
Integrating Caplin Trader

September 2009

C O N F I D E N T I A L

Caplin Trader 1.4

 With A Trading System

i

Integrating Caplin Trader With A Trading System

© Caplin Systems Ltd. 2007 – 2009

Contents

CONFIDENTIAL

Caplin Trader 1.4

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 2Related documents1.3

.. 2Typographical conventions1.4

.. 3Feedback1.5

.. 3Acknowledgments1.6

.. 4Overview2

.. 6Trading concepts3

.. 6Trade Models3.1

.. 6Trade Channels3.2

.. 6Trades3.3

.. 7Trade Events3.4

.. 7Blotter Channels3.5

.. 9Example Trade Models4

.. 9Example Executable Streaming Price (ESP)4.1

.. 10Example Request for Stream (RFS)4.2

.. 11Example Order (ORD)4.3

.. 12Request for Quote (RFQ) with timeouts4.4

.. 13Configuring Trade Models5

.. 14RFQ example5.1

.. 16Using the Trading DataSource Java API6

.. 16Initialization6.1

.. 17New Trade Channels6.2

.. 17New Trades6.3

.. 18Dealing with Events6.4

.. 19Closing Trades6.5

.. 19Closing Channels6.6

.. 20Handling Blotter Channels6.7

.. 20Registering the BlotterTradeListener

.. 22Implementing the BlotterTradeListener interface

ii

Integrating Caplin Trader With A Trading System

© Caplin Systems Ltd. 2007 – 2009

Contents

CONFIDENTIAL

Caplin Trader 1.4

.. 24The Java Trading DataSource Example7

.. 25Using the Trading DataSource C++ API8

.. 25Initialization8.1

.. 26New Trade Channels8.2

.. 26New Trades8.3

.. 27Dealing with Events8.4

.. 28Closing Trades8.5

.. 28Closing Channels8.6

.. 29Handling Blotter Channels8.7

.. 29Registering the BlotterListener

.. 30Implementing the BlotterListener interface

.. 31The C++ Trading DataSource Example9

.. 32Configuring Caplin Liberator for trading10

.. 33Mapping trade messaging objects in Liberator10.1

.. 35Routing trade messages to the Trading DataSource10.2

.. 36Trading performance and integrity10.3

.. 36Optimizing client reconnection time

.. 36Throttling

.. 38Security10.4

.. 38Session IDs

.. 38Single sign-on and KeyMaster

.. 39Appendix: Overview of throttling11

.. 41Glossary of terms and acronyms12

.. 43Index

Preface

1© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

1 Preface

1.1 What this document contains

This document describes how the Caplin Trading DataSource allows you to integrate Caplin Trader with
your existing trading system.

Trading DataSources can be implemented in JavaTM and C++. The document describes how to use both
the Java and C++ APIs for this purpose.

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for Technical Managers, Enterprise Architects, and System Architects, who
require an overview of the Caplin Trading DataSource and its Java and C++ APIs.

http://support.microsoft.com/kb/896054/

Preface

2© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

1.3 Related documents

Caplin Trader Architecture

This document describes the architecture of Caplin Trader. It focuses on the use of the Caplin
Platform in trading applications. It also identifies the areas in which the Platform can be integrated
with your company’s own and third-party systems.

Caplin DataSource Overview

A technical overview of Caplin DataSource.

Caplin Java Trading DataSource: API Documentation

This is the detailed Java API documentation for the Caplin Trading DataSource.

Caplin C++ Trading DataSource: API Documentation

This is the detailed C++ API documentation for the Caplin Trading DataSource.

Caplin Trader Trade Model Configuration XML Reference

This document defines the XML tags and attributes used to define Trade Models.

Caplin Trader Client: API Specification

Documents the JavaScript libraries that allow developers to extend Caplin Trader Client by writing
custom JavaScript code.

Caplin KeyMaster Overview

KeyMaster integrates Caplin Liberator with an existing single sign-on system, so that end users do
not have to explicitly log in to the Liberator server in addition to logging in to the enterprise's single
sign-on server.

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

a-config-item Liberator configuration item

a-config-parameter Parameter of a Liberator configuration item

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Preface

3© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Please email your feedback to documentation@caplin.com.

1.6 Acknowledgments

Adobe, Adobe® Reader, and Flex are either registered trademarks or trademarks of Adobe Systems
Incorporated is a registered trademark of Adobe Systems Incorporated in the United States and/or other
countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Java is a trademark of Sun Microsystems, Inc. in the U.S. or other countries.

mailto:documentation@caplin.com

Overview

4© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

2 Overview

Caplin Trader consists of a number of components (see the Caplin Trader Architecture). The main
components used to integrate Caplin Trader with your trading system are the Trading DataSource and the
Trading GUI.

The following diagram shows the basic architecture of the trading integration components and how they fit
into Caplin Trader.

Simplified Caplin Trader architecture showing only trading
integration components

Overview

5© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Trading system

The trading system represents your systems that support trade capture and execution.

Trading DataSource

The Trading DataSource is the interface between Caplin Trader and the trading system. Its job is to enable
communication between clients and the trading system. It sits between Caplin Liberator and the trading
system, handling messages sent between clients and the trading system, via Caplin Liberator. The Trading
DataSource consists of the standard Caplin DataSource Library, the Trading DataSource Library, and the
custom code required to integrate with your trading system.

The Trading DataSource provides a simple API that can be used to communicate with your trading system
or can be integrated directly into it. This means the DataSource can be a stand alone process or part of an
existing one. The Trading DataSource API is available in both Java and C++ and is built on top of the
Caplin DataSource SDK. It gives full access to all the functionality of Caplin DataSource SDK; this allows
you to send and receive custom messages in addition to trade messaging.

Trading GUI

The Trading GUI is the part of the Caplin Trader Client that displays Trade Tickets and Trade Tiles. It can
be customized to contain the correct information and understand the types of trades that can be
performed. The Trading GUI consists of custom presentation code that interacts with the Trading
DataSource through the Liberator using the client-side Trading Module and the StreamLink for Browsers
Library.

The provided Trade Tickets and Trade Tiles can be used as a starting point for customization, or
completely new trading displays can be created using the supplied APIs.

Trade Model configuration

The Trade Model configuration is a set of XML files defining the Trade Models that are to be used by the
Trading DataSource and Trading GUI. These definitions represent the trade life-cycle and provide an
interface between the end user and the trading system. The same Trade Model configuration is used by
both components to ensure they communicate and maintain a consistent state with one another.

Caplin Trader is not tied to any particular Trade Model; it can be configured to match your existing Trade
Models along with any new Trade Models you wish to develop. Once configured with Trade Models, the
Trading DataSource Library and Trading Module will control and verify the states and transitions allowed.
This simplifies the integration needed as most of the logic is handled for you and is defined by your
configuration.

Trading concepts

6© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

3 Trading concepts

Caplin Trader uses a number of concepts to represent trading: models, channels, trades, and events.

