
Overview

August 2010

C O N F I D E N T I A L

Caplin Trader 2.0

i

Overview

© Caplin Systems Ltd. 2010

Contents

CONFIDENTIAL

Caplin Trader 2.0

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 2Related documents1.3

.. 2Typographical conventions1.4

.. 2Feedback1.5

.. 2Acknowledgments1.6

.. 3Open Source Software1.7

.. 4What is Caplin Trader?2

.. 7What are the benefits of using Caplin Trader?2.1

.. 8What does Caplin Trader consist of?2.2

.. 9The User Experience3

.. 10Architecture4

.. 11Caplin Trader and Caplin Xaqua4.1

.. 12Caplin Trader application structure4.2

.. 13Application Code

.. 13Caplin Xaqua Client APIs and Liberator

.. 14Application server

.. 14Persistence database

.. 15Caplin Trader's internal architecture4.3

.. 16Caplin Trader API

.. 17Display components

.. 22Internal modules

.. 23JavaScript Preprocessor

.. 23Third-party modules

.. 24Building a Caplin Trader application5

.. 24Getting started5.1

.. 26The Caplin Trader development framework5.2

.. 27Defining the layout and overall appearance5.3

.. 27Layout concepts

.. 30Changing the appearance of the application

.. 30Layout Manager features

ii

Overview

© Caplin Systems Ltd. 2010

Contents

CONFIDENTIAL

Caplin Trader 2.0

.. 31Customizing layouts

.. 34Customizing display components5.4

.. 35Customizing display components with XML (Grids)

.. 38Element renderers

.. 40Decorators

.. 42Adding your own component types5.5

.. 44Using the Form Builder5.6

.. 47Defining a Trade Model5.7

.. 49Appendix A: Recommended browsers6

.. 50Appendix B: Customization status7

.. 52Glossary of terms and acronyms8

Preface

1© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

1 Preface

1.1 What this document contains

This document contains a business and technical overview of Caplin Trader version 2.0

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for anyone who requires an overview of what Caplin Trader is and how it can be
used to build financial trading client applications.

Its readership includes:

Business Managers

Technical Managers

System Architects

System Administrators

Software Developers

http://support.microsoft.com/kb/896054/

Preface

2© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

1.3 Related documents

Caplin Xaqua Overview

A business and technical overview of Caplin Xaqua.

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

XYZ Product Overview Document name

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

1.6 Acknowledgments

Adobe®, Adobe Reader, Adobe Flash, and Adobe Flex are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Emprise JavaScript Charts is a product of Emprise Corporation.

ExtJS is a JavaScript library produced by Sencha Inc.

JBoss and Hibernate are registered trademarks of Red Hat, Inc. in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

MySQL is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Oracle is a registered trademark of Oracle and/or its affiliates.

Silverlight is a trademark of Microsoft Corporation in the United States and other countries.

https://support.caplin.com/documentfeedback/?product=Caplin Trader 2.0&doctitle=Overview&date=August 2010&release=1

Preface

3© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Sun, Solaris. Java, and JSP are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. or other countries.

Sybase and Sybase SQL Server are trademarks of Sybase, Inc. ® indicates registration in the United
States of America.

1.7 Open Source Software

This Caplin product incorporates the following Open Source software:

Open Source item Use in Caplin Trader Further information

Apache ANT Build and dependency
management framework.

http://ant.apache.org/

Apache Maven Build and dependency
management framework.

http://maven.apache.org/

gzip The gzip compression algorithm
is used (via standard Java utility
classes) to compress Caplin
Trader application resource files
on the application server before
they are downloaded to client
browsers.

http://www.gzip.org

http://java.sun.com/javase/6/
docs/api/java/util/zip/package-
summary.html

JBoss Hibernate Communication between the
application server and database.

http://www.hibernate.org

JSUnit Unit testing framework. http://www.jsunit.net/

Mock4JS Unit testing framework. http://mock4js.sourceforge.net/

OpenAjax 1.0 Caplin Trader's Event Manager
uses the publish and subscribe
event management features of
the OpenAjax Hub.

OpenAjax Alliance
http://www.openajax.org

Selenium Acceptance testing framework SelenuimHQ
http://seleniumhq.org

WebDriver Performance and stress testing
framework.

SelenuimHQ
http://seleniumhq.org

http://ant.apache.org/
http://maven.apache.org/
http://www.gzip.org
http://java.sun.com/javase/6/docs/api/java/util/zip/package-summary.html
http://java.sun.com/javase/6/docs/api/java/util/zip/package-summary.html
http://java.sun.com/javase/6/docs/api/java/util/zip/package-summary.html
http://www.hibernate.org
http://www.jsunit.net/
http://mock4js.sourceforge.net/
http://www.openajax.org
http://seleniumhq.org
http://seleniumhq.org

What is Caplin Trader?

4© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

2 What is Caplin Trader?

Caplin Trader is a web application framework for financial trading. It enables you to build advanced trading
applications with unlimited functionality.

Here are some examples of typical trading screens that you can implement with Caplin Trader:

Example Caplin Trader application –
Foreign Exchange (FX) trading screen

What is Caplin Trader?

5© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Example Caplin Trader application –
Fixed Income (FI) trading screen

Example Caplin Trader application –
Equities trading screen

What is Caplin Trader?

6© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Example Caplin Trader application –
Retail screen

What is Caplin Trader?

7© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

2.1 What are the benefits of using Caplin Trader?

Caplin Trader is built on web standards, which means:

Universal deployment

– Applications built with Caplin Trader work with all common browsers

– They automatically handle the non-standard features of some older browser versions

– There is no need to change firewalls or security settings

You can on-board users simply and painlessly

– End-users do not have to locally install applications or browser plug-ins;
access is as easy as viewing a web page

It is easy to integrate a Caplin Trader application with your existing web assets and content,
such as research, historic data, news, and video

Applications built with Caplin Trader are easy to maintain

There is a huge pool of programmers with relevant skills

Caplin Trader is specifically designed for financial trading, which means:

You can concentrate on the added-value aspects of your trading application, and getting it quickly to
market, because:

– Caplin Trader contains customizable financial components

– It provides domain specific abstraction and supports all common financial data structures

– It makes it easy to add new asset classes, products, and trading models to your application

You can create a unique and differentiated product offering with your own
content, styling, and branding

Caplin Trader has been proven in mission critical financial applications

It has a multitude of features designed to deliver consistently low latency and high performance

Caplin Trader comes with its own environments for development, integration, and test,
which means:

You can rapidly start development

Your developers are more productive, as it is easy to build high quality, high performance code

You can quickly and easily add new features to your trading application at any time

What is Caplin Trader?

8© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

2.2 What does Caplin Trader consist of?

Caplin Trader consists of a run-time framework, a development framework, and documentation.

Run-time framework

The run-time framework includes:

An extensive and easily customizable set of display components

A Layout Manager

A set of Caplin Xaqua APIs (JavaScript libraries) for pricing, trading, and permissioning

A JavaScript Preprocessor that ensures faster application start up and a smaller application payload
in the browser

A persistence database

Full licenses for ExtJS and Emprise JavaScript Charts

Development framework

The development framework helps you build and test a Caplin Trader application. It is built on open source
technologies, and consists of the following:

A build and dependency management framework (built on Apache ANT and Apache Maven)

A unit testing framework (built on JSUnit and Mock4JS)

An acceptance testing framework (built on Selenium) with a business Domain Specific Language
(DSL) for rapidly creating functional acceptance tests

A performance and stress testing framework (built on WebDriver)

Tools to support deployment for both test and live operation

Documentation

Comprehensive developer documentation, including “how to” guides and reference information for
APIs and XML-based configuration

The User Experience

9© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

3 The User Experience

Trading applications built with Caplin Trader deliver a truly superior end-user experience. They have the
rich set of features, functionality, and performance usually associated with real-time trading applications
that are installed on the desktop.

Because a Caplin Trader application runs in a standard Web browser, once end-users have registered and
been permissioned for trading, they can start trading straight away. There is no additional client software to
be installed or configured on the desktop machine.

