
Integrating Caplin Trader

November 2008

C O N F I D E N T I A L

Caplin Trader 1.3

 With A Trading System

i

Integrating Caplin Trader With A Trading System

© Caplin Systems Ltd. 2007 – 2008

Contents

CONFIDENTIAL

Caplin Trader 1.3

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 2Related documents1.3

.. 2Typographical conventions1.4

.. 3Feedback1.5

.. 3Acknowledgments1.6

.. 4Overview2

.. 6Trading Concepts3

.. 6Trade Models3.1

.. 6Trade Channels3.2

.. 6Trades3.3

.. 7Trade Events3.4

.. 8Example Trade Models4

.. 8Example Executable Streaming Price (ESP)4.1

.. 9Example Request for Stream (RFS)4.2

.. 10Example Order (ORD)4.3

.. 11Simple Request for Quote (RFQ)4.4

.. 12Configuring Trade Models5

.. 13Simple RFQ Example5.1

.. 14Checking Fields5.2

.. 16Using the Trading DataSource Java API6

.. 16Initialization6.1

.. 17New Channels6.2

.. 17New Trades6.3

.. 18Dealing with events6.4

.. 19Closing Trades6.5

.. 19Closing Channels6.6

.. 20The Java Trading DataSource Example7

.. 21Using the Trading DataSource C++ API8

ii

Integrating Caplin Trader With A Trading System

© Caplin Systems Ltd. 2007 – 2008

Contents

CONFIDENTIAL

Caplin Trader 1.3

.. 21Initialization8.1

.. 22New Channels8.2

.. 22New Trades8.3

.. 23Dealing with events8.4

.. 24Closing Trades8.5

.. 24Closing Channels8.6

.. 25The C++ Trading DataSource Example9

.. 26Glossary of terms and acronyms10

.. 27Index

Preface

1© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

1 Preface

1.1 What this document contains

This document describes how the Caplin Trading DataSource allows you to integrate Caplin Trader with
your existing Trading System.

Trading DataSources can be implemented in JavaTM and C++. The document describes how to use both
the Java and C++ APIs for this purpose.

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows®.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that
are located on network drives. To fix this either copy the file to a local hard drive on your PC (for
example the Desktop), or ask your System Administrator to grant access to the file across the
network. For more information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for Technical Managers, Enterprise Architects, and System Architects, who
require an overview of the Caplin Trading DataSource and its Java and C++ APIs.

http://support.microsoft.com/kb/896054/

Preface

2© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

1.3 Related documents

Caplin Trader Architecture

This document describes the architecture of Caplin Trader. It focuses on the use of the Caplin
Platform in trading applications. It also identifies the areas in which the Platform can be integrated
with your company’s own and third-party systems.

Caplin Java Trading DataSource: API Documentation

This is the detailed Java API documentation for the Caplin Trading DataSource.

Caplin C++ Trading DataSource: API Documentation

This is the detailed C++ API documentation for the Caplin Trading DataSource.

Caplin Trader Trade Model XML Reference

This document defines the XML tags and attributes used to define Trade Models.

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

Preface

3© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Please email your thoughts to documentation@caplin.com.

1.6 Acknowledgments

Java is a trademark of Sun Microsystems, Inc. in the U.S. or other countries.

Adobe and Flex are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

mailto:documentation@caplin.com

Overview

4© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

2 Overview

Caplin Trader consists of a number of components (see the Caplin Trader Architecture). The main
components used to integrate Caplin Trader with your Trading System are the Trading DataSource and
the Trading GUI.

The following diagram shows the basic architecture of the trading integration components and how they fit
into Caplin Trader.

Simplified Caplin Trader architecture showing only trading
integration components

Overview

5© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

Trading System

The Trading System represents your systems that support trade capture and execution.

Trading DataSource

The Trading DataSource is the interface between Caplin Trader and the Trading System. Its job is to
enable communication between clients and the Trading System. It sits between Caplin Liberator and the
Trading System, handling messages sent between clients and the Trading System, via Caplin Liberator.
The Trading DataSource consists of the standard Caplin DataSource Library, the Trading DataSource
Library, and the custom code required to integrate with your Trading System.

The Trading DataSource provides a simple API that can be used to communicate with your Trading
System or can be integrated directly into it. This means the DataSource can be a stand alone process or
part of an existing one. The Trading DataSource API is available in both Java and C++ and is built on top
of the Caplin DataSource SDK. It gives full access to all the functionality of Caplin DataSource SDK; this
allows you to send and receive custom messages in addition to Trade messaging.

Trading GUI

The Trading GUI is the part of the Caplin Trader Client that displays trading tickets and quick trade tiles. It
can be customized to contain the correct information and understand the types of trades that can be
performed. The Trading GUI consists of custom presentation code that interacts with the Trading
DataSource through the Liberator using the client-side Trading Module and the StreamLink for Browsers
Library.

The provided trade tickets and quick trade tiles can be used as a starting point for customization, or
completely new trading displays can be created using the supplied APIs.

Trade Model Configuration

The Trade Model Configuration is a set of XML files defining the Trade Models that are to be used by the
Trading DataSource and Trading GUI. These definitions represent the trade life-cycle and provide an
interface between the end user and the Trading System. The same Trade Model Configuration is used by
both components to ensure they communicate and maintain a consistent state with one another.