3.1 Trade Models

A Trade Model represents a type of Trade, for example a Request for Quote (RFQ) or Executable
Streaming Price (ESP). Trade Models consist of a number of states and transitions and are defined by
configuration. The Trade Model controls the flow of a Trade by defining all the possible states the Trade
can be in and the messages that cause transitions from one state to another.

3.2 Trade Channels

A Trade Channel represents a single user’s communication between the Caplin Trader Client and the
Trading DataSource. It is a private channel for bidirectional messaging and all messages relating to
Trades for a user will be sent and received on the user’s channel.

Caplin Trader Client opens a Trade Channel by subscribing to an object. The Caplin Liberator maps this
subscription to a unique object name for that user (see Mapping trade messaging objects in Liberator)
and subscribes to the object from the Trading DataSource. When the Trading DataSource responds to this
subscription, a private channel is effectively created for messages in both directions between the client
and the Trading DataSource; this is the Trade Channel.

Many deployments would use a single Trade Channel. However, sometimes it is useful to have multiple
Trading DataSources, each handling different asset classes. In this case the user could have a separate
Trade Channel for each Trading DataSource; the client would be set up to subscribe to different object
names for the different channels.

3.3 Trades

A Trade represents a single trade for a user. This could be an RFQ, an Execution on a streaming price, or
any other type of trade. A Trade is typically initiated by the client and then the Trading DataSource
processes events from the client and the trading system that transition the Trade between different states.

Multiple Trades can be in operation on the same Trade Channel either concurrently or one after the other.
Each Trade has an associated RequestId set by the client and a TradeId set by the trading system. These
ids are set by the first message sent by either side and are then included in subsequent messages to link
the messages to the correct Trade.

A Trade is tied to a Trade Model; this relationship is determined by the first message sent by the client.
Once the Trade Model for a Trade has been set, the state of the Trade transitions from the initial state to a
final state according to the definition of the Trade Model.

33

Trading concepts

7© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

3.4 Trade Events

A Trade Event typically represents an action by a client or an event from the trading system. An event
originating from the trading system can represent an action by a dealer or an automated action. A Trade
Event is raised either by receiving a message from a client, or directly which causes the DataSource to
send a message to a client. Events are tied to a Trade and cause the Trade to move from one state to
another as defined by the Trade Model.

A Trade Event contains a number of fields and values, which map directly onto a message sent or
received by the Trading DataSource. Some message fields are mandatory and are part of the Trading API;
for example, all Trade Events have a type which is represented by the MsgType field in the underlying
message. Other fields are optional, some of which may be required by the Trade Model being used.

3.5 Blotter Channels

A Blotter Channel is a software channel that the Trading DataSource uses to send information to the Client
for display in a blotter. In Caplin Trader Client the blotter is updated when a Trade changes state; for
example; when a quote is requested, when a Trade is executed, and when a Trade is canceled.

Caplin Trader Client opens a Blotter Channel by subscribing to an object whose subject name begins with
the string “/BLOTTER/” or contains the string “/FT/TRADEHISTORY/”. The Liberator maps this
subscription to a unique object name for the Caplin Trader Client end-user and subscribes to the object
from the Trading DataSource. The Trading DataSource responds to this subscription by creating a unique
Blotter Channel.

Subsequently, whenever the end-user interacts with the trading subsystem, the Trading DataSource
creates a Blotter Event each time the client is notified of a Trade Event. As a result it may send a blotter
message to the client across the Blotter Channel. The message typically contains information about the
state of the Trade.

The following pictures show the blotter in Caplin Trader Client being updated at successive stages in the
execution of an FX Trade using the RFS Trade Model. (For simplicity only the left hand side of the blotter
is shown; in reality there are more fields on the right hand side of the blotter.)

1. When the end-user requests a quote the blotter entry is created and its status is set to Opened.

2. As price quotes are streamed to the client the status changes to Price Update.

Trading concepts

8© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

3. When the user clicks the Sell button on the Trade Ticket, the blotter entry status becomes

Executing.

4. Finally the Trade is confirmed and the final sale details are sent to the blotter with status set to Done.

Successive updates to a blotter entry in Caplin Trader Client

The client should normally subscribe to a separate Blotter Channel for each asset class traded—for
example, an FX blotter and an FI blotter—since the type of information that needs to be displayed on the
blotter varies according to asset class. The client would be set up to subscribe to different object names for
the different Blotter Channels, such as “/BLOTTER/FX” and “/BLOTTER/FI”.

Example Trade Models

9© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

4 Example Trade Models

The following sections show examples of Trade Models that can be used with Caplin Trader. More
complicated Trade Models can be used with little extra complexity of integration.

4.1 Example Executable Streaming Price (ESP)

This state diagram shows the example Executable Streaming Price (ESP) Trade Model.

This model is provided with Caplin Trader and is used by the demonstration Trading DataSource and the
Caplin Trader Client Reference Implementation, for one-click trading via the Trade Tile.

State diagram for ESP Trade Model

Example Trade Models

10© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

4.2 Example Request for Stream (RFS)

This state diagram shows the example Request For Stream (RFS)

Trade Model. This model is provided with Caplin Trader and is used by the demonstration Trading
DataSource and the Caplin Trader Client Reference Implementation, for ticket-based Trades.

State diagram for Example RFS Trade Model

Example Trade Models

11© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

4.3 Example Order (ORD)

This state diagram shows the example Order (ORD) Trade Model.

This model differs from the ESP and RFS models in that it has two different transitions from the initial
state. The standard transition is the client open event (client:Open), but the additional initial state transition
(server:Restore) is used when the server restores a Trade from the trading system.

This model is provided with Caplin Trader and is used by the demonstration Trading DataSource. It is not
currently used by the Caplin Trader Client, but will be included in a forthcoming version of the Caplin
Trader Client Reference Implementation for ticket-based order Trades.

State diagram for Example ORD Trade Model

Example Trade Models

12© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

4.4 Request for Quote (RFQ) with timeouts

This state diagram shows a typical simple Request for Quote Trade Model.

This particular model is not used by the Caplin Trader Client Reference Implementation, but is typical of an
RFQ workflow. It includes timeouts on events; these timeouts are implemented on the client side only, to
ensure that the client does not hang if there is no response from the server. Additional states can easily be
added before the Open state to account for credit checks and other validation steps as required.

The XML configuration that describes this trade model is shown in the RFQ example section of
Configuring Trade Models .

State diagram for RFQ Trade Model

14

13

Configuring Trade Models

13© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

5 Configuring Trade Models

Caplin Trader is designed to work with any Trade Model; it can be configured to match your existing Trade
Models or new models being developed.

Trade Models are configured using an XML definition file which defines

The possible states a Trade can be in.

The transitions a Trade can take from one state to another.

The checks that are made before the transition can be made.

Any number of Trade Models can be configured and Trades can automatically pick out the relevant model
to use.

The Trading DataSource kit includes example Trade Model XML definition files. These are Request for
Stream (RFS), Executable Streaming Price (ESP), and Order (ORD). The XML definitions can be used as
they are, or they can be adapted to your requirements.