The user interface provides “windowing" style interaction. For example:

There are many panels within the Web page

Users can switch between layered panels via “tabs”

Users can resize panels

Users can drag and drop panels to other parts of the application

Users can create new panels and populate them with tradable instruments

The appearance and behavior (“look and feel”) of a Caplin Trader application are highly customizable,
allowing you to tailor the user experience to suit the needs of your business and your customers. It is easy
to create optimized work flows that are tailored for your users.

For more information about customizing Caplin Trader applications,
see Building a Caplin Trader application , and in particular:

Defining the layout and overall appearance

Customizing display components

Adding your own component types

24

27

34

42

Architecture

10© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

4 Architecture

Caplin Trader is a web application framework for constructing browser-based financial trading applications.
The resulting Caplin Trader application is a Caplin Xaqua client, as shown in the following diagram.

An application built with Caplin Trader
is a Caplin Xaqua client

A Caplin Trader application is implemented using a combination of web technologies, such as HTML,
CSS, JavaScript, and XML, that interact with the Caplin Trader framework. Caplin Trader communicates
with Caplin Xaqua components across the Internet, and hence with the Bank's systems, allowing end-
users to receive price updates in real time and trade a wide variety of financial instruments.

Architecture

11© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

4.1 Caplin Trader and Caplin Xaqua

The following diagram shows in more detail, how a Caplin Trader application interacts with Caplin Xaqua
(and hence the Bank's e-Trading systems), and with third party components.

Caplin Trader's interaction with Caplin Xaqua

Architecture

12© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

4.2 Caplin Trader application structure

The following diagram shows the structure of a Caplin Trader application.

The complete application consists of the Application Code written by the Bank's developers (yellow box
), supported by Caplin Trader (pink box), which in turn uses the Caplin Xaqua Client API library

(light blue boxes).

The diagram also shows the external components the application depends on: the Liberator server
(turquoise box), and the application server and persistence database (gray boxes). Detailed
interactions between components are not shown.

Caplin Trader application structure

Architecture

13© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

The sections that follow describe in more detail the Caplin Trader application structure and the external
components.

Application Code

A Caplin Trader application is written in a mixture of HTML, CSS, XML, and JavaScript.

HTML and CSS are used to define and style the visual aspects of the application.

XML is used for customization (see Caplin Trader API).

JavaScript is used for customization and extension, through calls to the Caplin Trader API , and
by extending Caplin Trader display components .

Existing web content and components written in other web technologies, such as Adobe FlexTM and

Microsoft SilverlightTM, can easily be embedded in a Caplin Trader application.

Caplin Xaqua Client APIs and Liberator

A Caplin Trader application communicates with Caplin Xaqua across the Internet or a LAN by means of
the Caplin Xaqua Client APIs that are provided with Caplin Trader. These APIs are also known
collectively as Caplin StreamLink+. They include:

A Pricing API that allows Caplin Trader to manage the real-time price data received from the
Liberator.

A Trading API that allows Caplin Trader to manage the flow of trade messages between Caplin
Trader's Trade Engine and the Trading DataSource(s) in Caplin Xaqua

A Permissions API that allows the Caplin Trader application to obtain permissioning information
from the Caplin Xaqua Permissions Subsystem, and hence make display components behave
according to the permissions of the logged-in user

StreamLink for Browsers (SL4B) This is an object oriented JavaScript API that gives access to
Caplin Xaqua's RTTP functionality. This allows the Caplin Trader application to:

– Connect to a Liberator

– Subscribe to, and unsubscribe from, data

– Receive streaming real-time price data, and other data, from the Liberator

– Publish data to the Liberator

– Access the transport mechanism for the exchange of trading and permissioning messages
between Caplin Trader and the Liberator

16

16

17

22

Architecture

14© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Application server

The application server is a Java application server. It can be any application server that runs on Java

version 1.5 or higher and supports servlets and JavaServer Pages (JSPTM).

It hosts the Caplin Trader application, the JavaScript Preprocessor , and the application's resources,
including images, HTML and CSS files, and configuration data. Some of these resources, such as saved
user layouts, reside on the persistence database .

Persistence database

The persistence database is a relational database, accessible from the application server, which stores
user settings, preferences, and screen layouts. Caplin Trader does not use any advanced or proprietary
database features or extensions, so the database server can be any RDBMS (for example, MySQL®,
Oracle®, Sybase®), as long as it is supported by JBoss® Hibernate®.

23

14

Architecture

15© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

4.3 Caplin Trader's internal architecture

The following diagram shows the internal architecture of Caplin Trader (inside the pink box),
and the relationship between Caplin Trader and the application code written by the Bank's developers
(yellow box). It also shows the JavaScript Preprocessor, which is part of Caplin Trader
but runs outside the framework code.

Caplin Trader's internal architecture

Architecture

16© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

The sections that follow describe Caplin Trader's internal modules in more detail.

Caplin Trader API

Display components

Internal modules , including

– Layout Manager

– Event Manager

– JavaScript Scheduler

– Trade Models and the Trade Engine

JavaScript Preprocessor

Third-party modules

– Open Ajax Hub

– ExtJS

– Emprise Javascript Charts

– Persistence database

Caplin Trader API

The Caplin Trader API is the entry point into the Caplin trader framework that allows a bank's developers
to implement a fully-functioned trading application. It uses two main technologies: XML and
object-oriented JavaScript.

XML is used to customize Caplin Trader display components, such as Grids, Trees, and Charts, and to
configure aspects of the overall page layout, sometimes in conjunction with CSS. You can implement
much of a Caplin Trader application's appearance and functionality by writing XML to configure Caplin-
supplied display components; for an example, see Customizing display components with XML (Grids) .

Additionally, you can use Caplin Trader's object-oriented JavaScript API libraries to implement and modify
the functionality of a Caplin Trader application by

modifying and augmenting the behavior of Caplin-supplied display components,

implementing brand new display components and integrating them into the Caplin Trader application.

The API libraries include utility classes for completing common tasks, classes for creating GUI controls,
and the interfaces that your code must implement when you want to modify or augment a core component.

For more detail about using the JavaScript API, see Adding your own component types .

16

17

22

23

23

35

42

Architecture

17© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Display components

Caplin Trader is supplied with a set of highly configurable and extensible display components that provide
the essential features of a fully-functioned trading application. Most display components are defined as
JavaScript classes that are instantiated as JavaScript objects at run time. They include the following
components.

 The screen images shown here are examples of how these display components could appear
on the screen. You can customize the display components according to the look and feel you
require for your Caplin Trader application (see Customizing display components) .

Grids display information about financial instruments of all kinds, updated in real time.

A Grid displaying FX instruments

Grids are an important part of any Caplin Trader application. They are very flexible and are optimized
for displaying real-time data. They have a range of configurable capabilities, such as column resizing,
column reordering, the ability to hide and reveal columns, and sorting and filtering of rows. Many of
these capabilities are provided by standard decorators, and are easily configured using XML.

Grids can also display static data from virtually any source by specifying a custom data provider. For
example, here is a grid that has been configured and styled to display research information:

34

Architecture

18© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Grid displaying research information

For more information about using grids, see Customizing display components with XML (Grids) .

Watchlists are dynamically configurable Grids. An end-user can create a Watchlist, drag instruments
into as desired, and save it for retrieval in subsequent sessions.

A Watchlist of Equities

Trade Tiles are typically used to display executable streaming prices for financial instruments,
allowing one-click trading based on these prices.

An FX Trade Tile

35

Architecture

19© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Trade Tickets allow end-users to execute trades according to more complex Trade Models, such as
Request For Quote (RFQ).

An FX Trade Ticket
(quote being obtained)

At the time of publication, Trade Tickets are built manually using HTML and CSS. Future releases of
Caplin Trader will use the Form Builder framework to simplify development and customization of Trade
Tickets (see Using the Form Builder).

Trade Blotters record and display information about trades in-progress and recently completed
trades, and allow the end-user to search for, and display, trade history. They are a specialization of
the Grid.

Trade Blotter

44

Architecture

20© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Tree Views group large numbers of financial instruments into hierarchies, allowing the end-user to
navigate through the hierarchy and select particular instruments. Caplin Trader renders trees using
the ExtJS JavaScript Library (see Third-party modules).

Tree Display Component
(FI Bond Selector)

Chart Display Components render one or more series of data in various chart formats.
Chart components are based on the Emprise JavaScript Charts library (see Third-party modules).