Caplin Trader is not tied to any particular trade model; it can be configured to match your existing trade
models along with any new trade models you wish to develop. Once configured with trade models, the
Trading DataSource Library and Trading Module will control and verify the states and transitions allowed.
This simplifies the integration needed as most of the logic is handled for you and is defined by your
configuration.

Trading Concepts

6© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

3 Trading Concepts

Caplin Trader uses a number of concepts to represent trading; models, channels, trades and events.

3.1 Trade Models

A Trade Model represents a type of trade, for example a Request for Quote (RFQ) or Executable
Streaming Price (ESP). Trade Models consist of a number of states and transitions and are defined by
configuration. The Trade Model controls the flow of a trade by defining all the possible states the Trade
can be in and the messages that cause transitions from one state to another. It also defines guards on
transitions, which are checks to see if a transition can be performed; for example checking that certain
fields are present in an event.

3.2 Trade Channels

A Trade Channel represents a single user’s communication between the Caplin Trader Client and the
Trading DataSource. It is a private channel for bidirectional messaging and all messages relating to trades
for a user will be sent and received on the user’s channel.

The Caplin Trader Client opens a Trade Channel by subscribing to an object. The Caplin Liberator maps
this subscription to a unique object name for that user and subscribes to the object from the Trading
DataSource. When the Trading DataSource responds to this subscription, a private channel is effectively
created for messages in both directions between the client and the Trading DataSource; this is the Trade
Channel.

Many deployments would use a single Trade Channel. However, sometimes it is useful to have multiple
Trading DataSources, each handling different asset classes. In this case the user could have a separate
Trade Channel for each Trading DataSource; the client would be set up to subscribe to different object
names for the different channels.

3.3 Trades

A Trade represents a single trade for a user. This could be an RFQ, an Execution on a streaming price, or
any other type of trade. A Trade is typically initiated by the client and then the Trading DataSource
processes events from the client and the Trading System that transition the Trade between different
states.

Multiple trades can be in operation on the same Trade Channel either concurrently or one after the other.
Each Trade has an associated RequestId set by the client and a TradeId set by the Trading System.
These ids are set by the first message sent by either side and are then included in subsequent messages
to link the messages to the correct trade.

A Trade is tied to a Trade Model; this relationship is determined by the first message sent by the client.
Once the Trade Model for a Trade has been set, the state of the Trade transitions from the initial state to a
final state according to the definition of the Trade Model.

Trading Concepts

7© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

3.4 Trade Events

A Trade Event typically represents an action by a client or an event from the Trading System. An event
originating from the Trading System can represent an action by a dealer or an automated action. A Trade
Event is raised either by receiving a message from a client, or directly which causes the DataSource to
send a message to a client. Events are tied to a Trade and cause the Trade to move from one state to
another as defined by the Trade Model.

A Trade Event contains a number of fields and values, which map directly onto a message sent or
received by the Trading DataSource. Some message fields are mandatory and are part of the Trading API;
for example, all Trade Events have a type which is represented by the MsgType field in the underlying
message. Other fields are optional, some of which may be required by the Trade Model being used.

Example Trade Models

8© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

4 Example Trade Models

The following sections show examples of Trade Models that can be used with Caplin Trader. More
complicated Trade Models can be used with little extra complexity of integration.

4.1 Example Executable Streaming Price (ESP)

This state diagram shows the example Executable Streaming Price (ESP) Trade Model.

This model is provided with Caplin Trader and is used by the demonstration TradingDataSource and the
Caplin Trader Client Reference Implementation, for one-click trading via the Trade Tile.

State diagram for ESP Trade Model

Example Trade Models

9© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

4.2 Example Request for Stream (RFS)

This state diagram shows the example Request For Stream (RFS)

Trade Model. This model is provided with Caplin Trader and is used by the demonstration
TradingDataSource and the Caplin Trader Client Reference Implementation, for ticket-based trades.

State diagram for Example RFS Trade Model

Example Trade Models

10© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

4.3 Example Order (ORD)

This state diagram shows the example Order (ORD) Trade Model.

This model differs from the ESP and RFS models in that it has two different transitions from the initial
state. The standard transition is the client open event (client:Open), but the additional initial state transition
(server:Restore) is used when the server restores a trade from the trading system.

This model is provided with Caplin Trader and is used by the demonstration TradingDataSource. It is not
currently used by the Caplin Trader Client, but will be included in a forthcoming version of the Caplin
Trader Client Reference Implementation for ticket-based order trades.

State diagram for Example ORD Trade Model

Example Trade Models

11© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

4.4 Simple Request for Quote (RFQ)

This state diagram shows a typical simple Request for Quote Trade Model.

This particular model is not used by the Caplin Trader Client Reference Implementation, but is typical of an
RFQ workflow. Additional states can easily be added before the Open state to account for credit checks
and other validation steps as required.

State diagram for RFQ Trade Model

Configuring Trade Models

12© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

5 Configuring Trade Models

Caplin Trader is designed to work with any Trade Model; it can be configured to match your existing Trade
Models or new models being developed.