For the detailed definition of the Trade Model XML, see the document Caplin Trader Trade Model XML
Reference.

Configuring Trade Models

14© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

5.1 RFQ example

The following example is the XML configuration for the RFQ Trade Model shown in Request for Quote
(RFQ) with timeouts . Note that the timeout and timeoutState attributes on some of the <state>
tags only apply to the Trade Model when it executes on a client. The timeouts ensure that the client does
not hang if there is no response from the server.

<tradeModels>
 <tradeModel name="RFQ" initialState="Initial">
 <state name="Initial">
 <transition target="OpenSent"
 trigger="ClientOpen"
 source="client" />
 </state>

 <state name="OpenSent" timeout="10" timeoutState="Timeout">
 <transition target="Open"
 trigger="OpenAck"
 source="server" />
 </state>

 <state name="Open" timeout="60" timeoutState="Timeout">
 <transition target="OTW"
 trigger="PriceUpdate"
 source="server" />
 <transition target="Cancelled"
 trigger="ClientCancel"
 source="client" />
 </state>

 <state name="OTW" timeout="60" timeoutState="Timeout">
 <transition target="AcceptSent"
 trigger="ClientAccept"
 source="client" />
 <transition target="OTW"
 trigger="PriceUpdate"
 source="server" />
 <transition target="Open"
 trigger="OTWExpire"
 source="server" />
 <transition target="Cancelled"
 trigger="ClientCancel"
 source="client" />
 </state>

 <state name="AcceptSent" timeout="10" timeoutState="Error">
 <transition target="Accepted"
 trigger="AcceptAck"
 source="server" />
 </state>

 <state name="Accepted" />

 <state name="Cancelled" />

 <state name="Timeout" />

 <state name="Error" />

 </tradeModel>
</tradeModels>

12

Configuring Trade Models

15© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

See also the Caplin Trader Trade Model Configuration XML Reference.

Using the Trading DataSource Java API

16© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

6 Using the Trading DataSource Java API

This section provides a brief description of the main parts of the Trading DataSource Java API
(see the Caplin Java Trading DataSource: API Documentation for full details).

To implement a Trading DataSource you set up listener objects to handle events occurring on Trades and
create events to be sent back into the system.

6.1 Initialization

When your Trading DataSource application starts, it should create an instance of TradingDataSource
and register itself as a TradingApplicationListener. The TradingDataSource starts up a
DataSource, which then connects to the Liberator. The DataSource also sets up the necessary
DataSource listeners internally to handle the trade messaging.

The following is a simple code extract showing the creation of a TradingDataSource within a custom
application.

Creation of a TradingDataSource

public class MyTradingApp implements TradingApplicationListener
{
 static void main(String[] args)
 {
 new MyTradingApp();
 }

 MyTradingApp()
 {
 // Create a factory object for generating the trading state machines.
 StateMachineFactory myTradingStateMachineFactory = new StateMachineFactory();

 // Load the required Trade Models into the factory.
 myTradingStateMachineFactory.loadModels(new File("conf/MyESPStateModel.xml"));
 myTradingStateMachineFactory.loadModels(new File("conf/MyRFSStateModel.xml"));

 // Create the Trading DataSource.
 // This will create a DataSource object internally to manage the
 // communication with other DataSources, such as Caplin Liberator
 // and hence client applications.
 // TradingDataSource implements the standard DataSource callbacks,
 // which allow you to use the Trading API to communicate with
 // clients in the form of trade messages.

 tradingDataSource = new TradingDataSource
 (this, //Reference to this TradingApplicationListener
 "MyDataSourceConfig.xml",
 // The configuration file for this DataSource
 myTradingStateMachineFactory
);

 // Once the TradingDataSource has been created
 // it has to be started explicitly.
 tradingDataSource.start();
 }

 // ...
}

Using the Trading DataSource Java API

17© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

The TradingDataSource processes the flow of a Trade by following the states defined by the Trade
Model for the particular type of Trade. This processing is carried out by a state machine, implemented as a
 StateMachine object. Before creating the TradingDataSource, the Trading DataSource application
creates a StateMachineFactory, and loads the factory with the required Trade Models, The models
are defined in the XML configuration files discussed in Configuring Trade Models .
The StateMachineFactory is then passed to the TradingDataSource constructor, so that the
DataSource can create a the state machine for each loaded Trade Model.

The TradingDataSource constructor is also supplied with an XML format configuration file for the
DataSource. This file defines the connections that the DataSource makes with the other Caplin Platform
components, such as Liberator.

6.2 New Trade Channels

The TradingApplicationListener is notified when new Trade Channels are created; this allows you
to perform any necessary user specific initialization. You must also add a ChannelListener to the
channel. The ChannelListener is an interface you must implement; it could be a new instance for each
channel or a single global instance. Its job is to handle notifications on the channel about newly created
Trades and Trades being closed.

The following code extract shows part of a sample implementation of a TradingApplicationListener
. It shows a custom ChannelListener being added to the channel to handle Trades, and then a method
being called on a hypothetical tradingSystem object to log in the user for the channel.

Example implementation of TradingApplicationListener.channelCreated()

public void channelCreated(TradeChannel channel)
{
 channel.setChannelListener(new MyChannelListener(channel));

 // Handle new channel/user.
 // For example:
 tradingSystem.loginUser(channel.getUser());
}

6.3 New Trades

The ChannelListener is notified of new Trades when a client initiates them; the Trade is passed to it as
a Trade object. When a Trade is created the ChannelListener can perform any initialization needed
with the trading system and also add a TradeListener to the newly created Trade object. The
TradeListener is an interface you must implement and could be a new instance for each Trade or a
single global instance; its job is to handle all events for a Trade. You normally have different
implementations of TradeListener that handle different trade types.

The following code extract shows part of a sample implementation of a ChannelListener. It shows a
different custom TradeListener being added to the Trade object to handle its events, depending on the
 Trade Model used for the Trade.

13

Using the Trading DataSource Java API

18© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Example implementation of ChannelListener.tradeCreated()

public void tradeCreated(Trade trade)
{
 // Check the Trade Model used
 // and create an appropriate listener to handle it.
 if (trade.getType().equals("ORD"))
 {
 trade.setTradeListener(new ORDTradeListener(trade));
 }
 else if (trade.getType().equals("RFQ"))
 {
 trade.setTradeListener(new RFQTradeListener(trade));
 }
}

How the new Trade is handled depends on the trading system to which the Trading DataSource is
connected, and the nature of the API to that system.

The Trade object must be retained, so that it can be referred to when the trading system responds with an
event (see Dealing with events). Assume, for example, the trading system API supports a listener style
interface with a listener object for each Trade. TradeListener.tradeCreated() can store the Trade
object in a trading system listener object before calling the trading system. When the trading system
subsequently raises an event on the Trade, it will call the listener, which can then refer to the Trade object
as required (for example to create an event to pass on to the client).