Chart Display Component
(FI Bonds – Relative Value Analysis)

23

23

Architecture

21© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Simple Form Components allow end-users of a Caplin Trader application to enter information into a
displayed page. For example, an end-user can enter search criteria to find and display a particular
set of financial instruments in a grid.

Simple Form Component
(outlined in yellow)

Composite Components group together other display components, and control and coordinate the
behavior of these components in response to actions by the end-user.

Example Composite Display Component
(FI Bond Finder)

The FI Bond Finder shown above, consists of two Simple Forms (outlined in yellow),

a Tree (outlined in green), and a Grid (outlined in blue)

Element Renderers render data within display components such as grids, trees, trade tickets, and
trade tiles. For more information, see the section on Element Renderers .38

Architecture

22© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Internal modules

Caplin Trader has a number of internal modules that provide the basic run-time capabilities
of the application.

The Layout Manager controls the overall look and feel of the application. Its features include:

Many panels within the Web page

Layered panels, switchable via “tabs”

Panel resize

Drag and drop

Menu definition and management

It manages the display components, and is highly configurable so you can customize the look and feel of
your Caplin Trader application as much or as little as you want. Screen layouts are stored on, and
retrieved from, the persistence database .

Also see Defining the layout and overall appearance .

The Event Manager allows Caplin Trader components to communicate information (events or data)
between each other and with external components, using a publish and subscribe model. A publishing
component uses the Event Manager API to send out information that is tagged with an identifier. The
publisher does not need to be aware of whether there are any consumers for the information. Any
subscribers listening for that identifier, through the event Manager API, are notified of the new information
immediately. The Event manager is based on the OpenAjax Hub; see Third-party modules .

Different web browsers and browser versions vary in the efficiency and efficacy of their JavaScript
scheduling engines. Caplin Trader includes a highly efficient browser-independent scheduler that ensures
price updates are displayed promptly and trade messages are processed in a timely fashion, whatever
browser type or version the user chooses from the set recommended by Caplin Systems
(see Appendix A: Recommended browsers).

A Trade Model represents a type of financial trade, for example a Request for Quote (RFQ) or Executable
Streaming Price (ESP). It consists of a number of states and transitions, and is defined in XML. The Trade
Model controls the flow of a Trade by defining all the possible states the Trade can be in and the trade
messages that cause transitions from one state to another. Any number of Trade Models can be
configured.

A Trade model executes at both ends of the trade – that is, in the Caplin Trader application and in the
Trading DataSource within Caplin Xaqua – so that the flow of trade messages is coordinated between the
client and the bank's trading systems.

Caplin Trader has a built-in Trade Engine. This is a finite state machine that manages the state transitions
and messaging for the client end of a trade, according to the Trade Model it is executing.

14

27

23

49

Architecture

23© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

JavaScript Preprocessor

The JavaScript Preprocessor resides on the application server, and runs when the server receives a
request from a client to load a Caplin Trader application. Its function is to ensure faster application start up
and reduce the application payload in the client browser.

To achieve this, the Preprocessor parses the dependency tree of the JavaScript classes that comprise the
application, and selects just those classes that are actually used. A particular application will typically not
use all the Caplin Trader framework classes, so the Preprocessor ensures that only the classes required
are actually sent to the client. It also concatenates the JavaScript class files held on the server into a
single file, with the classes arranged in dependency order.

Third-party modules

The publish and subscribe event management features of the OpenAjax Hub are used to exchange event
messages between Caplin Trader Display Components, and between Display Components and third-party
components. See the Event Manager in Internal Modules .

Caplin Trader renders trees using the ExtJS JavaScript Library (http://www.sencha.com). The Caplin
Trader license includes a license to use ExtJS in applications that are based on Caplin Trader.

Emprise JavaScript Charts is a JavaScript library for creating fully-featured interactive charts. It is the core
technology used in Caplin Trader's Chart Display Component. The Caplin Trader license includes a
license to use this library in applications that are based on Caplin Trader.

For more information on Emprise JavaScript Charts, see http://www.ejschart.com.

22

http://www.sencha.com
http://www.ejschart.com

Building a Caplin Trader application

24© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

5 Building a Caplin Trader application

Caplin Trader provides a comprehensive set of building blocks for implementing your trading application:

It has a set of customizable and extensible display components

– You can modify the look, feel, and behavior of the supplied Caplin Trader display components to
meet the needs of your application

– You can create your own display components, and integrate them into the application by
implementing Caplin Trader's Component interface

You can build Composite Components, combining Caplin Trader display components with your own

You can use Element Renderers to determine how data is rendered in controls, and to respond to
events on controls

Element renderers are used extensively in Grids, Trade Tiles, and Trade Tickets.

The Form Builder allows you to quickly create form-like display components, such as Trade Tickets
and Trade Tiles

You can define new Trade Models using XML

You can directly call the underlying streaming data API (StreamLink for Browsers)

You may need to do this if you are implementing a display component that needs to handle data in a
different way to Caplin Trader's “built-in” component types (a “Chat” component for example).

The development framework helps you build and test your trading application

The following sections explain how Caplin Trader can help you to build an effective trading application.
Each successive section concentrates on a more detailed aspect of building the application.

5.1 Getting started

Caplin Trader is shipped in a kit that includes:

The Caplin Trader framework software, including the API libraries

A Reference Implementation of a Caplin Trader application

All the necessary Caplin Xaqua components

Between them, these items provide both a fully-functioned example of a Caplin Trader application, and a
basic environment for developing your own application.

The Caplin Xaqua components run on a Linux® or Sun SolarisTM box, and include:

Caplin Liberator, configured for use with Caplin Trader

Caplin Transformer, including business modules to support:

– Data containers (for managing lists of instruments in a group)1

– Container filtering and sorting (for filtering and sorting lists of instruments displayed in Grids)

– Personal watchlists

– Data normalization2

– FX cross rates2

– Price tiering2

– Latency heartbeat (for measuring connection latency in Caplin Trader applications)

17

Building a Caplin Trader application

25© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Demonstration Pricing DataSource adapters for FX and FI, to supply live, real-time demonstration
data to the Reference Implementation

A demonstration Trading DataSource Adapter that allows you to try out
the Reference Implementation's trading facilities

The Caplin Trader framework software and the Reference Implementation are usually installed on a
Windows-based PC. The kit also includes a Java application server (Tomcat) and a SQL database server
(MySQL), which you can install on the same PC to quickly get the Caplin Trader installation working.
Alternatively, you can configure the installation to use your own Java application server and SQL-compliant
database server.

Once the Caplin Trader kit has been installed, you can immediately run the Reference Implementation in a
web browser to explore its capabilities, and you can explore its code. If you wish, you can use the
Reference Implementation's code as the starting point for a Caplin Trader application that meets your own
particular requirements. Alternatively, you can just write your own application code from scratch, referring
to the Reference Implementation code for guidance as required.

Footnotes:

1. For a fuller definition of the container data item, see the Glossary of terms and acronyms .

2. This Transformer module is for example/demonstration purposes, to support the Reference
Implementation.

52

Building a Caplin Trader application

26© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

5.2 The Caplin Trader development framework

Caplin Trader comes with a development framework to help you build and test your trading application.
The tools provided include a build and dependency management framework, a unit test framework, and an
acceptance test framework.

Build and dependency management framework

This is built on Apache ANT and Apache Maven. It provides the infrastructure – module dependency
information and build scripts – to build a collection of source files into a deployable application (typically
deployed as a WAR).

The build scripts are extensible, so you can amend them to fit with your existing build and release
procedures. They will run "out-of-the-box" on a development machine, allowing you to easily build a
deployable package, or to build and run subsets of the application for unit test and/or acceptance test
purposes.

The framework can be fitted into a continuous build and test environment.

Unit test framework

The unit test framework is built on JSUnit and Mock4JS. It allows you to write and run unit tests for your
JavaScript application code. You can run a single test or whole suites of tests. Tests and test suites can be
invoked from build scripts, so unit tests can be automatically run within a continuous build and test
environment.