Trade Models are configured using an XML definition file which defines

The possible states a trade can be in.

The transitions a trade can take from one state to another.

The checks that are made before the transition can be made.

Any number of Trade Models can be configured and Trades can automatically pick out the relevant model
to use.

The Trading DataSource kit includes example Trade Model XML definition files. These are Request for
Stream (RFS), Executable Streaming Price (ESP), and Order (ORD). The XML definitions can be used as
they are, or they can be adapted to your requirements.

For the detailed definition of the Trade Model XML, see the document Caplin Trader Trade Model XML
Reference.

Configuring Trade Models

13© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

5.1 Simple RFQ Example

The following is a simple example of the XML configuration for a simple RFQ Trade Model. This example
only shows states and transitions and does not check any events for required fields. See Simple Request
for Quote (RFQ) to see the Trade Model that this configuration represents.

<stateModels>
 <tradeModel name="RFQ">
 <state name="Initial">
 <transition target="OpenSent" trigger="ClientOpen" source="client" />
 </state>

 <state name="OpenSent">
 <transition target="Open" trigger="OpenAck" source="server" />
 </state>

 <state name="Open">
 <transition target="OTW" trigger="PriceUpdate" source="server" />
 <transition target="Cancelled" trigger="ClientCancel" source="client" />
 </state>

 <state name="OTW">
 <transition target="AcceptSent" trigger="ClientAccept"
 source="client" />
 <transition target="OTW" trigger="PriceUpdate" source="server" />
 <transition target="Open" trigger="OTWExpire" source="server" />
 <transition target="Cancelled" trigger="ClientCancel" source="client" />
 </state>

 <state name="AcceptSent">
 <transition target="Accepted" trigger="AcceptAck" source="server" />
 </state>

 <state name="Accepted">
 </state>

 <state name="Cancelled">
 </state>

 </tradeModel>
</stateModels>

11

Configuring Trade Models

14© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

5.2 Checking Fields

The XML configuration allows fields to be checked before a transition will take place. You can define
different types of checks, such as whether a field exists, whether it is a certain value, or whether it is
greater than a certain value.

A transition definition can define fields to check. In the example below the fields RequestId and TradeId
are both checked to make sure they exist.

 <state name="OpenSent">
 <transition target="Open" trigger="OpenAck" source="server">
 <fields>
 <field name="RequestId" exists=”true” />
 <field name="TradeId" exists=”true” />
 </fields>
 </transition>
 </state

Sets of fields to be checked against can be defined outside the scope of a particular Trade Model. This
allows multiple models to make use of the same sets of field checks. In the following example the Open
state has a transition that will check the FieldSet1 fields definition, where FieldSet1 is defined outside
the scope of the model.

<fieldsDef id="FieldSet1">
 <field name="MsgType" exists="true" />
 <field name="MsgVersion" greaterThan="0" />
 <field name="RequestId" exists="true" />
</fieldsDef>

<tradeModel name=”RFQ”>

 <state name="Open">
 <transition target="OTW" trigger="PriceUpdate" source="server">
 <fields id="FieldSet1" />
 </transition>
 </state>

</tradeModel>

Sets of fields can also reference other sets of fields; this is useful when multiple messages have a
common set of fields to check. The following example shows FieldSet1 referencing StdFields, this
has the effect of combining both field definitions at runtime so all fields are checked.

<fieldsDef id="StdFields">
 <field name="MsgType" exists="true" />
 <field name="MsgVersion" greaterThan="0" />
 <field name="RequestId" exists="true" />
</fieldsDef>

<fieldsDef id="FieldSet1">
 <fields id=”StdFields” />
 <field name="Price" exists="true" />
 <field name="PriceVersion" greaterThan=”0” />
</fieldsDef>

Configuring Trade Models

15© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

Additionally, models can parameterize their use of field sets, which allows a single model to be used by
multiple Trade types, such as Spots, Swaps, Forwards, and so on, and different sets of fields are checked
accordingly. The following example shows a single fields definition, PriceUpdateFields, used by the
PriceUpdate transition in the Open state. The fields checked depend on a run-time parameter, the
TradingType field, which defines whether the trade is a Spot or a Swap.

<fieldsDef id="PriceUpdateFields">
 <param value="SPOT">
 <field name="AskPrice" greaterThan="0" />
 <field name="BidPrice" greaterThan="0" />
 </param>
 <param value="SWAP">
 <field name="L1_AskPrice" greaterThanField=”L1_BidPrice” />
 <field name="L1_BidPrice" greaterThan="0" />
 <field name="L2_AskPrice" greaterThanField="L2_BidPrice" />
 <field name="L2_BidPrice" greaterThan="0" />
 </param>
</fieldsDef>

<tradeModel name=”RFQ”>

 <state name="Open">
 <transition target="OTW” trigger="PriceUpdate" source="server">
 <fields id="PriceUpdateFields"
 paramType="context" paramField="TradingType" />
 </transition>
 </state>

</tradeModel>

Using the Trading DataSource Java API

16© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

6 Using the Trading DataSource Java API

This section provides a brief description of the main parts of the Trading DataSource Java API
(see the Caplin Java Trading DataSource: API Documentation for full details).