Alternatively the trading system may not support a listener interface. For example, it may, just pass back
an “event” with an ID relating to the Trade. In this case TradeListener.tradeCreated() would have
to store the Trade object in a suitable data structure (say a hash table). This structure must be accessible
by the code that handles events from the trading system. This code would typically use the ID returned in
the trading system event as the key to extract the Trade object.

6.4 Dealing with Events

The TradeEvent object represents a Trade Event, which typically encapsulates a message between the
client and the Trading DataSource. A TradeEvent has a type, which represents the type of the message,
for example “Open”, “PriceUpdate” or “Execute”. It also has a number of fields to represent all the
necessary information for that message, for example “BidPrice” or “Amount”.

The TradeListener is responsible for handling TradeEvents; it is notified when new events are
received from the client. When a message is received from the client, it is processed by the Trading
DataSource to verify that the event is valid based on the Trade Model before notifying the
TradeListener of the event. The Trade and TradeEvent objects are passed to the TradeListener.
The Trade has been updated with the data from the TradeEvent and can be used to create and send
new TradeEvents. The TradeListener would then typically send a message on to the trading system
or handle the event in some other way.

The following code extract shows an implementation of the TradeListener method to receive events.

Example implementation of TradeListener.receiveEvent()

public void receiveEvent(TradeEvent event)
{
 // Talk to trading system
}

18

Using the Trading DataSource Java API

19© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Events raised by the trading system can be pushed into the Trading DataSource. This is done by creating
a TradeEvent from the relevant Trade object, setting the necessary attributes, and asking the Trade
object to send it. At this point the Trading DataSource will verify, through the Trade Model, that the event is
allowed and contains all the necessary information, before sending the message off to the client.

The following code extract shows the typical custom code that would be written in the Trading DataSource
to create an event and send it to a client.

Custom code to create an event

TradeEvent myEvent = trade.createEvent("PriceUpdate");
myEvent.addField("BidPrice", bidPrice);

// Add more fields
// ...

// Then send the event on to the client.
trade.sendEvent(myEvent);

6.5 Closing Trades

When a Trade reaches a final state it is closed. This could happen when the user or the trading system
cancels the Trade, when the Trade is successfully executed, or when it is rejected. The final states are
defined by the Trade Model and are the states that have no transitions to another state. The
ChannelListener is notified when a Trade has reached this state, which allows the application to clean
up any resources associated with that Trade.

The following code extract shows the implementation of the ChannelListener method for notifying
closed Trades.

Example implementation of ChannelListener.tradeClosed()

public void tradeClosed(Trade trade)
{
 // Clean up
}

6.6 Closing Channels

When a user logs off the system the Trade Channel for that user is closed. This could also happen if the
client application is designed to close Trade Channels when they are not in use. The
TradingApplicationListener will be notified when a channel is closed, which allows any resources
associated with that channel to be cleaned up. Once the Trade has been closed it can no longer be used
to create or send events.

The following code extract shows the implementation of the TradingApplicationListener method for
notifying closed channels.

Example implementation of TradingApplicationListener.channelClosed()

public void channelClosed(TradeChannel channel)
{
 // Clean up
}

Using the Trading DataSource Java API

20© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

6.7 Handling Blotter Channels

To handle Blotter Channels in the trading DataSource:

Implement code in the TradingApplicationListener interface to register and deregister a
BlotterTradeListener.

Implement the BlotterTradeListener interface to construct and send blotter messages.

This interface provides notification of Blotter Events through the life cycle of a Trade. Blotter events
(class BlotterEvent) are created when the Trading DataSource has validated a state transition in
the Trade Model and has sent a TradeEvent to the client.

In the code fragments shown in the next sections, the implementation of BlotterTradeListener is the
example listener AutoBlotterTradeListener provided with the example Trading DataSource:

Registering the BlotterTradeListener

When implementing the TradingApplicationListener interface (see Initialization), add code to
register and deregister a BlotterTradeListener.

Registering and deregistering BlotterTradeListener in TradingApplicationListener

public class MyTradingApp implements TradingApplicationListener
{
 ...
 private BlotterTradeListener autoBlotterTradeListener
 = AutoBlotterTradeListener.getInstance();
 ...

 // Called when the TradingDataSource has created a BlotterChannel
 // as a result of receiving a request for a blotter subject.

 public void blotterChannelCreated(BlotterChannel blotterChannel)
 {
 tradingDataSource.addBlotterTradeListener(
 blotterChannel,
 autoBlotterTradeListener
);
 }

 // Called when a BlotterChannel is closed.
 // The channel is closed when the originally requested blotter
 // subject is discarded, or the connection to the Trading DataSource's
 // peer is lost, or the Trading DataSource is being shut down.

 public void blotterChannelClosed(BlotterChannel blotterChannel)
 {
 tradingDataSource.removeBlotterTradeListener(
 blotterChannel,
 autoBlotterTradeListener
);
 }

16

Using the Trading DataSource Java API

21© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Here is more detailed explanation of the previous code fragment:

The BlotterTradeListener is the example listener
AutoBlotterTradeListener provided with the example Trading DataSource. The static method
AutoBlotterTradeListener.getInstance() returns an instance of the listener that can be
used with this Blotter Channel:

 private BlotterTradeListener autoBlotterTradeListener
 = AutoBlotterTradeListener.getInstance();

Code the blotterChannelCreated()method to register the BlotterTradeListener
with the Trading DataSource when the Blotter Channel is created, by calling
addBlotterTradeListener():

public void blotterChannelCreated(BlotterChannel blotterChannel)
 {
 tradingDataSource.addBlotterTradeListener(
 blotterChannel,
 autoBlotterTradeListener
);
 }

Code the blotterChannelClosed() method to deregister the BlotterTradeListener from
the Trading DataSource when the Blotter Channel is closed:

 public void blotterChannelClosed(BlotterChannel blotterChannel)
 {
 tradingDataSource.removeBlotterTradeListener(
 blotterChannel,
 autoBlotterTradeListener
);
 }

Using the Trading DataSource Java API

22© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Implementing the BlotterTradeListener interface

The BlotterTradeListener has one method receiveBlotterEvent() that is called when the
Trading DataSource has sent a Trade Event to the client. Note that the BlotterEvent is not an event in
the execution of a Trade Model; it is merely a message containing both the TradeEvent for which a
blotter entry is to be constructed and the Blotter Channel to send the entry on.

Here is a simple example of the receiveBlotterEvent() method in the
AutoBlotterTradeListener implementation of BlotterTradeListener.