Acceptance test framework

The acceptance test framework is built on built on Selenium. It includes a business Domain Specific
Language (DSL) for rapidly creating functional acceptance tests. Like the unit test framework, you can run
single tests or test suites, and acceptance tests can be invoked from scripts for use in a continuous build
and test environment.

Using the JavaScript Preprocessor in development and test environments

When the JavaScript Preprocessor runs in “production mode”, it selects just the files required and
concatenates them into a single load file (see JavaScript Preprocessor). The preprocessor can also be
set to “development mode”, which makes it load all the JavaScript code into the load file; this gives
developers and testers access to all the code within the client.

23

Building a Caplin Trader application

27© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

5.3 Defining the layout and overall appearance

Caplin Trader's Layout Manager controls the overall look and feel of the application. One of the first
development tasks is to define the required look and feel by configuring the Layout Manager. You can
restrict the end-user's ability to configure the application layout as much as you wish. For example, it may
desirable for an application aimed at the lower-end retail market to have a largely fixed layout.

The following sections assume you are allowing maximum freedom to the user.

Layout concepts

Layouts and panels

A Caplin Trader application is presented to the end-user as a page in a web browser. The display
components that comprise the user's view of the application are grouped into layouts.

The following diagram shows a layout (red border) that provides price data and trading capabilities for
Foreign Exchange (FX) instruments. There are two other layouts available: Fixed Income (FI) and FI

Analysis. The layouts are organized in tabs (FX, FI, FI Analysis), and the end-user can switch between
layouts by selecting the relevant tab.

Caplin Trader Layout and Panels

Building a Caplin Trader application

28© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

The layout contains a number of panels. A panel is a rectangular area that gives the end-user a particular
data view and/or access to particular functionality. In the previous diagram, the areas outlined with a
yellow border are panels: the panel numbered 1 displays Trade Tiles through which the user can trade

selected instruments with a single mouse click; panels 2a and 2b each display instrument prices in a grid

layout where the prices are updated in real time; and panel 3 displays, in a blotter, the status and history of
trades.

Panel contents

The Layout Manager manages the panels, rendering HTML in each of them as supplied by the application.
Typically the HTML for many of the panels is generated dynamically by Caplin Trader, through the
JavaScript code of the display components, such as Grids and Trade Tiles. However, the HTML can also
just be a static web page, either obtained locally, or through a URL that refers to an external web site.

Components implemented in other technologies can easily be embedded in panels – the following
example shows a panel containing a chart implemented using Adobe Flash.

Panel containing a Flash Chart

Terraces, towers and stacks

The Layout Manager allows panels to be grouped in various ways:

The Terrace – panels grouped horizontally

The Tower – panels grouped vertically

The Stack – panels stacked on top of each other, with tabs to select them

Building a Caplin Trader application

29© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Three Panels
contained in a Terrace

Three Panels
contained in a Tower

Three Panels
contained in a Stack

The Layout Manager renders stacks with a tab at the top of each panel, so the end-user can bring one of
the hidden panels to the front of the stack by selecting the relevant tab in the tab strip.

For example, the FX currency Grid called Europe in the previous Caplin Trader screen image

(numbered 2b) is displayed in one panel at the top of a stack of two. The other (hidden) panel

is E Europe.

Two panels in a stack with tab strip

Building a Caplin Trader application

30© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Changing the appearance of the application

The appearance of a Caplin Trader application is completely customizable. You can change how the
panels, menus, and buttons look, the layout of the items displayed on the screen, and the appearance of
individual display components.

Because a Caplin Trader application is web-based, its appearance is customized mostly by modifying a
few XML and CSS files, and in some cases by modifying JavaScript code. For example, in the Reference
Implementation, to change the logo on the top bar you edit an XML file, and to change the background
image of the bar you edit a CSS file.

Other global features that can be changed by editing a single CSS file include: the colors of the panel
background, border, and tabstrip, the background image of the menu bar, and the colors and fonts of the
menus.

You can set up the application to have alternative themes, allowing the end-user to choose between them.
For example:

Noir theme

and

Pastel theme

Layout Manager features

The Layout Manager gives a windows look and feel to the displayed page. For example, an end-user can :

Manipulate a stack of panels like a window: resize the stack, move it by dragging, drag a single panel
into a different stack, or even move a panel into a new position on the screen

Use the panel buttons to maximize or remove panels:

– The button maximizes the stack of panels to fill the whole working area of the Caplin Trader
page

– The button closes the whole stack of panels (or the single panel if there is only one tab)

– The button (on the right hand side of the tab for the panel that is currently selected) closes
just that panel, leaving the rest of the panels in place

Building a Caplin Trader application

31© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Drag on a tab to move its panel into one of the other stacks, or into a new position all by itself on the
screen

Layouts can be saved to the persistence database and subsequently restored, so that end-users can
customize their screens and re-use them in subsequent sessions.

Customizing layouts

As a developer, you can configure which features the Layout Manager will support. You can pre-define the
structure of a page and its layouts, and lock them down so that the end user has a fixed interface.
Alternatively the predefined layouts could just be starting points for pages that end-users can subsequently
customize for themselves. You can also change the look of the panels, windows, menus, and buttons.

You can define your Caplin Trader application so that it contains some pre-defined layouts when the end-
user first loads the application, and allow the user to modify parts of the layout, or create new ones, to suit
their own requirements.

Layouts are defined using XML, as shown in the following example.

Layout configuration XML

<Tower splitters="true">
 <FrameItems>
 <Panel background="#ccf" src="content.html" caption="Window1">
 </Panel>
 <Terrace splitters="true">
 <FrameItems>
 <Frame src="http://www.caplin.com" caption="Window2">
 </Frame>
 </FrameItems>
 <Panel caption="FX Major >
 <state>
 <grid displayedColumns="description, rate">
 ...
 </grid>
 </state>
 </Panel>
 </Terrace>
 </FrameItems>
</Tower>

This configuration defines a layout as a Tower (<Tower>...</Tower>), consisting of:

A panel called Window1

(<Panel ... caption="Window1">...</Panel>)

A Terrace

(<Terrace>...</Terrace>)

The panel contains a locally sourced HTML page:

<Panel ... src="content.html" ...>

The Terrace consists of two panels, the first of which (Window2) contains content from a public URL.
When a panel is to contain externally obtained content, it is defined using a <Frame> tag:

<Frame src="http://www.caplin.com" caption="Window2">

Building a Caplin Trader application

32© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

The second panel of the Terrace renders a Caplin Trader Grid display component:

Panel containing a Grid

 <Panel caption="FX Major >
 <state>
 <grid displayedColumns="description, rate">
 ...
 </grid>
 </state>
 </Panel>

The <grid> tag is part of the Grid configuration XML;
see Customizing display components with XML (Grids) .

Menu items

The application level menu items are defined in XML, so you can easily modify their content and
appearance, and add new items. For example, the Reference Implementation has application menus

called Layout, Insert, Help, and Showcase.

Example Application Menu

The following XML defines the top level of these application menu items:

<Tower>
 <FrameItems>
 <MenuBar handle_height="24" align="top">
 <MenuButton menu_id="layout" caption="Layout" />
 <MenuButton menu_id="insert" caption="Insert" />
 <MenuButton menu_id="help" caption="Help" />
 <MenuButton menu_id="showcase" caption="Showcase" />
 </MenuBar>
 <Tabstrip style="layout" handle_height="36" align="top" />
 </FrameItems>
</Tower>

35

Building a Caplin Trader application

33© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

This XML defines the items within the Layout menu:

<ContextMenu menuitem_height="22"
 menuitem_left_margin="9"
 menuitem_right_margin="15">
 <Decorators>
 <Border style="popup" border_bottom_width="8" border_right_width="8" />
 </Decorators>
 <!-- Layout menu -->
 <MenuItems>
 <MenuItem menu_id="new" label="New" context="layout">
 <loadPage page_id="NewLayout" />
 </MenuItem>

 <MenuItem menu_id="open" label="Open..." context="layout">
 <showDialog xref="Declarations/showDialog[@id='open-layout']"
 defer="true" />
 </MenuItem>

 <MenuItem label="separator" context="layout">
 </MenuItem>

 <MenuItem menu_id="save" label="Save" context="layout">
 <saveLayout />
 </MenuItem>

 <MenuItem menu_id="save_as" label="Save As..." context="layout">
 <showDialog xref="Declarations/showDialog[@id='save-layout']"
 defer="true" />
 </MenuItem>

 <MenuItem label="separator" context="layout">
 </MenuItem>

 <MenuItem menu_id="logout" label="Logout" context="layout">
 <eval xref="/Applications/Declarations/action[@id='logout']"
 defer="true" />
 </MenuItem>
 ...
 </MenuItems>
</ContextMenu>

Building a Caplin Trader application

34© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

5.4 Customizing display components

Caplin Trader's display components are highly customizable. The look and behavior of most types of
component can be easily customized using XML. In addition, the Caplin Trader Javascript API allows you
to customize features of a component that cannot be specified through XML, and implement new
component types by extending the core API classes.