To implement a Trading DataSource you set up listener objects to handle events occurring on trades and
create events to be sent back into the system.

6.1 Initialization

When your Trading DataSource application starts, it should create an instance of TradingDataSource
and register itself as a TradingApplicationListener. The TradingDataSource starts up a
DataSource, which then connects to the Liberator. The DataSource also sets up the necessary
DataSource listeners internally to handle the trade messaging.

The following is a simple code extract showing the creation of a TradingDataSource within a custom
application.

Creation of a TradingDataSource

public class MyTradingApp implements TradingApplicationListener
{
 static void main(String[] args)
 {
 new MyTradingApp();
 }

 MyTradingApp()
 {
 // Create a factory object for generating the trading state machines.
 StateMachineFactory myTradingStateMachineFactory = new StateMachineFactory();

 // Load the required Trade Models into the factory.
 myTradingStateMachineFactory.loadModels(new File("conf/MyESPStateModel.xml"));
 myTradingStateMachineFactory.loadModels(new File("conf/MyRFSStateModel.xml"));

 // Create the Trading DataSource.
 // This will create a DataSource object internally to manage the
 // communication with other DataSources, such as Caplin Liberator
 // and hence client applications.
 // TradingDataSource implements the standard DataSource callbacks,
 // which allow you to use the Trading API to communicate with
 // clients in the form of Trade messages.

 myTradingDataSource = new TradingDataSource
 (this, //Reference to this TradingApplicationListener
 "MyDataSourceConfig.xml",
 // The configuration file for this DataSource
 myTradingStateMachineFactory
);

 // Once the TradingDataSource has been created
 // it has to be started explicitly.
 myTradingDataSource.start();
 }

 // ...
}

The TradingDataSource processes the flow of a trade by following the states defined by the Trade
Model for the particular type of trade. This processing is carried out by a state machine, implemented as a

Using the Trading DataSource Java API

17© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

StateMachine object. Before creating the TradingDataSource, the Trading DataSource application
creates a StateMachineFactory, and loads the factory with the required Trade Models, The models
are defined in the XML configuration files discussed in Configuring Trade Models . The
StateMachineFactory is then passed to the TradingDataSource constructor, so that the
DataSource can create a the state machine for each loaded Trade Model.

The TradingDataSource constructor is also supplied with an XML format configuration file for the
DataSource. This file defines the connections that the DataSource makes with the other Caplin Platform
components, such as Liberator.

6.2 New Channels

The TradingApplicationListener is notified when new channels are created; this allows you to
perform any necessary user specific initialization. You must also add a ChannelListener to the
channel. The ChannelListener is an interface you must implement; it could be a new instance for each
channel or a single global instance. Its job is to handle notifications on the channel about newly created
trades and trades being closed.

The following code extract shows part of a sample implementation of a TradingApplicationListener
. It shows a custom ChannelListener being added to the channel to handle trades, and then a method
being called on a hypothetical tradingSystem object to log in the user for the channel.

Example implementation of TradingApplicationListener.channelCreated()

public void channelCreated(TradeChannel channel)
{
 channel.setChannelListener(new MyChannelListener(channel));

 // Handle new channel/user.
 // For example:
 tradingSystem.loginUser(channel.getUser());
}

6.3 New Trades

The ChannelListener is notified of new trades when a client initiates them; the trade is passed to it as a
 Trade object. When a trade is created the ChannelListener can perform any initialization needed with
the Trading System and also add a TradeListener to the newly created Trade object. The
TradeListener is an interface you must implement and could be a new instance for each trade or a
single global instance; its job is to handle all events for a trade. You normally have different
implementations of TradeListener that handle different trade types.

The following code extract shows part of a sample implementation of a ChannelListener. It shows a
different custom TradeListener being added to the Trade object to handle its events, depending on the
trade model used for the trade.

12

Using the Trading DataSource Java API

18© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

Example implementation of ChannelListener.tradeCreated()

public void tradeCreated(Trade trade)
{
 // Check the trade model used
 // and create an appropriate listener to handle it.
 if (trade.getType().equals("ORD"))
 {
 trade.setTradeListener(new ORDTradeListener(trade));
 }
 else if (trade.getType().equals("RFS"))
 {
 trade.setTradeListener(new RFQTradeListener(trade));
 }
}

How the new trade is handled depends on the trading system to which the Trading DataSource is
connected, and the nature of the API to that system.

The Trade object must be retained, so that it can be referred to when the trade system responds with an
event (see Dealing with events). Assume, for example, the trading system API supports a listener style
interface with a listener object for each trade. TradeListener.tradeCreated() can store the Trade
object in a trade system listener object before calling the trading system. When the trading system
subsequently raises an event on the Trade, it will call the listener, which can then refer to Trade object as
required (for example to create an event to pass on to the client).

Alternatively the trading system may not support a listener interface. For example, it may, just pass back
an “event” with an ID relating to the Trade. In this case TradeListener.tradeCreated() would have
to store the Trade object in a suitable data structure (say a hash table). This structure must be accessible
by the code that handles events from the trading system. This code would typically use the ID returned in
the trading system event as the key to extract the Trade object.