AutoBlotterTradeListener (example of BlotterTradeListener)

public class AutoBlotterTradeListener implements BlotterTradeListener
{
 // Called after a Trade Event has been validated and sent to the client.

 public void receiveBlotterEvent(BlotterEvent blotterEvent)
 {
 BlotterChannel blotterChannel = blotterEvent.getBlotterChannel();
 TradeEvent tradeEvent = blotterEvent.getTradeEvent();
 Trade trade = tradeEvent.getTrade();

 BlotterMessage blotterMessage = blotterChannel.createBlotterMessage();

 blotterMessage.addField("L1_AMOUNT", trade.getField("L1_AMOUNT"));
 blotterMessage.addField("ACCOUNT", trade.getField("ACCOUNT"));
 blotterMessage.addField("TRADING_TYPE", "demo"));
 blotterMessage.addField("USER_NAME", trade.getChannel().getUser());
 ...

 blotterChannel.sendBlotterMessage(blotterMessage);
 }
}

Here is more detailed explanation of the previous code fragment:

Obtain the BlotterChannel from the BlotterEvent that the Trading DataSource passed to the
listener. From the BlotterEvent obtain the TradeEvent and the Trade to which the Trade Event
relates.

BlotterChannel blotterChannel = blotterEvent.getBlotterChannel();
TradeEvent tradeEvent = blotterEvent.getTradeEvent();
Trade trade = tradeEvent.getTrade();

Create a new blotter message on the Blotter Channel.

BlotterMessage blotterMessage = blotterChannel.createBlotterMessage();

Using the Trading DataSource Java API

23© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Populate the blotter message with the required fields and their values. Typically the field values are
obtained from the Trade and from the user information associated with the Trade Channel.

blotterMessage.addField("L1_AMOUNT", trade.getField("L1_AMOUNT"));
blotterMessage.addField("ACCOUNT", trade.getField("ACCOUNT"));
blotterMessage.addField("TRADING_TYPE", "demo"));
blotterMessage.addField("USER_NAME", trade.getChannel().getUser());
...

Send the newly constructed blotter message to the client via the Blotter Channel.

blotterChannel.sendBlotterMessage(blotterMessage);

The Java Trading DataSource Example

24© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

7 The Java Trading DataSource Example

The Java Trading DataSource is supplied with example code to help you get started. This is in the Java
package example, which is located in the folder examples/source. The example package contains
commented example code that shows how to use the Trading DataSource API, as described in Using the
Trading DataSource Java API . The package is set up to handle Request For Stream (RFS) and
Executable Streaming Price (ESP) Trade Models, but could be easily adapted to handle any Trade Models
you configure.

The example is also used as the Reference Implementation Trading DataSource for ESP and RFS Trades
made through the Caplin Trader Client Reference Implementation, and shares the Trade Model definitions
with the client.

16

Using the Trading DataSource C++ API

25© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

8 Using the Trading DataSource C++ API

This section provides a brief description of the main parts of the Trading DataSource C++ API
(see the Caplin C++ Trading DataSource: API Documentation for full details).

To implement a Trading DataSource you make use of callbacks on a class of your choice, to be notified of
events occurring on Trades and to create events to be sent back into the system.

8.1 Initialization

When your Trading DataSource application starts, it should create an instance of TradingDataSource
and register itself as a TradingApplicationListener.

The TradingDataSource starts up a DataSource, which then connects to the Liberator. The DataSource
also sets up the necessary DataSource listeners internally to handle the trade messaging.

The following is a simple code extract showing the creation of a TradingDataSource within a custom
application.

Creation of a TradingDataSource

using namespace Caplin::TradingDataSource;

class MyTradingApp : public TradingApplicationListener
{
public:
 MyTradingApp()
 {
 // Prepare a vector of filenames of the config files to use

std::vector<std::string> configFiles;
configFiles.push_back("conf/MyESPStateModel.xml");
configFiles.push_back("conf/MyRFSStateModel.xml");

 // Create the Trading DataSource, passing in a pointer to a class that
 // implements TradingApplicationListener (so our ‘this’ pointer is fine)
 m_tradingDataSource.reset(new TradingDataSource(this,
 "MyDataSourceConfig.conf",
 configFiles));

 // Once the TradingDataSource has been created
 // it has to be started explicitly.
 m_tradingDataSource->start();
 }

 // ...
private:
 std::auto_ptr<TradingDataSource> m_tradingDataSource;
}

The TradingDataSource processes the flow of a Trade by following the states defined by the Trade
Model for the particular type of Trade. This processing is carried out by a state machine, implemented
internally as a StateMachine object. Before creating the TradingDataSource, the Trading
DataSource application creates a StateMachineFactory internally and loads the factory with the
required Trade Models. The models are defined in the XML configuration files discussed in Configuring
Trade Models and their paths are passed in to the constructor of TradingDataSource either as a
vector of strings or a single string.

The TradingDataSource constructor is also supplied with a configuration file for the DataSource. This
file defines the connections that the DataSource makes with the other Caplin Platform components, such
as Liberator.

13

Using the Trading DataSource C++ API

26© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

8.2 New Trade Channels

The TradingApplicationListener is notified when new Trade Channels are created; this allows you
to perform any necessary user specific initialization. You must also add a ChannelListener to the
channel. The ChannelListener is an interface you must implement; it could be a new instance for each
channel or a single global instance. Its job is to handle notifications on the channel about newly created
Trades and Trades being closed.

The following code extract shows part of a sample implementation of a
TradingApplicationListener. It shows a custom ChannelListener being added to the channel to
handle Trades, and then a method being called on a hypothetical tradingSystem object to log in the
user for the channel.

Example implementation of TradingApplicationListener::channelCreated()

void MyTradingApplicationListener::channelCreated(TradeChannel& channel)
{
 channel.setChannelListener(m_pTradeChannelListener);

 // Handle new channel/user.
 // For example:
 tradingSystem.loginUser(channel.getUser());
}

8.3 New Trades

The ChannelListener is notified of new Trades when a client initiates them; the Trade is passed to it as
a Trade object. When a Trade is created the ChannelListener can perform any initialization needed
with the trading system and also add a TradeListener to the newly created Trade object. The
TradeListener is an interface you must implement and could be a new instance for each Trade or a
single global instance; its job is to handle all events for a Trade. You normally have different
implementations of TradeListener that handle different trade types.

The following code extract shows part of a sample implementation of a ChannelListener. It shows a
different custom TradeListener being added to the Trade object to handle its events, depending on the
Trade Model used for the Trade.

Example implementation of ChannelListener::tradeCreated()

void MyTradeChannelListener::tradeCreated(Trade& trade)
{
 if (trade.isType("ESP"))
 {
 trade.setTradeListener(m_pESPTradeListener);
 }
 else if (trade.isType("RFS"))
 {
 trade.setTradeListener(m_pRFSTradeListener);
 }
}

How the new Trade is handled depends on the trading system to which the Trading DataSource is
connected, and the nature of the API to that system.

Using the Trading DataSource C++ API

27© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

8.4 Dealing with Events

The TradeEvent object represents a Trade Event, which typically encapsulates a message between the
client and the Trading DataSource. A TradeEvent has a type, which represents the type of the message,
for example “Open”, “PriceUpdate” or “Execute”. It also has a number of fields to represent all the
necessary information for that message, for example “BidPrice” or “Amount”.