Third party and custom display components can be built into layouts, or they can be added dynamically
through user interaction with menus or other controls. Such components can be hooked into the Event
Manager using the Caplin Trader API. This allows the component to handle events such as 'resize', and
takes full advantage of Caplin Trader's runtime features.

The Caplin Trader Reference Implementation includes a showcase menu containing examples of
components that have been customized to produce a different look and feel to the components in the main
layout of the application.
For example, the “standard” FX Grid in the Reference Implementation looks like this:

Standard FX Grid

This grid can be customized (using element renderers) to display the price pips in a larger font:

FX Grid with pips
in large font

38

Building a Caplin Trader application

35© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Customizing display components with XML (Grids)

Here is an example of how Caplin Trader components can be customized using XML.
In this case the components are two Grids:

<grid id="FX.Major"
displayName="Major FX" ...>

<grid id="FX.Minor"
displayName="Minor FX"...>

XML defining the Grids

<gridDefinitions xmlns="http://www.caplin.com/CaplinTrader/grid">

 <dataProviderMappings>
 <dataProviderMapping id="rttpContainerGridDataProvider"
 className="caplin.grid.RttpContainerGridDataProvider" />
 </dataProviderMappings>

 <decoratorMappings>
 <decoratorMapping id="dragDecorator"
 className="caplin.grid.decorator.DragDecorator" />
 </decoratorMappings>

 <templates>
 <gridTemplate id="All">
 <decorators>
 <dragDecorator />
 </decorators>
 </gridTemplate>

 <gridTemplate id="FX" baseTemplate="All" displayedColumns="description,rate">
 <columnDefinitions>
 <column id="description"
 cellRenderer="fx-description"
 fields="InstrumentDescription"
 displayName="Currency" width="70"
 mandatory="true"/>

Building a Caplin Trader application

36© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

 <column id="rate"
 cellRenderer="fx-spread"
 fields="BestBid,BestAsk"
 displayName="Rate"
 width="100"/>

 <column id="bestbid"
 cellRenderer="fx-price"
 fields="BestBid"
 displayName="Best Bid"
 width="100"/>

 <column id="bestask"
 cellRenderer="fx-price"
 fields="BestAsk"
 displayName="Best Ask"
 width="100"/>
 </columnDefinitions>
 </gridTemplate>
 </templates>

 <grids>
 <grid id="FX.Major" displayName="Major FX" baseTemplate="FX">
 <gridRowModel>
 <rttpContainerGridDataProvider container="/CONTAINER/FX/Major" />
 </gridRowModel>
 </grid>

 <grid id="FX.Minor" displayName="Minor FX" baseTemplate="FX">
 <columnDefinitions>
 <column id="description" headerRenderer="inlineTextFilter" />
 </columnDefinitions>
 <gridRowModel>
 <rttpContainerGridDataProvider container="/CONTAINER/FX/Minor" />
 </gridRowModel>
 </grid>
 </grids>

</gridDefinitions>

Here is a brief explanation of what the above XML does:

<dataProviderMappings> contains the definition of the data provider that supplies the data
to a grid

<decoratorMappings> contains the definition of a grid decorator called dragDecorator

A drag decorator allows an instrument to be dragged out of a grid, so it can be dropped into another
screen component, such as a trade panel. Also see the section on Decorators .

<templates> contains the definitions of two grid templates (<gridTemplate>)

Grid templates allow grids to be defined in an inheritance hierarchy.

<grids> defines the actual grids that can be added to layouts

In this case, there are two grids, Major FX (<grid id="FX.Major" ...>) and Minor FX

(<grid id="FX.Minor" ...>), each of which inherits its characteristics from the “FX” grid
template, which in turn inherits from the “All” template.

– Both grids display description and rate information in columns of the same widths. To change
these aspects of the appearance of both these grids, you only need to modify the definition of
the parent “FX” grid template.

– Both grids also allow the end-user to drag an instrument out of the grid. They inherit this
behavior from the top level “All” template.

40

Building a Caplin Trader application

37© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

– Each grid obtains its data from a different container
(container="/CONTAINER/FX/Major", container="/CONTAINER/FX/Minor"), so the
two grids display different sets of FX instruments.

– The XML for the “FX.Minor” grid also defines a header renderer that is applied to the
“description” column, overriding the renderer that is defined for this column in the parent “FX”
grid template:

<column id="description" headerRenderer="inlineTextFilter" />

– The inlineTextFilter renderer provides a text box into which the end user can enter
search criteria to select the rows displayed in the grid:

Effect of applying the inlineTextFilter header renderer to the FX.Minor grid

Also see the section on Element Renderers .38

Building a Caplin Trader application

38© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Element renderers

Caplin Trader uses Element Renderers to render data within display components such as Grids, Trees,
Trade Tickets, and Trade Tiles. The data may be real-time prices or static information, and can come from
a variety of sources. Element Renderers can also be used in custom display components and display
components built using the Form Builder (see Using the Form Builder).

Element Renderers allow you to define templates that are used throughout the application.
These templates specify:

The format and style of the data that is rendered in a control

For example, format could be the number of decimal places displayed,
style could be underlined or bold.

Event handlers that respond to events on a control

For example, to open a trade ticket when an end user clicks on an indicative price.

Input controls

For example, input through a text box.

Here is an example of a grid that displays indicative prices for four FX currency pairs. It uses element
renderers to determine the appearance of the price data.

Renderers in a Grid displaying
indicative prices for FX currency pairs.

In the example above, three columns are displayed in the grid. The fields of the Currency column are text

controls displaying currency pairs, while the fields of the Best Bid and Best Ask columns are text controls
displaying indicative "Best Bid" and "Best Ask" prices for these currency pairs.

44

Building a Caplin Trader application

39© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

The Element Renderer for the text controls in the Best Bid and Best Ask columns is configured to:

[1] Open a Trade Ticket for a currency pair when the end-user clicks the indicative price for that currency
pair. The price is underlined when it can be traded.

[2] Flash prices with a green background for half a second when the indicative price increases (and flash
prices with a red background for half a second when the indicative price decreases).

[3] Render stale prices with a strike through.

Defining and using element renderers

An Element Renderer configuration is defined using XML definitions, and renderer instances are created
by the Element Renderer Framework at runtime, as required by the display components. You specify the
JavaScript classes that the Caplin Trader framework uses to construct each instance of the Element
Renderer. You can either write your own custom Element Renderer JavaScript classes, or use the
Element Renderer JavaScript classes provided with Caplin Trader.

The following example shows a typical Element Renderer definition in XML.

XML that defines an Element Renderer

<rendererDefinitions>
 ...
 <renderer type="fx-price">
 <control type="caplin.control.basic.TextControl">
 <handler name="mybank.element.handler.TradeOnClickHandler"/>
 </control>
 <downstream>
 <transform name="caplin.element.formatter.NullValueFormatter">
 <attribute name="nullValue" value=""/>
 </transform>
 <transform name="caplin.element.formatter.DecimalFormatter">
 <attribute name="DP" value="${DP} default="4" />
 </transform>
 <transform name="caplin.element.styler.FlashStyler"
 <attribute name="duration" value="500" />
 <attribute name="color-up" value="#286221" />
 <attribute name="color-down" value="#841819" />
 <attribute name="backgroundColor-up" value="#cdefbd" />
 <attribute name="backgroundColor-down" value="#feb3aa" />
 </transform>
 <transform name="mybank.element.styler.PriceStyler"
 <attribute name="recordStatus" value="${RTTP.RECORD_STATUS}" />
 <attribute name="tradableState" value="${TRADABLE}" />
 <attribute name="class-tradable" value="tradablePrices" />
 <attribute name="class-stale" value="stale" />
 <attribute name="class-tradablestale" value="tradablestale" />
 </transform>
 </downstream>
 </renderer>
</rendererDefinitions>

A display component can use a particular renderer simply by specifying the renderer in the component's
configuration XML. For example, to use the above fx-price renderer in a Grid:

XML configuration for a Grid that uses the fx-price renderer

...
<columnDefinitions>
 <column id="bestbid“
 cellRenderer=“fx-price”
 fields="BestBid”
 displayName="Best Bid“
 width="100” />
 ...
<columnDefinitions>
...