6.4 Dealing with events

The TradeEvent object represents a trade event, which typically encapsulates a message between the
client and the Trading DataSource. A TradeEvent has a type, which represents the type of the message,
for example “Open”, “PriceUpdate” or “Execute”. It also has a number of fields to represent all the
necessary information for that message, for example “BidPrice” or “Amount”.

The TradeListener is responsible for handling Trade Events; it is notified when new events are
received from the client. When a message is received from the client, it is processed by the Trading
DataSource to verify that the event is valid based on the trade model before notifying the
TradeListener of the event. The Trade and TradeEvent objects are passed to the TradeListener.
The Trade has been updated with the data from the TradeEvent and can be used to create and send
new TradeEvents. The TradeListener would then typically send a message on to the Trading System
or handle the event in some other way.

The following code extract shows an implementation of the TradeListener method to receive events.

Example implementation of TradeListener.receiveEvent()

public void receiveEvent(TradeEvent event)
{
 // Talk to Trading System
}

18

Using the Trading DataSource Java API

19© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

Events raised by the Trading System can be pushed into the Trading DataSource. This is done by creating
a TradeEvent from the relevant Trade object, setting the necessary attributes, and asking the Trade
object to send it. At this point the Trading DataSource will verify, through the Trade Model, that the event is
allowed and contains all the necessary information, before sending the message off to the client.

The following code extract shows the typical custom code that would be written in the Trading DataSource
to create an event and send it to a client.

Custom code to create an event

TradeEvent myEvent = trade.createEvent("PriceUpdate");
myEvent.addField("BidPrice", bidPrice);

// Add more fields
// ...

// Then send the event on to the client.
trade.sendEvent(myEvent);

6.5 Closing Trades

When a trade reaches a final state it is closed. This could happen when the user or the Trading System
cancels the trade, when the trade is successfully executed, or when it is rejected. The final states are
defined by the trade model and are the states that have no transitions to another state. The
ChannelListener is notified when a trade has reached this state, which allows the application to clean
up any resources associated with that trade.

The following code extract shows the implementation of the ChannelListener method for notifying
closed trades.

Example implementation of ChannelListener.tradeClosed()

public void tradeClosed(Trade trade)
{
 // Clean up
}

6.6 Closing Channels

When a user logs off the system the trade channel for that user is closed. This could also happen if the
client application is designed to close trade channels when they are not in use. The
TradingApplicationListener will be notified when a channel is closed, which allows any resources
associated with that channel to be cleaned up. Once the trade has been closed it can no longer be used to
create or send events.

The following code extract shows the implementation of the TradingApplicationListener method for
notifying closed channels.

Example implementation of TradingApplicationListener.channelClosed()

public void channelClosed(TradeChannel channel)
{
 // Clean up
}

The Java Trading DataSource Example

20© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

7 The Java Trading DataSource Example

The Java Trading DataSource is supplied with example code to help you get started. This is in the Java
package example, which is located in the folder examples/source. The example package contains
commented example code that shows how to use the Trading DataSource API, as described in Using the
Trading DataSource Java API . The package is set up to handle Request For Stream (RFS) and
Executable Streaming Price (ESP) Trade Models, but could be easily adapted to handle any Trade Models
you configure.

The example is also used as the Reference Implementation Trading DataSource for ESP and RFS trades
made through the Caplin Trader Client Reference Implementation, and shares the Trade Model definitions
with the client.

16

Using the Trading DataSource C++ API

21© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

8 Using the Trading DataSource C++ API

This section provides a brief description of the main parts of the Trading DataSource C++ API
(see the Caplin C++ Trading DataSource: API Documentation for full details).

To implement a Trading DataSource you make use of callbacks on a class of your choice, to be notified of
events occurring on trades and to create events to be sent back into the system.

8.1 Initialization

When your Trading DataSource application starts, it should create an instance of TradingDataSource
and register itself as a TradingApplicationListener.

The TradingDataSource starts up a DataSource, which then connects to the Liberator. The DataSource
also sets up the necessary DataSource listeners internally to handle the trade messaging.

The following is a simple code extract showing the creation of a TradingDataSource within a custom
application.

Creation of a TradingDataSource

using namespace Caplin::TradingDataSource;

class MyTradingApp : public TradingApplicationListener
{
public:
 MyTradingApp()
 {
 // Prepare a vector of filenames of the config files to use

std::vector<std::string> configFiles;
configFiles.push_back("conf/MyESPStateModel.xml");
configFiles.push_back("conf/MyRFSStateModel.xml");

 // Create the Trading DataSource, passing in a pointer to a class that
 // implements TradingApplicationListener (so our ‘this’ pointer is fine)
 m_tradingDataSource.reset(new TradingDataSource(this,
 "MyDataSourceConfig.conf",
 configFiles));

 // Once the TradingDataSource has been created
 // it has to be started explicitly.
 m_tradingDataSource->start();
 }

 // ...
private:
 std::auto_ptr<TradingDataSource> m_tradingDataSource;
}

The TradingDataSource processes the flow of a trade by following the states defined by the Trade
Model for the particular type of trade. This processing is carried out by a state machine, implemented
internally as a StateMachine object. Before creating the TradingDataSource, the Trading
DataSource application creates a StateMachineFactory internally and loads the factory with the
required Trade Models. The models are defined in the XML configuration files discussed in Configuring
Trade Models and their paths are passed in to the constructor of TradingDataSource either as a
vector of strings or a single string.

