style string (none) N This attribute allows for fine-grained control
over the visual presentation aspects of
components and decorators. The attribute
value allows the element to be given a
custom appearance or behavior via CSS or
JavaScript respectively.

In HTMLView, which is the base object for
defining the HTML markup of components in
the GUI, the value of the style attribute will
be incorporated into the CSS class name of
the rendered HTML object. In this way,
custom visuals can be defined for this
element in CSS.

For example, using style="outer" in a Border
element, results in the rendered HTML
element being given the Border_outer CSS
class name. In this way CSS visuals can be
applied to '.Border_outer' to differentiate
from the CSS class of '.Border' in general.

Additionally, in JavaScript, a custom view
implementation can be provided for a
component or decorator. The name of the

XML tag reference

26© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

custom view object is
HTML<ElementName>_<style>, where
<style> is the value of this attribute and
<ElementName> is the name of the element,
for example 'Border' or 'Tabstrip' for
example. Methods on this view object can
provide custom HTML construction
mechanisms for the actual HTML
components used in the element's display.

XML tag reference

27© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

3.12 <Terrace>

<Terrace>

The Terrace is a layout component that manages the layout of a number of child components. The children of a
Terrace are arranged horizontally, from left to right. The relative widths of the children can be controlled via the
width attribute.

Attributes:

Name Type Default Req? Description

height integer (none) N This value normally determines the height of
the element in pixels. However, if this
component is a child of a Tower frameset, its
height in pixels is determined by considering
the other children of the Tower.

Specifically, if the heights of all the children
have been defined, then for each child the
fraction calculated by dividing its height by
the sum total of all the children's heights is
multiplied by the vertical space in pixels to
be filled by the Tower. This calculated value
is the height in pixels for that child. If
however, the heights of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the height of this element will be the
specified height in pixels and the other
children will fill up the remaining space.

width integer (none) N This value normally determines the width of
the element in pixels. However, if this
component is a child of a Terrace frameset,
its width in pixels is determined by
considering the other children of the
Terrace.

Specifically, if the widths of all the children
have been defined, then for each child the
fraction calculated by dividing its width by
the sum total of all the children's widths is
multiplied by the horizontal space in pixels to
be filled by the Terrace. This calculated
value is the width in pixels for that child. If
however, the widths of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the width of this element will be the specified
width in pixels and the other children will fill
up the remaining space.

fixed_size boolean false N This provides a hint to webcentric that this
frameItem should retain its significant size
attribute (width or height, depending upon
whether the frameset is a Terrace or Tower),
even when the containing frameset is
resized.

XML tag reference

28© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

If the frameset is a stack, no size attribute is
significant, as all dimensions are dictated by
the Stack itself. In an MDI frameset both
width and height are significant.

maximized boolean (none) N Set this value to true if the frameItem should
be displayed in the maximized state.

minimized boolean (none) N Set this value to true if the frameItem should
be displayed in the minimized state.

padding integer (none) N The pixel value for the space left between
the interior perimeter of a frameset and its
children.

The same effect can always be achieved
with a Border, but padding is more efficient
and uses less markup.

selected_ind integer (none) N The index position of the 'active' or 'selected'
child frameItem.

All framesets have the concept of a selected
child frameItem. For a Stack, it is the visible
frameItem (the 'top' item on the Stack). For
other framesets the distinction is not so
obvious, but it is the selected frameItem that
is activated when the frameset is activated.
In the case of an MDI frameset, the frameset
manages the z-index of the child
frameItems; the selected frameItem will
appear in front of other frameItems.

splitters boolean true N If set to true, the frameset will use horizontal
or vertical bars to separate the child
components. These bars (splitters) can be
dragged by the user to resize the height or
width of one child component relative to
another.

style string (none) N This attribute allows for fine-grained control
over the visual presentation aspects of
components and decorators. The attribute
value allows the element to be given a
custom appearance or behavior via CSS or
JavaScript respectively.

In HTMLView, which is the base object for
defining the HTML markup of components in
the GUI, the value of the style attribute will
be incorporated into the CSS class name of
the rendered HTML object. In this way,
custom visuals can be defined for this
element in CSS.

For example, using style="outer" in a Border
element, results in the rendered HTML
element being given the Border_outer CSS

XML tag reference

29© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

class name. In this way CSS visuals can be
applied to '.Border_outer' to differentiate
from the CSS class of '.Border' in general.

Additionally, in JavaScript, a custom view
implementation can be provided for a
component or decorator. The name of the
custom view object is
HTML<ElementName>_<style>, where
<style> is the value of this attribute and
<ElementName> is the name of the element,
for example 'Border' or 'Tabstrip' for
example. Methods on this view object can
provide custom HTML construction
mechanisms for the actual HTML
components used in the element's display.

XML tag reference

30© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

3.13 <Tower>

<Tower>

The Tower is a layout component that manages the layout of a number of child components. The children of a
Tower are arranged vertically, from top to bottom. The relative heights of the children can be controlled via the
height attribute.

Attributes:

Name Type Default Req? Description

height integer (none) N This value normally determines the height of
the element in pixels. However, if this
component is a child of a Tower frameset, its
height in pixels is determined by considering
the other children of the Tower.

Specifically, if the heights of all the children
have been defined, then for each child the
fraction calculated by dividing its height by
the sum total of all the children's heights is
multiplied by the vertical space in pixels to
be filled by the Tower. This calculated value
is the height in pixels for that child. If
however, the heights of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the height of this element will be the
specified height in pixels and the other
children will fill up the remaining space.

width integer (none) N This value normally determines the width of
the element in pixels. However, if this
component is a child of a Terrace frameset,
its width in pixels is determined by
considering the other children of the
Terrace.