Building a Caplin Trader application

40© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Decorators

Caplin Trader uses Decorators to 'decorate' display components with new visual and behavioral features.
Whereas an element renderer modifies the appearance and/or behavior of an individual element within a
display component (such as a cell in a grid), a decorator is applied to the display component as a whole.

For example, some of the Decorators that can be applied to Grids are:

ColumnMenuDecorator

Adds a drop-down menu to each column to each column of the Grid; the menu allows the user to add
and remove columns.

ColumnResizingDecorator

Allows the width of a Grid column to be changed by dragging the edge of the column header.

DragDecorator and DropDecorator

Allow instruments to be dragged out the Grid and dropped into the Grid.

DisconnectedDecorator

Displays a message to the end user if there is no connection to a DataSource when the Grid initially
opens.

Using pre-defined Decorators

You can add a Decorator to a display component using XML configuration. For example, the following
fragment of Grid configuration XML adds the ColumnMenuDecorator to a Grid template. All grids that
inherit from this template have this Decorator.

XML for adding the ColumnMenuDecorator to Grids

...
 <decoratorMappings>
 <decoratorMapping id="columnMenuDecorator"
 className="caplin.grid.decorator.ColumnMenuDecorator" />
 </decoratorMappings>

...

 <gridTemplate id="FX" baseTemplate="All" displayedColumns="description,rate">
 <decorators>
 <columnMenuDecorator />
 </decorators>
 <columnDefinitions>
 ...
 </columnDefinitions>

 </gridTemplate>

Implementing your own Decorators

You can write your own Decorators by implementing the appropriate Decorator interface in JavaScript.

For example, assume you want to add a button to a Grid, where the button pops up a menu when the user
clicks on it. To achieve this, you could write a PopupMenuDecorator that implements the Caplin Trader
GridDecorator interface. The code for this would typically look like the following:

Building a Caplin Trader application

41© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

JavaScript code that implements a PopupMenuDecorator for grids

caplin.namespace("caplin.grid.decorator");

caplin.include("caplin.grid.decorator.GridDecorator", true);
caplin.include("caplin.grid.GridViewListener", true);

caplin.grid.decorator.PopupMenuDecorator = function(mConfig)
{
};
caplin.implement(caplin.grid.decorator.PopupMenuDecorator,
 caplin.grid.decorator.GridDecorator);

caplin.grid.decorator.PopupMenuDecorator.prototype.setGridView = function(oGridView)
{
 this.m_oGridView = oGridView;
};

caplin.grid.decorator.PopupMenuDecorator.prototype.onContainerHtmlRendered = function()
{
 var eMyButton = document.createElement("DIV");
 eMyButton.className = "mybutton";
 var eHolderElement = this.m_oGridView.getRowContainerElement();
 // Adding the popup menu button to the grid
 eHolderElement.appendChild(eMyButton);
};

PopupMenuDecorator implements the GridDecorator interface:

...
caplin.implement(caplin.grid.decorator.PopupMenuDecorator,
 caplin.grid.decorator.GridDecorator);
...

The implementation includes the setGridView() method, which obtains a reference to the GridView object
that is responsible for displaying the rows of the Grid:

...
caplin.grid.decorator.PopupMenuDecorator.prototype.setGridView = function(oGridView)
{
 this.m_oGridView = oGridView;
};
...

This allows the PopupMenuDecorator access to the GridView, so it can decorate the GridView as
required.

setGridView() is automatically called by the Caplin Trader framework when it parses the XML that adds
the PopupMenuDecorator to the Grid:

...
 <decoratorMappings>
 <decoratorMapping id="popupMenuDecorator"
 className="myapp.grid.decorator.PopupMenuDecorator" />
 </decoratorMappings>

 <grid id="FX.Major" displayName="Major FX" baseTemplate="FX">
 ...
 <decorators>
 <popupMenuDecorator />
 </decorators>
 ...
 </grid>
...

Building a Caplin Trader application

42© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

setGridView() cannot itself decorate the GridView, because the HTML for the Grid is not yet rendered
when the Grid configuration XML is parsed. Instead, the PopupMenuDecorator implements the
onContainerHtmlRendered() listener. This call-back is invoked when the grid view has rendered its
container HTML, and at this point PopupMenuDecorator can add the button that pops up the menu:

...
caplin.grid.decorator.PopupMenuDecorator.prototype.onContainerHtmlRendered = function()
{
 var eMyButton = document.createElement("DIV");
 eMyButton.className = "mybutton";
 var eHolderElement = this.m_oGridView.getRowContainerElement();
 // Adding the popup menu button to the grid
 eHolderElement.appendChild(eMyButton);
};

If you want to add a button to every row of the grid instead, you can use an element renderer
(see Element renderers).

5.5 Adding your own component types

To add your own type of display component, you write a JavaScript class defining the component type,
define the XML that configures an instance of the component, and register the component type with Caplin
Trader.

Here is some example JavaScript code for creating and adding a new component type
called MyComponent:

caplin.namespace("xyztrader");

caplin.include("caplin.component.Component", true);
caplin.include("caplin.component.ComponentFactory", true);

xyztrader.MyComponent = function()
{
 // Construct the component here -
 // including storing any arguments that were passed in.
};

caplin.implement("xyztrader.MyComponent", "caplin.component.Component");

// ...
// Implementation of the caplin.component.Component methods.
// ...

// Static factory method for creating an instance of
// xyztrader.MyComponent from the specified XML string.

xyztrader.MyComponent.createFromSerializedState = function(sXml)
{
 // Process the XML to extract any relevant state information.
 return new xyztrader.MyComponent();
};

// Register the component type's
// createFromSerializedState() static factory method
// with Caplin Trader's ComponentFactory.
// The root node of the XML configuration for the component
// is called <myComponent>

38

Building a Caplin Trader application

43© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

caplin.component.ComponentFactory.registerComponent(
 "myComponent",
 xyztrader.MyComponent.createFromSerializedState);

In more detail:

The new component type implements the Caplin Trader component interface,
caplin.component.Component.

The methods of this interface include callbacks that inform the component of events resulting from
the end-user's interaction with it. Examples of these callbacks are:

– onOpen() – invoked when the component is first displayed within the container

– onResize() – invoked when the dimensions of the container within the
windowing environment have changed

– onMaximize() – invoked when the container has been maximized by the
windowing environment

Design the schema for the XML that defines an instance of the component.

For example, see the Grid XML in Customizing display components with XML (Grids) .

Implement a static factory method createFromSerializedState(), that returns an instance
of the component.

This method takes a string argument that is the XML defining (according to your schema) the
component instance to be constructed. The method must create an object that has the characteristics
defined by the XML.

In your Caplin Trader application, register the static factory method with Caplin Trader by calling
caplin.component.ComponentFactory.registerComponent().

This call takes:

– The name of the root node of the XML that defines the component instance to be constructed
(for example, the name passed is "myComponent" if the XML root node is <myComponent>)

– The name of the static factory method for creating the component

When the component type is registered at run-time, Caplin Trader automatically creates instances of the
component as required. For example, this can be when the application starts up and Caplin Trader sets up
predefined layouts according to the defined XML configuration. If there is XML configuration defined for
your component type, Caplin Trader will include those components in the predefined layouts as required.

Alternatively, a component can be created when a layout is restored from the persistence database. If your
component type implements the getSerializedState() method, instances of it can be saved to the
persistence database in the XML format when layouts are saved. When Caplin Trader restores a layout, it
supplies createFromSerializedState() with the XML for the object's serialized state.