The TradingDataSource constructor is also supplied with a configuration file for the DataSource. This
file defines the connections that the DataSource makes with the other Caplin Platform components, such
as Liberator.

12

Using the Trading DataSource C++ API

22© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

8.2 New Channels

The TradingApplicationListener is notified when new channels are created; this allows you to
perform any necessary user specific initialization. You must also add a ChannelListener to the
channel. The ChannelListener is an interface you must implement; it could be a new instance for each
channel or a single global instance. Its job is to handle notifications on the channel about newly created
trades and trades being closed.

The following code extract shows part of a sample implementation of a TradingApplicationListener
. It shows a custom ChannelListener being added to the channel to handle trades, and then a method
being called on a hypothetical tradingSystem object to log in the user for the channel.

Example implementation of TradingApplicationListener::channelCreated()

void MyTradingApplicationListener::channelCreated(TradeChannel& channel)
{
 channel.setChannelListener(m_pTradeChannelListener);

 // Handle new channel/user.
 // For example:
 tradingSystem.loginUser(channel.getUser());
}

8.3 New Trades

The ChannelListener is notified of new trades when a client initiates them; the trade is passed to it as a
 Trade object. When a trade is created the ChannelListener can perform any initialization needed with
the Trading System and also add a TradeListener to the newly created Trade object. The
TradeListener is an interface you must implement and could be a new instance for each trade or a
single global instance; its job is to handle all events for a trade. You normally have different
implementations of TradeListener that handle different trade types.

The following code extract shows part of a sample implementation of a ChannelListener. It shows a
different custom TradeListener being added to the Trade object to handle its events, depending on the
trade model used for the trade.

Example implementation of ChannelListener::tradeCreated()

void MyTradeChannelListener::tradeCreated(Trade& trade)
{
 if (trade.isType("ESP"))
 {
 trade.setTradeListener(m_pRFSTradeListener);
 }
 else if (trade.isType("RFS"))
 {
 trade.setTradeListener(m_pRFQTradeListener);
 }
}

How the new trade is handled depends on the trading system to which the Trading DataSource is
connected, and the nature of the API to that system.

Using the Trading DataSource C++ API

23© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

8.4 Dealing with events

The TradeEvent object represents a trade event, which typically encapsulates a message between the
client and the Trading DataSource. A TradeEvent has a type, which represents the type of the message,
for example “Open”, “PriceUpdate” or “Execute”. It also has a number of fields to represent all the
necessary information for that message, for example “BidPrice” or “Amount”.

The TradeListener is responsible for handling Trade Events; it is notified when new events are
received from the client. When a message is received from the client it is processed by the Trading
DataSource to verify that the event is valid based on the trade model before notifying the
TradeListener of the event. The Trade and TradeEvent objects are passed to the TradeListener.
The Trade has been updated with the data from the TradeEvent and can be used to create and send
new TradeEvents. The TradeListener would then typically send a message on to the Trading System
or handle the event in some other way.

The following code extract shows an implementation of the TradeListener method to receive events.

Example implementation of TradeListener::receiveEvent()

void RFQTradeListener::receiveEvent(Trade& trade,
 const TradeEvent& tradeEvent)
{
 // Talk to Trading System
}

Events raised by the Trading System can be pushed into the Trading DataSource. This is done by creating
a TradeEvent from the relevant Trade object, setting the necessary attributes, and asking the Trade
object to send it. At this point the Trading DataSource will verify, through the Trade Model, that the event is
allowed and contains all the necessary information, before sending the message off to the client.

The following code extract shows the typical custom code that would be written in the Trading DataSource
to create an event and send it to a client.

Custom code to create an event

TradeEvent myEvent = trade.createEvent("PriceUpdate ");
myEvent.addField("BidPrice", bidPrice);

// Add more fields
// ...

// Then send the event on to the client.
 trade.sendEvent(myEvent);

Using the Trading DataSource C++ API

24© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

8.5 Closing Trades

When a trade reaches a final state, it is closed. This could happen when the user or the Trading System
cancels the trade, when the trade is successfully executed, or when it is rejected. The final states are
defined by the trade model and are the states that have no transitions to another state. The
ChannelListener is notified when a trade has reached this state, which allows the application to clean
up any resources associated with that trade. Once the trade has been closed it can no longer be used to
create or send events.

The following code extract shows the implementation of the ChannelListener method for notifying
closed trades.

Example implementation of ChannelListener.tradeClosed()

void MyTradeChannelListener::tradeClosed(Trade& trade)
{
 // Clean up
 // ...
}

8.6 Closing Channels

When a user logs off the system the trade channel for that user is closed. This could also happen if the
client application is designed to close trade channels when they are not in use. The
TradingApplicationListener will be notified when a channel is closed, which allows any resources
associated with that channel to be cleaned up.

The following code extract shows the implementation of the TradingApplicationListener method for
notifying closed channels.