The TradeListener is responsible for handling TradeEvents; it is notified when new events are
received from the client. When a message is received from the client it is processed by the Trading
DataSource to verify that the event is valid based on the Trade Model before notifying the
TradeListener of the event. The Trade and TradeEvent objects are passed to the TradeListener.
The Trade has been updated with the data from the TradeEvent and can be used to create and send
new TradeEvents. The TradeListener would then typically send a message on to the trading system
or handle the event in some other way.

The following code extract shows an implementation of the TradeListener method to receive events.

Example implementation of TradeListener::receiveEvent()

void RFQTradeListener::receiveEvent(Trade& trade,
 const TradeEvent& tradeEvent)
{
 // Talk to trading system
}

Events raised by the trading system can be pushed into the Trading DataSource. This is done by creating
a TradeEvent from the relevant Trade object, setting the necessary attributes, and asking the Trade
object to send it. At this point the Trading DataSource will verify, through the Trade Model, that the event is
allowed and contains all the necessary information, before sending the message off to the client.

The following code extract shows the typical custom code that would be written in the Trading DataSource
to create an event and send it to a client.

Custom code to create an event

TradeEvent myEvent = trade.createEvent("PriceUpdate ");
myEvent.addField("BidPrice", bidPrice);

// Add more fields
// ...

// Then send the event on to the client.
 trade.sendEvent(myEvent);

Using the Trading DataSource C++ API

28© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

8.5 Closing Trades

When a Trade reaches a final state, it is closed. This could happen when the user or the trading system
cancels the Trade, when the Trade is successfully executed, or when it is rejected. The final states are
defined by the Trade Model and are the states that have no transitions to another state. The
ChannelListener is notified when a Trade has reached this state, which allows the application to clean
up any resources associated with that Trade. Once the Trade has been closed it can no longer be used to
create or send events.

The following code extract shows the implementation of the ChannelListener method for notifying
closed Trades.

Example implementation of ChannelListener.tradeClosed()

void MyTradeChannelListener::tradeClosed(Trade& trade)
{
 // Clean up
 // ...
}

8.6 Closing Channels

When a user logs off the system the Trade Channel for that user is closed. This could also happen if the
client application is designed to close Trade Channels when they are not in use. The
TradingApplicationListener will be notified when a channel is closed, which allows any resources
associated with that channel to be cleaned up.

The following code extract shows the implementation of the TradingApplicationListener method for
notifying closed channels.

Example implementation of TradingApplicationListener.channelClosed()

void MyTradingApplicationListener::channelClosed(TradeChannel& channel)
{
 // Clean up
 // ...

}

Using the Trading DataSource C++ API

29© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

8.7 Handling Blotter Channels

To handle Blotter Channels in the trading DataSource:

Implement code in the TradingApplicationListener class to register and deregister a
BlotterListener.

Implement the BlotterListener class to construct and send blotter messages.

This interface provides notification of Blotter Events through the life cycle of a Trade. Blotter events
are created when the Trading DataSource has validated a state transition in the Trade Model and has
sent a TradeEvent to the client.

Registering the BlotterListener

When implementing the TradingApplicationListener interface (see Initialization), add code to
register and deregister a BlotterListener.

Code the blotterChannelCreated()method to register the BlotterListener with the Trading
DataSource when the Blotter Channel is created, by calling setBlotterListener().

Registering the BlotterListener in TradingApplicationListener

void DemoTradingSource::blotterChannelCreated(BlotterChannel& blotterChannel)
{
 m_tradingDataSource->setBlotterListener(blotterChannel,
 this //The BlotterListener
);
}

In this example the DemoTradingSource implements both TradingApplicationListener and
BlotterListener, so the BlotterListener argument of setBlotterListener is passed as
this.

Code the blotterChannelClosed() method to deregister the BlotterListener from the
Trading DataSource when the Blotter Channel is closed:

Deregistering the BlotterListener in TradingApplicationListener

void DemoTradingSource::blotterChannelClosed(BlotterChannel& blotterChannel)
{
 m_tradingDataSource->removeBlotterListener(blotterChannel);
}

25

Using the Trading DataSource C++ API

30© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Implementing the BlotterListener interface

The BlotterListener has one method receiveBlotterEvent() that is called when the Trading
DataSource has validated a state transition in the Trade Model and has sent a TradeEvent to the client.

Here is a simple example of the receiveBlotterEvent() method. In this example the
DemoTradingSource implements BlotterListener, and so contains the code of
receiveBlotterEvent().

Example of BlotterListener::receiveBlotterEvent()

void DemoTradingSource::receiveBlotterEvent(
 TradingDataSource::BlotterChannel& blotterChannel,
 const TradingDataSource::Trade& trade,
 const TradingDataSource::TradeEvent& tradeEvent
)
{
 BlotterMessage blotterMessage = blotterChannel.createMessage();

 blotterMessage.addFields(trade.getFields());

 std::string status = tradeEvent.getField("Status");
 blotterMessage.addField("Status", status);
 blotterMessage.addField("TradeDate", "20080808");
 blotterMessage.addField("TimeStamp", "123456");
 blotterMessage.addField("UserName", trade.getUser());
 ...

 blotterChannel.sendMessage(blotterMessage);
}

Here is more detailed explanation of the previous code fragment:

Create a new blotter message on the Blotter Channel.

BlotterMessage blotterMessage = blotterChannel.createMessage();

Populate the blotter message with the required fields and their values. Typically the field values are
obtained from the Trade.

blotterMessage.addFields(trade.getFields());

std::string status = tradeEvent.getField("Status");
blotterMessage.addField("Status", status);
blotterMessage.addField("TradeDate", "20080808");
blotterMessage.addField("TimeStamp", "123456");
blotterMessage.addField("UserName", trade.getUser());
...

Send the newly constructed blotter message to the client via the Blotter Channel.

blotterChannel.sendMessage(blotterMessage);

The C++ Trading DataSource Example

31© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

9 The C++ Trading DataSource Example

The C++ Trading DataSource is supplied with an example application to help you get started.

The Visual Studio 2005 project file for the example is in the folder examples\DemoTradingSource.

The source files DemoTradingSource.cpp and DemoTradingSource.h contain the example code that
shows how to use the Trading DataSource API as described in this document. The example is set up to
handle Request For Stream (RFS) and Executable Streaming Price (ESP) Trade Models, but could be
easily adapted to handle any Trade Models you configure.

Configuring Caplin Liberator for trading

32© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

10 Configuring Caplin Liberator for trading

Caplin Liberator is an integral part of Caplin Trader (see the diagram in the Overview) and therefore
must be correctly configured to support trading activity.

The following aspects of trading activity are determined through Liberator configuration:

Associating a unique user with a trade message and ensuring that one user cannot trade on behalf of
another; see Mapping trade messaging objects in Liberator .

Routing of trade messages to the correct Trading DataSource.

Trading performance and integrity .

Security .