35

Building a Caplin Trader application

44© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

5.6 Using the Form Builder

The Form Builder is a software framework and tools for quickly designing and implementing forms for a
Caplin Trader application.

Here is a simple example of a form implemented using the Form Builder:

A simple "Hello World" form

The form is defined as a template, using HTML markup with some extensions:

<template name="form:hello-world">

 <p>Say Hello <strong data-name="who">World?</p>

 <hr>

 <fieldset class="buttons">
 <button command="yes" data-enabled="yes-enabled">Yes</button>
 <button command="no">No</button>
 </fieldset>

</template>

The <template> tag defines the name of the form.

The data-name attribute identifies as a “data point” the part of the form following the fixed text

“Say hello”. This is where the application can dynamically change the contents of the text “World” to

something else – for example, “Universe”.

The data on the form could be updated from a real-time feed. For example in a trading application, the
form could be a Trade Ticket, and the buy/sell price fields would be defined as data points that are
updated in real time with prices streamed from the Liberator.

The command attribute of each button (command="yes", command="no") specifies the name of an event
that is generated when the button is selected.

The data-enabled attribute defines a boolean data point called yes-enabled. The button can be
enabled and disabled programmatically through this data point – set yes-enabled to false and the
button is disabled. (The default initial state of the button, defined by the HTML <button> tag,
 is “enabled”.)

The form template does not itself specify the CSS class that styles the form; this is done in a <caplin:
Form> entry in the XML that configures themes. This approach allows alternative styles to be easily
applied to the same form.

Building a Caplin Trader application

45© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Styling the form in the theme definition XML

<caplin:Form
 dialog="true" width="300" height="400"
 caption="Hello World"
 template="form:hello-world"
 class="alert-background"
 presentation="caplinx.demo.HelloController" >
 <property setter="setWho" value="World"/>
</caplin:Form>

In the above example, the form's appearance is styled through the CSS class
called alert-background.

The template attribute specifies the name of the template that defines the form, and the presentation
attribute specifies the name of the JavaScript class that implements the Form Controller (see How does
the Form Builder work?).

Complex forms

You can use the Form Builder to quickly and efficiently create complex forms, such as this Trade Ticket:

A complex form
(Trade Ticket)

46

Building a Caplin Trader application

46© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

How does the Form Builder work?

The Form Builder is based on a Model View Controller (MVC) architecture; it consists of a Form View and
Form Controller, and optional Form Models.

At run time, a Form View is constructed according to the specification in the form template. The Form View
manages the appearance and behavior of the form as rendered on the page.

To plug the form into the application, you write a Form Controller class. Its functions include:

Ensuring that server-side updates to displayed data are passed on to the Form View

Handling events notified by the Form View (such as the end-user clicking on a button, or entering
data in a form field)

Mapping button states and data points in the form template to states and data in the business
domain, and managing the interaction between them.

Managing the interaction between the Form View and the business logic

For example, prices quoted on a Trade Ticket would be mapped by the controller to the real-time
price data being fed to the application from a Liberator. Changes in the state of the Trade Model
would be mapped to changes in the state of the Trade Ticket, and visa versa, so (for example) the
controller would disable the ticket's Get Quote button when the Trade Model state changed to
“obtaining quote”.

Form Models are optional. They model the business data and states that the Form Controller maps to the
Form View. Examples of Form Models are Trade Models and permissions models.

The Form Harness

The Form Builder includes a Form Harness tool to assist the conceptual design and development of forms
before putting them into production. The harness allows you to see a visual representation of the form
without the business logic, and to interact with it. You can ensure that the correct events are being fired
and check that communication between the form and the rest of the application is working as expected.

Building a Caplin Trader application

47© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

5.7 Defining a Trade Model

New Trade Models are defined using XML. For example, here is a simple RFQ (Request For Quote) Trade
Model shown as a state transition diagram, followed by the equivalent definition in XML:

State diagram for simple RFQ Trade Model

Building a Caplin Trader application

48© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

XML definition of simple RFQ trade Model

<tradeModels>
 <tradeModel name="RFQ" initialState="Initial">
 <state name="Initial">
 <transition target="OpenSent"
 trigger="ClientOpen"
 source="client" />
 </state>

 <state name="OpenSent" timeout="10" timeoutState="Timeout">
 <transition target="Open"
 trigger="OpenAck"
 source="server" />
 </state>

 <state name="Open" timeout="60" timeoutState="Timeout">
 <transition target="OTW"
 trigger="PriceUpdate"
 source="server" />
 <transition target="Cancelled"
 trigger="ClientCancel"
 source="client" />
 </state>

 <state name="OTW" timeout="60" timeoutState="Timeout">
 <transition target="AcceptSent"
 trigger="ClientAccept"
 source="client" />
 <transition target="OTW"
 trigger="PriceUpdate"
 source="server" />
 <transition target="Open"
 trigger="OTWExpire"
 source="server" />
 <transition target="Cancelled"
 trigger="ClientCancel"
 source="client" />
 </state>

 <state name="AcceptSent" timeout="10" timeoutState="Error">
 <transition target="Accepted"
 trigger="AcceptAck"
 source="server" />
 </state>

 <state name="Accepted" />

 <state name="Cancelled" />

 <state name="Timeout" />

 <state name="Error" />

 </tradeModel>
</tradeModels>

Appendix A: Recommended browsers

49© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

6 Appendix A: Recommended browsers

At the time of publication, the browsers recommended for the best end-user experience of Caplin Trader
applications are Mozilla Firefox version 3.6, and Internet Explorer 8.0.

For the latest information on recommended browsers, contact Caplin Systems, or if you have a version of
Caplin Trader, refer to the release notes.

Appendix B: Customization status

50© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

7 Appendix B: Customization status

The table in this section summarizes (at the time of publication) the extent to which each type of Caplin
Trader component/feature can be customized. The goal of the Caplin Trader framework is to allow
complete customization of every feature and component. Incremental releases of Caplin Trader are
delivered approximately once a month and with each release more features will be fully customizable.

Key to Customization status in the following table:

Full Component/feature is fully customizable using XML and/or CSS and/or JavaScript.

Partial
Component/feature is partially customizable and/or
a customization technique is non-standard. You may require assistance from Caplin
when customizing these features.

Caplin Customization of the component/feature requires assistance from Caplin Systems.

Component/Feature Customization
status

Notes

Blotters Full Specialization of Grid.

Charts Full Limited functionality, but fully configurable.

Composite components Full Examples of composite display components in the
Reference Implementation are the Product Finder, Portfolio
Manager, and Market Overview.

Custom content Partial/Caplin The current Caplin Trader API does not completely support
creating some types of more complex content – contact
Caplin Systems for assistance with this.

Element Renderers Full Currently at version 4 level.

Form Builder Partial Currently a beta version with limited documentation and
examples. Development of the Form Builder is ongoing and
these limitations will be removed in subsequent releases of
Caplin Trader.

Grids Full Grids currently use a mixture of version 4 and older
(version 2) Element Renderers.

Layouts Full

Locale Partial The renderer framework provides some customization
capability.

Preferences for users Partial There is an API for setting user preferences, but no
standard GUI forms.

Permissions Full

Simple Forms Full This will be deprecated and replaced with the Form Builder.

Themes Partial Documentation on how to implement new themes is not
complete at the time of publication.

Trade Tickets
(FX and FI)

Partial The Caplin Trader 2.0 framework includes a new
Form Builder tool that will make it much easier to
customize Trade Tickets. At the time of publication the
Form Builder is a beta release.

44

Appendix B: Customization status

51© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Component/Feature Customization
status

Notes

Trade Tiles (FX) Caplin Limited configurability at the time of publication –
assistance from Caplin Systems is needed to augment
Trade Tile functionality.
The new Form Builder tool will make it much easier to
customize Trade Tickets.

Trees Full

Watchlists Full Specialization of the Grid.
See the Reference Implementation.

44

Glossary of terms and acronyms

52© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

8 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms relating to Caplin Trader.

Term Definition

Apache ANT An open source, Java-based, build tool.

For more information, see http://ant.apache.org/.

Apache Maven An open source software project management and comprehension
tool, based on the concept of a project object model.

For more information, see http://maven.apache.org/.