Specifically, if the widths of all the children
have been defined, then for each child the
fraction calculated by dividing its width by
the sum total of all the children's widths is
multiplied by the horizontal space in pixels to
be filled by the Terrace. This calculated
value is the width in pixels for that child. If
however, the widths of one or more of the
other children have not been defined or, the
value of the fixed_size attribute is 'true', then
the width of this element will be the specified
width in pixels and the other children will fill
up the remaining space.

caption string (none) N This is a short, descriptive piece of text
which may be used by view for handle titles,
tab text, and so on.

It is best to keep this to just one or two
words.

XML tag reference

31© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

fixed_size boolean false N This provides a hint to webcentric that this
frameItem should retain its significant size
attribute (width or height, depending upon
whether the frameset is a Terrace or Tower),
even when the containing frameset is
resized.

If the frameset is a stack, no size attribute is
significant, as all dimensions are dictated by
the Stack itself. In an MDI frameset both
width and height are significant.

maximized boolean (none) N Set this value to true if the frameItem should
be displayed in the maximized state.

minimized boolean (none) N Set this value to true if the frameItem should
be displayed in the minimized state.

padding integer (none) N The pixel value for the space left between
the interior perimeter of a frameset and its
children.

The same effect can always be achieved
with a Border, but padding is more efficient
and uses less markup.

selected_ind integer (none) N The index position of the 'active' or 'selected'
child frameItem.

All framesets have the concept of a selected
child frameItem. For a Stack, it is the visible
frameItem (the 'top' item on the Stack). For
other framesets the distinction is not so
obvious, but it is the selected frameItem that
is activated when the frameset is activated.
In the case of an MDI frameset, the frameset
manages the z-index of the child
frameItems; the selected frameItem will
appear in front of other frameItems.

splitters boolean true N If set to true, the frameset will use horizontal
or vertical bars to separate the child
components. These bars (splitters) can be
dragged by the user to resize the height or
width of one child component relative to
another.

style string (none) N This attribute allows for fine-grained control
over the visual presentation aspects of
components and decorators. The attribute
value allows the element to be given a
custom appearance or behavior via CSS or
JavaScript respectively.

In HTMLView, which is the base object for
defining the HTML markup of components in
the GUI, the value of the style attribute will
be incorporated into the CSS class name of

XML tag reference

32© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

Name Type Default Req? Description

the rendered HTML object. In this way,
custom visuals can be defined for this
element in CSS.

For example, using style="outer" in a Border
element, results in the rendered HTML
element being given the Border_outer CSS
class name. In this way CSS visuals can be
applied to '.Border_outer' to differentiate
from the CSS class of '.Border' in general.

Additionally, in JavaScript, a custom view
implementation can be provided for a
component or decorator. The name of the
custom view object is
HTML<ElementName>_<style>, where
<style> is the value of this attribute and
<ElementName> is the name of the element,
for example 'Border' or 'Tabstrip' for
example. Methods on this view object can
provide custom HTML construction
mechanisms for the actual HTML
components used in the element's display.

Glossary of terms and acronyms

33© Caplin Systems Ltd. 2007 – 2008

Caplin Trader XML Configuration Reference

CONFIDENTIAL

4 Glossary of terms and acronyms

This section contains a glossary of terms and acronyms relating to the Caplin Trader XML Configuration.

Term Definition

Caplin Platform The Caplin Platform is a suite of software products for on-line financial
trading and Web delivery of real-time market data.

Caplin Trader Caplin Trader is a complete platform and toolkit for building multi-product
trading portals. It is built on the Caplin Platform and webcentric.

Caplin Trader Client Caplin Trader Client is a Web application written in Ajax that provides a
rich trading workstation in a browser. It is built using webcentric

webcentric A client-side portal framework that uses Ajax technology. The Caplin
Trader Client uses webcentric to manage the look and feel of the
rendered pages. From the webcentric point of view, the Caplin Trader
Client is just another webcentric application. Webcentric controls the
look and feel of this application according to XML markup that conforms
to the definitions in this document.

© Caplin Systems Ltd. 2007 – 2008

The information contained in this publication is subject to UK,
US and international copyright laws and treaties and all rights
are reserved. No part of this publication may be reproduced or
transmitted in any form or by any means without the written
authorization of an Officer of Caplin Systems Limited.

Various Caplin technologies described in this document are the
subject of patent applications. All trademarks, company names,
logos and service marks/names ("Marks") displayed in this
publication are the property of Caplin or other third parties and
may be registered trademarks. You are not permitted to use
any Mark without the prior written consent of Caplin or the
owner of that Mark.

This publication is provided "as is" without warranty of any kind,
either express or implied, including, but not limited to,
warranties of merchantability, fitness for a particular purpose, or
non-infringement.

This publication could include technical inaccuracies or
typographical errors and is subject to change without notice.
 Changes are periodically added to the information herein;
these changes will be incorporated in new editions of this
publication. Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the program(s)
described in this publication at any time.

Contact Us
Caplin Systems Ltd.
Triton Court
14 Finsbury Square
London EC2A 1BR
UK

Telephone: +44 20 7826 9600
Fax: +44 20 7826 9610

www.caplin.com

Document version 1

CONFIDENTIAL

	Preface
	What this document contains
	Who should read this document
	Related documents
	Typographical conventions
	Feedback

	Getting Started
	Technical assumptions and restrictions
	Using the XML configuration markup
	About webcentric
	Files using the XML markup
	An example configuration file
	Ordering and nesting of tags

	XML tag reference
	<Application>
	<Border>
	<Declarations>
	<Decorators>
	<Frame>
	<FrameItems>
	<GUI>
	<Handle>
	<Panel>
	<Stack>
	<Tabstrip>
	<Terrace>
	<Tower>

	Glossary of terms and acronyms