Example implementation of TradingApplicationListener.channelClosed()

void MyTradingApplicationListener::channelClosed(TradeChannel& channel)
{
 // Clean up
 // ...

}

The C++ Trading DataSource Example

25© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

9 The C++ Trading DataSource Example

The C++ Trading DataSource is supplied with an example application to help you get started.

The Visual Studio 2005 project file for the example is in the folder examples\DemoTradingSource.

The source files DemoTradingSource.cpp and DemoTradingSource.h contain the example code that
shows how to use the Trading DataSource API as described in this document. The example is set up to
handle Request For Stream (RFS) and Executable Streaming Price (ESP) Trade Models, but could be
easily adapted to handle any Trade Models you configure.

Glossary of terms and acronyms

26© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

10 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms used in this document.

Term Definition

API Application Programming Interface

Caplin Platform The Caplin Platform is a suite of software products for on-line
financial trading and Web delivery of real-time market data.

Caplin Trader Caplin Trader is a complete platform and toolkit for building multi-
product trading portals. It is built on the Caplin Platform.

Caplin Trader Client Caplin Trader Client is a platform neutral Web application that
provides a rich trading workstation in a browser. It is based on an
Ajax framework called webcentric, into which you can place any

Web content created in HTML, Ajax, Adobe FlexTM, or any other
similar technology.

DataSource DataSources are software adapters within the Caplin Platform that
connect the Platform to external sources of real time data and
external Trading Systems. In other Caplin documents
DataSources are also called DataSource adapters.

ESP Executable Streaming Price Trade Model.

Liberator Caplin Liberator is a bidirectional streaming push server designed
to deliver market data and trade messages over any network that
supports Web traffic.

RFQ Request for Quote Trade Model.

SDK Software Development Kit

Trade In this document the term Trade (with a capital T) represents a
single trade for a user. This could be an RFQ, an Execution on a
streaming price (ESP), or any other type of trade. See Trades .

Trade Channel A single user’s communication between the client application and
the Trading DataSource. See Trade Channels .

Trade Event An action by a client or an event from the Trading System. See
Trade Events .

Trading DataSource The DataSource used to integrate Caplin Trader with a Trading
System.

Trading DataSource API The API to the Trading DataSource that allows the DataSource to
be integrated with a Trading System.

Trade Model A Trade Model represents a type of trade, for example a Request
for Quote (RFQ) or Executable Streaming Price (ESP). Trade
Models consist of a number of states and transitions. See Trade
Models .

Trading System The term used in this document to refer to systems that support
trade capture.

6

6

7

6

Index

27© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

Index

- A -

Abbreviations, definitions 26

Acronyms, definitions 26

API

C++ Trading DataSource, using 21

Java Trading DataSource, using 16

Trading DataSource, overview 4

Trading DataSource, reference
documentation 2

API (C++)

ChannelListener 24

ChannelListener interface 22

TradeEvent object 23

TradeListener interface 22

TradeListener object 23

TradingApplicationListener 21, 22

TradingDataSource 21

API (Java)

ChannelListener 19

ChannelListener interface 17

TradeEvent object 18

TradeListener interface 17

TradeListener object 18

TradingApplicationListener 16, 17

TradingDataSource 16

Architecture

of Caplin Trader 2

asset class

handled by Trading DataSource 6

- C -

C++

API for Trading DataSource, examples
21

Caplin Trader

architecture of 2

Caplin Trading DataSource

API reference documentation 2

Channel

Trade Channel 6

ChannelListener (C++)

notification of new trades 22

ChannelListener (Java)

notification of new trades 17

ChannelListener (C++)

adding to a Trade Channel 22

notifying channel closure 24

notifying trade closure 24

ChannelListener (Java)

adding to a Trade Channel 17

notifying channel closure 19

notifying trade closure 19

Configuration

of RFQ Trade Model using XML 13

of Trade Model 4, 12

- D -

DataSource listener (C++)

handling trade messages 21

DataSource listener (Java)

handling trade messages 16

- E -

ESP Trade Model

in example package of Java Trading
DataSource kit 20

in Trading DataSource kit 12

state diagram 8

Event

definition for trading 7

from trading system (C++) 22

from trading system (Java) 17

handling by listener object 16, 21

represented by TradeEvent object (C++)
 23

represented by TradeEvent object (Java)
 18

Examples

closing a Trade (C++) 24

closing a Trade (Java) 19

closing a Trade Channel (C++) 24

closing a Trade Channel (Java) 19

creating a new Trade Channel (C++) 22

creating a new Trade Channel (Java)
17

creation of Trade Event (C++) 23

creation of Trade Event (Java) 18

implementation of ChannelListener (C++)
 22

Index

28© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

Examples

implementation of ChannelListener (Java)
 17

implementation of TradeListener (C++)
23

implementation of TradeListener (Java)
18

Trade Model configuration (RFQ) 13

Trading DataSource example (C++) 25

Trading DataSource example (Java) 20

Examples (C++)

initialization of Trading DataSource 21

Examples (Java)

initialization of Trading DataSource 16

Executable Streaming Price (ESP)

example of Trade Model 6

state diagram 8

- F -

Factory (C++)

for trading state machines 21

Factory (Java)

for trading state machines 16

Field

checking via XML configuration 14

in Trade Event 7

- G -

Glossary 26

Guard 6

- J -

Java

API for Trading DataSource, examples
16

trademark 3

- L -

Listener interface

in trading system (C++) 22

in trading system (Java) 17

Listener object

ChannelListener (C++) 22, 24

ChannelListener (Java) 17, 19

TradeListener (C++) 22, 23

TradeListener (Java) 17, 18

Listener object (C++)