Application server Software that serves up web pages (typically with dynamically
constructed content) and web-applications, for rendering or
execution by client web browsers.

Blotter A display component that displays information about each trade.

Caplin DataSource+ Caplin DataSource+ is the interface between Caplin Xaqua and
the bank's systems. It plays a key role in implementing Caplin
Xaqua's anti-corruption layer; for example, its domain-specific APIs
help cushion the rest of Caplin Xaqua and the client applications
from changes in the bank's systems. It comprises a set of domain
specific APIs representing the key Caplin Xaqua subsystems.

See also DataSource.

Caplin Liberator Caplin Liberator is a real-time financial internet hub that delivers
trade messages and market data to and from subscribers over any
network.

Caplin StreamLink+ Caplin StreamLink+ is the interface between client applications and
Caplin Xaqua. Its APIs provide access to Caplin Xaqua's financial
domain functionality, allowing a client application to interact with the
bank's systems, while decoupling it from the implementation
specific features of those systems.

See also StreamLink.

Caplin Trader A web application framework for constructing browser-based
financial trading applications

Caplin Trader was formerly called “Caplin Trader Client”.

Caplin Trader application A Caplin Xaqua client that has been built using Caplin Trader.

Caplin Transformer Caplin Transformer is an event-driven real-time business rules
engine.

Caplin Xaqua A framework for building single-dealer platforms that enables banks
to deliver multi-product trading direct to client desktops.

Caplin Xaqua was formerly called "the Caplin Platform".

Caplin Xaqua client A client desktop or web application that interfaces with Caplin
Xaqua to deliver multi-product trading to end-users. The application
can be implemented in any technology that is supported by Caplin
Xaqua; for example JavaScript, Microsoft .NET, Microsoft

SilverlightTM, Adobe FlexTM, and JavaTM.

Also see Caplin Trader application.

Caplin Xaqua Client APIs An alternative name for Caplin StreamLink+.

http://ant.apache.org/
http://maven.apache.org/

Glossary of terms and acronyms

53© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Term Definition

Chart A display component that represents data visually.

Composite component A display component that groups together other display
components.

Container A container is a Caplin Liberator data structure that holds a set of
references to other data items in the Liberator. When a Caplin
Trader application requests a container item via Caplin
StreamLink+, it is automatically subscribed to the linked items as
well.

Caplin Trader uses containers to manage the data displayed by
certain of its components, such as Grids.

The Caplin Trader application can request the Liberator to provide a
windowed view of the items in the container, which can help reduce
the processor load and memory usage on the client.

CSS Cascading Style Sheets.
The style sheet language used to define the look and formatting of
web pages written in HTML.

DataSource DataSource is the internal communications infrastructure used by
Caplin Xaqua's server components such as Caplin Liberator,
Caplin Transformer, and DataSource adapters.

In some older documents DataSource is also used as a synonym
(but non-preferred term) for DataSource application.

See also Caplin DataSource+.

DataSource adapter A DataSource application that integrates with an external
(non-Caplin) system, exchanging data and/or messages with that
system.

DataSource application A Caplin Xaqua application that uses the Caplin DataSource+
APIs to communicate with other Caplin Xaqua applications via the
DataSource protocol.

Display component A GUI component of Caplin Trader that can be rendered in a page
on the screen.

The term also refers to the JavaScript code that generates the
component and handles its user interaction. Caplin Trader has a
number of pre-defined, customizable display components, such as
Grids, Trade Tiles, and the Blotter.

DSL See Domain Specific Language.

Domain Specific Language A programming language or specification language dedicated to a
particular problem domain, a particular problem representation
technique, and/or a particular solution technique.

Definition from Wikipedia contributors, “Domain-specific language”,
Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/Domain-specific_language (accessed
June 2010).

ExtJS A JavaScript library that is used by Caplin Trader to render Trees
in a layout.

For more information, see http://www.sencha.com.

JSP See JavaServer Page.

JavaServer Page A Java technology for serving dynamically generated Web pages.

http://en.wikipedia.org/wiki/Domain-specific_language
http://www.sencha.com

Glossary of terms and acronyms

54© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Term Definition

JSUnit An open source unit testing framework for client-side (in-browser)
JavaScript code.

For more information, see http://www.jsunit.net/.

Grid A display component that displays data in a tabular format.

GUI Graphical User Interface

LAN Local Area Network

Layout A grouping of display components that comprise the user's view of
a Caplin Trader application.

See Layout concepts .

Mock4JS An open source dynamic mock library for JavaScript, used to write
tests that verify interactions between JavaScript objects.

For more information, see http://mock4js.sourceforge.net/.

Panel A rectangular area in a Caplin Trader layout that gives the end-
user a particular data view and/or access to particular functionality.

See Layout concepts .

Reference Implementation A reference implementation of a Caplin Trader application,
supplied with Caplin Trader.

RDBMS Relational Database Management System

RTTP Real Time Text Protocol.

Caplin's protocol for streaming real-time financial data from Caplin
Liberator servers to client applications, and for transmitting trade
messages between clients and Liberator in both directions.

Selenium An open source suite of tools to automate web application testing
across many platforms.

For more information, see http://seleniumhq.org.

Stack A set of panels stacked on top of each other, with tabs to select
them.

See Layout concepts .

StreamLink The StreamLink libraries connect client applications to Liberator via
the RTTP protocol. They provide an object oriented API that gives
access to RTTP functionality.

See also Caplin StreamLink+.

Terrace A set of panels grouped horizontally.

See Layout concepts .

Tile A display component that displays information in a square or
rectangular area of the page. The most typical implementation of a
Tile is the Trade Tile.

Tower A set of panels grouped vertically.

See Layout concepts .

Trade Model The formalization of the trade flow applying to a type of trade,
expressed as a set of states and the transitions between them.

See Internal modules and Defining a Trade Model .

Trade Tile A display component that allows the user to trade on a product

27

27

27

27

27

22 47

http://www.jsunit.net/
http://mock4js.sourceforge.net/
http://seleniumhq.org

Glossary of terms and acronyms

55© Caplin Systems Ltd. 2010

Overview

CONFIDENTIAL

Caplin Trader 2.0

Term Definition

with a single mouse click.

Tree A display component that displays information in a tree-like
structure.

Web application framework A web application framework is a type of framework specifically
designed to help developers build web applications.

Definition from DocForge, an open wiki for programmers
http://docforge.com/wiki/Web_application_framework
(accessed Jun 2010).

WebDriver An open source web application testing tool.

For more information, see http://seleniumhq.org.

WAR Web Application Archive

A [Java] JAR file used to distribute a collection of JavaServer
Pages, servlets, Java classes, XML files, tag libraries and static
Web pages (HTML and related files) that together constitute a Web
application.

Definition from Wikipedia contributors, “WAR (Sun file format)”,
Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/Web_application_archive
(accessed February 2010).

XML Extensible Markup Language

http://docforge.com/wiki/Web_application_framework
http://seleniumhq.org
http://en.wikipedia.org/wiki/Web_application_archive

© Caplin Systems Ltd. 2010

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Triton Court

14 Finsbury Square

London EC2A 1BR

Telephone: +44 20 7826 9600

Fax: +44 20 7826 9610

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Trader 2.0: Overview, August 2010, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments
	Open Source Software

	What is Caplin Trader?
	What are the benefits of using Caplin Trader?
	What does Caplin Trader consist of?

	The User Experience
	Architecture
	Caplin Trader and Caplin Xaqua
	Caplin Trader application structure
	Application Code
	Caplin Xaqua Client APIs and Liberator
	Application server
	Persistence database

	Caplin Trader's internal architecture
	Caplin Trader API
	Display components
	Internal modules
	JavaScript Preprocessor
	Third-party modules

	Building a Caplin Trader application
	Getting started
	The Caplin Trader development framework
	Defining the layout and overall appearance
	Layout concepts
	Changing the appearance of the application
	Layout Manager features
	Customizing layouts

	Customizing display components
	Customizing display components with XML (Grids)
	Element renderers
	Decorators

	Adding your own component types
	Using the Form Builder
	Defining a Trade Model

	Appendix A: Recommended browsers
	Appendix B: Customization status
	Glossary of terms and acronyms