The following table lists the Liberator configuration items relevant to trading:

Configuration
item

Parameter See section

add-object name Mapping trade messaging objects in Liberator

add-object throttle-times Throttling

add-object discard-timeout Throttling

add-peer – Routing trade messages to the Trading DataSource

add-data-service – Routing trade messages to the Trading DataSource

object-map – Mapping trade messaging objects in Liberator

output-queue-size – Optimizing client reconnection time

session-id-len – Session IDs

Note: The configuration items discussed here specifically relate to using Liberator in a trading
environment, and in particular to support Caplin Trader Client. There are many other aspects of
Liberator functionality and performance that also need to be configured in an implementation of
the Caplin Platform. For more information about configuring Liberator, see the Liberator
Administration Guide.

Tip: The examples of Liberator configuration shown in the following sections are derived from the
configuration file supplied with the Caplin Trader Reference Implementation.
This file is rttpd.conf, located in $CT_INSTALL_DIR/apps/caplin/Liberator/etc/,
where $CT_INSTALL_DIR is the directory in which Caplin Trader has been installed.

4

33

35

36

38

33

36

36

35

35

33

36

38

Configuring Caplin Liberator for trading

33© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

10.1 Mapping trade messaging objects in Liberator

Trade messages are passed between client and Liberator as updates to subscriptions. The subject of the
update identifies it as a trade message. The Liberator configuration must define a base subject name for
these subscriptions, as a “built-in” Liberator object that is created when the Liberator starts up. For
example, in the Caplin Trader Reference Implementation, the Liberator configuration file defines an object
called /FT/TRADE, so that all trade messages sent between client and Liberator have a subject name that
starts with /FT/TRADE.

add-object
 name /FT/TRADE
 ...
end-object

Tip: The add-object configuration item can also take additional optional parameters, as shown by
the ... in the previous example. For more information, see the Configuration Reference
section of the Liberator Administration Guide, and the section on Throttling .

A client opens a Trade Channel by subscribing to one of the built-in Liberator trade message objects, for
example, /FT/TRADE. Because Liberator and the Trading DataSource need to manage many users who
are simultaneously trading, the Liberator maps the generic trade message objects onto user specific object
names. This defines the unique channel over which each user trades. The mapping is defined using the
object-map configuration item.

Example object mapping

object-map /FT/TRADE/%1 /FT/TRADE/%1/%U

%U is the unique user name (Liberator login name) associated with the Liberator session.

%1 represents any variable length string appearing in the subject name of the subscription.

When a user called “UserA” connects to Liberator and trades, the trade messages sent between the client
and Liberator have a subject name of the form:

/FT/TRADE/FX/<identification-of-this-trade>

Before passing an incoming trade message to the Trading DataSource, Liberator maps the subject name
in the message according to the object-map configuration, so that the subject of the passed on message
is:

/FT/TRADE/FX/< identification-of-this-trade>/UserA-1

where UserA-1 is the unique user name assigned to this Liberator login of “UserA”.

This transformation allows the Trading DataSource to distinguish between trade messages from “UserA”
and trade messages relating to other users. The Trade Channel for “UserA” is uniquely defined by the
combination of the strings /FT/TRADE/FX/ and UserA-1 in the message subject.

Similarly, when Liberator receives a trade message with subject
“/FT/TRADE/FX/< identification-of-this-trade>/UserA-1”
from the Trading DataSource, it can readily determine the client connection over which it should forward
the message to the client, and the forwarded message is given the subject
“/FT/TRADE/FX/< identification-of-this-trade>/”.

36

Configuring Caplin Liberator for trading

34© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Preventing identity theft

The %1 parameter in the object-map helps to prevent a user from trading using another user's identity.
For example, if “UserB”, should attempt to fake a trade message so that it appears to come from “UserA”,
Liberator will reject the message. The faked trade message from the “UserB” client would have the subject

/FT/TRADE/FX/<identification-of-this-trade>/UserA

However the object mapping in the Liberator transforms this subject name to

/FT/TRADE/FX/<identification-of-this-trade>/UserA/UserB-1

which Liberator recognizes as a subject for which no subscription exists, so the message is rejected.

Configuring Caplin Liberator for trading

35© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

10.2 Routing trade messages to the Trading DataSource

The Liberator configuration defines the DataSource peers to which Liberator is connected and the data
services that Liberator provides to subscribing clients. In Caplin Trader this configuration must include the
Trading DataSources and their associated data services.

Tip: For more information about data services, see the Caplin DataSource Overview.

For example, in the Caplin Trader Reference Implementation, the Liberator configuration defines
connections to two Trading DataSources, one for FX trading and one for FI trading:

Example of Trading DataSource configuration in Liberator

fxtradesource
add-peer
 remote-id 17
 remote-type active
 remote-name fxtradesrc
 label fxtradesrc
end-peer

#fitradesource
add-peer
 remote-id 18
 remote-type active
 remote-name fitradesrc
 label fitradesrc
end-peer

...

add-data-service
 service-name fx-trade-data
 include-pattern ^/FT/TRADE/FX

 add-source-group
 required
 add-priority
 label fxtradesrc
 end-priority
 end-source-group
end-data-service

add-data-service
 service-name fi-trade-data
 include-pattern ^/FT/TRADE/FI

 add-source-group
 required
 add-priority
 label fitradesrc
 end-priority
 end-source-group
end-data-service

Configuring Caplin Liberator for trading

36© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

The add-peer configuration items define connections to two Trading DataSources, one for FX Trading
(fxtradesrc) and one for FI Trading (fitradesrc).

There is a data service for each of these Trading DataSources, defined by the add-data-service
configuration item. The FX service (service-name fx-trade-data) has an include-pattern parameter
that ensures all trade message subscriptions whose subject begins with /FT/TRADE/FX are directed to the
FX Trading DataSource. Similarly the FI Service definition (service-name fi-trade-data) directs to
the FI Trading DataSource any trade message subscription whose subject begins with /FT/TRADE/FI.

Note that both the include-patterns start with the base subject name for trade messages as defined in an
add-object configuration item; see Mapping trade messaging objects in Liberator .

10.3 Trading performance and integrity

Liberator configuration items are used to:

Optimize client reconnection time.

Reduce the performance impact of high update rates through throttling.

Optimizing client reconnection time

If a client session becomes disconnected, Liberator will store update messages for the client until the client
reconnects. This optimizes the reconnect time – on reconnection the stored updates are sent to the client
as though the connection had not been lost.

The output-queue-size configuration item defines the maximum number of such messages that Liberator
will store for each client. If the client reconnects after this limit has been reached, Liberator effectively
discards the messages in the queue and instead sends the client the full image data for each subscribed
object, which can take a significant time.

In a trading environment, the client is likely to be subscribed to a large number of instruments that are
updating frequently, so the default output-queue-size value of 64 may be too small to optimize
reconnection, even for transient connection losses. It is therefore suggested that output-queue-size be
increased to 512 messages.

Throttling

Liberator's throttling feature is a mechanism for reducing the performance impact of high update rates –
see the appendix Overview of throttling . For optimal performance it is highly desirable to throttle the
instrument data updates that are streamed to clients, but:

Note: Messages on Trade Channels must not be throttled.