TradingApplicationListener 21

Listener object (Java)

TradingApplicationListener 16

- M -

Message

encapsulated by TradeEvent (C++) 23

encapsulated by TradeEvent (Java) 18

Messages

causing state transitions 6

checking common set of fields 14

custom 4

for trading 4

on Trade Channels 6

raising Trade Event 7

transmitting RequestId and TradeId 6

MsgType field

in trade Event 7

- O -

ORD Trade Model

in Trading DataSource kit 12

state diagram 10

Order (ORD)

state diagram 10

- R -

Readership 1

Reference Implementation Trading DataSource
 20

Request for Quote (RFQ)

example of Trade Model 6

state diagram 11

Request for Stream (RFS)

state diagram 9

RequestId 6

RFQ Trade Model

example XML configuration 13

state diagram 11

RFS Trade Model

Index

29© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

RFS Trade Model

in example package of Java Trading
DataSource kit 20

in Trading DataSource kit 12

state diagram 9

- S -

State

concept, in Trade Model 6

defining in XML configuration 13

State machine 16, 21

- T -

Terms, glossary of 26

Trade

closing (C++) 24

closing (Java) 19

definition of 6

handling new Trade using
ChannelListener (C++) 22

handling new Trade using
ChannelListener (Java) 17

Trade Channel

definition of 6

notifying closure (C++) 24

notifying closure (Java) 19

notifying creation (C++) 22

notifying creation (Java) 17

Trade Event

definition of 7

handling by listener object 16, 21

Trade messaging

role of TradeEvent object (C++) 23

role of TradeEvent object (Java) 18

role of TradeListener object (C++) 23

role of TradeListener object (Java) 18

Trade messaging (C++)

handling via DataSource listeners 21

Trade messaging (Java)

handling via DataSource listeners 16

Trade Model

configuration overview 4

configuring 12

definition of 6

ESP state diagram 8

ORD state diagram 10

relationship to Trade 6

relationship to Trading DataSource 4

RFQ state diagram 11

RFS state diagram 9

supported in Trading DataSource kit 12

Trade object 17, 18, 22, 23

Trade System

events raised by 18, 23

messages from TradeListener (C++) 23

messages from TradeListener (Java) 18

TradeEvent object (C++) 23

TradeEvent object (Java) 18

TradeId 6

TradeListener (Java)

custom 17

TradeListener (C++)

custom 22

handling Trade Events 23

TradeListener (Java)

handling Trade Events 18

Trading DataSource

API overview 4

overview and architecture 4

relationship to Trade Models 4

standard TradeModels in kit 12

using the C++ API 21

using the Java API 16

Trading GUI

overview 4

Trading state machine (C++) 21

Trading state machine (Java) 16

Trading System

cancelling a trade (C++) 24

cancelling a trade (Java) 19

events from 7

events from (C++) 22

events from (Java) 17

initialization within (C++) 22

initialization within (Java) 17

listener interface (C++) 22

listener interface (Java) 17

overview 4

processing events 6

TradingApplicationListener (C++)

notifying when Trade Channel created
22

TradingApplicationListener (C++)

example 21

Index

30© Caplin Systems Ltd. 2007 – 2008

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.3

TradingApplicationListener (Java)

example 16

notifying when Trade Channel created
17

TradingDataSource (C++)

creating in custom application 21

TradingDataSource (Java)

creating in custom application 16

Transition

checking fields in XML definition of 14

concept, in Trade Model 6

defining in XML configuration 13

of Trade state 6

- V -

Value

in Trade Event 7

- X -

XML configuration

example for RFQ Trade Model 13

in TradingDataSource kit 12

overview 4

specifying field checks in transition
definitions 14

© Caplin Systems Ltd. 2007 – 2008

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Triton Court

14 Finsbury Square

London EC2A 1BR

Telephone: +44 20 7826 9600

Fax: +44 20 7826 9610

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Trader 1.3: Integrating Caplin Trader With A Trading System, November 2008, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	Overview
	Trading Concepts
	Trade Models
	Trade Channels
	Trades
	Trade Events

	Example Trade Models
	Example Executable Streaming Price (ESP)
	Example Request for Stream (RFS)
	Example Order (ORD)
	Simple Request for Quote (RFQ)

	Configuring Trade Models
	Simple RFQ Example
	Checking Fields

	Using the Trading DataSource Java API
	Initialization
	New Channels
	New Trades
	Dealing with events
	Closing Trades
	Closing Channels

	The Java Trading DataSource Example
	Using the Trading DataSource C++ API
	Initialization
	New Channels
	New Trades
	Dealing with events
	Closing Trades
	Closing Channels

	The C++ Trading DataSource Example
	Glossary of terms and acronyms