Trade messages must not be throttled because two trade messages sent within a single throttle period
would be merged into one message. The resulting behavior would be undefined – for example, the Trade
could fail or could execute incorrectly.

To meet these two requirements, throttling instrument data updates but not throttling trade messages,
define separate Liberator objects for the instrument data subscriptions and for the messaging
subscriptions. You can then set separate throttle levels for the messages relating to these two types of
subscription.

33

39

Configuring Caplin Liberator for trading

37© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Example of throttle settings in the Caplin Trader Reference Implementation:

add-object
 name /FX
 type 20
 only-changed-fields
 throttle-times 0.25 2
end-object

add-object
 name /FI
 type 20
 only-changed-fields
 throttle-times 0.25 2
end-object

...

add-object
 name /FT/TRADE
 type 20
 throttle-times 0
 discard-timeout 0
end-object

...

This configuration shows that streamed data about FX and FI instruments is sent to clients as updates to
the subscriptions in the Liberator directories /FX and /FI respectively. For example, updates to the FX
currency pair EURUSD would be sent as messages with the subject name /FX/EURUSD.

Both FX and FI updates are subject to throttling (throttle-times 0.25 2), where the default throttle time is
0.25 seconds (the first entry in the list). The configuration parameter only-changed-fields ensures that just
the changed fields in an update are forwarded to the client, thus optimizing the performance of the real
time instrument display.

The add-object configuration item for trade messaging (name /FT/TRADE) has different parameter
settings:

throttle-times 0 ensures that the objects used for trade messaging (/FT/TRADE/...) do not have
throttling enabled.

Note: The throttle time must be explicitly set to zero here, so as to override any globally defined
throttle time (configuration item object-throttle-times).

The only-changed-fields parameter is false (by default), so all trade messages are sent in their
entirety.

This is a performance optimization. The additional processing needed on Liberator to send the client
all fields in each trade message is less than the processing needed to reconstruct messages in the
client if the Liberator only sent the updated fields.

discard-timeout 0 ensures that Liberator removes a trade message subscription from its cache as
soon as the Trade Channel is closed (the user has logged off Liberator and has therefore
unsubscribed from /FT/TRADE/).

Configuring Caplin Liberator for trading

38© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

10.4 Security

Follow these recommendations to maximize the security of Trades.

Also see Preventing identity theft in Mapping trade messaging objects in Liberator .

Session IDs

When a client connects to Liberator, the Liberator generates a unique session ID. This identifies the
session in subsequent (RTTP) message exchanges between the client and Liberator across this
connection. The client includes the session ID in every message sent to Liberator. The session ID is
generated using a cryptographically secure pseudo-random number generator, the major feature of such a
generator being that is difficult for a third party to predict its output by observing its previous outputs.

The Liberator configuration item session-id-len defines the length in characters of the unique identifier for
a session. Its default value is 12, for backwards compatibility with older versions of Liberator and client
StreamLink libraries, where the length of the session identifier cannot be changed.

Note: It is recommended that in Caplin Trader installations session-id-len be increased to
22 characters. This makes it extremely unlikely that a third party could successfully
guess a session ID so as to impersonate a legitimate end-user.

Single sign-on and KeyMaster

If you have a single sign-on system in place, Caplin recommends using the Caplin KeyMaster product in
conjunction with this system, so that Caplin Trader users can access Liberator in a secure manner through
the single sign-on. For more information, see the Caplin KeyMaster Overview.

34 33

Appendix: Overview of throttling

39© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

11 Appendix: Overview of throttling

In a fast moving market, data updates can be generated more frequently than an end user can actually
notice. For example, a user does not actually need to see every update if an item updates ten times in a
second. Additionally, system resources and performance can be adversely impacted by such high update
rates being fed through to client applications.

Liberator's throttling feature is a mechanism for reducing the performance impact of high update rates.
When throttling is enabled, Liberator accumulates all the updates for a data item during an interval called
the throttle time. At the end of this interval Liberator sends just the latest updated values of the item to the
subscribed clients. The rate at which updates are sent to clients is therefore reduced or “throttled”.

The following table shows how throttling works.

Consider a data item containing the bid and ask prices for stock in company ABC. Clients are subscribed
to the item /ABC consisting two fields “bid” and “ask” (the bid price and the ask price). The table shows the
succession of field updates that Liberator receives from the price feed via a DataSource adapter, the
values that it holds in its cache, and the throttled updates that are actually sent to clients subscribed to /
ABC.

Time Updates received by
Liberator

/ABC
in Liberator cache

Updates sent to clients

bid= ask=

T0
Start of
throttle period 1

51.160 52.032

T1 bid=51.162, ask=52.037 51.162 52.037

T2 bid=51.155 51.155 52.037

T3 bid=51.158 51.158 52.037

T4
End of
throttle period 1

51.158 52.037 bid=51.158, ask=52.037

T4
Start of
throttle period 2

51.158 52.037

T5 ask=52.041 51.158 51.041

T6 ask=52.040 51.158 51.040

T7
End of
throttle period 2

51.158 51.040 ask=51.040

During the first throttle period the bid price changes three times (at times T1, T2, and T3) and the ask price
changes just once (at time T1). At the end of this throttle period (time T4) Liberator sends just the most
recently updated bid and ask prices to the clients, so the clients do not see the bid price updates at times
T1 and T2.

During the second throttle period the ask price changes twice (at times T5 and T6), but the bid price does
not change at all, so at the end of this period (time T7) Liberator sends only the most recently updated ask
price to the clients.

Appendix: Overview of throttling

40© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

If an item is not updated at all during a throttle period, the very next time the item is updated in any
subsequent throttle period Liberator immediately sends the updated values to its subscribed clients. This
ensures that throttling does not introduce unnecessary delay in propagating updates to clients.

Throttling can be configured per data item; this allows all the items in a particular directory or even an
individual item in a directory to be throttled by specific amounts.

Liberator can supply the same item to multiple users at different throttle levels. This allows users who need
to view a large number of items, but who have low specification computers or slow network connections to
the server, to receive data at a speed that suits their environment.

Client applications can change the level of throttling for specified items, groups of items, or all items
globally.

Note: Messages on Trade Channels must not be throttled; see Throttling .

Tip: In some older Caplin documents throttling is sometimes called conflation.

36

Glossary of terms and acronyms

41© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

12 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms used in this document.

Term Definition

API Application Programming Interface

Caplin Platform The Caplin Platform is a suite of software products for on-line
financial trading and Web delivery of real-time market data.

Caplin Trader Caplin Trader is a complete platform and toolkit for building multi-
product trading portals. It is built on the Caplin Platform.

Caplin Trader Client Caplin Trader Client is a platform neutral Web application that
provides a rich trading workstation in a browser. It is based on an
Ajax framework called webcentric, into which you can place any

Web content created in HTML, Ajax, Adobe FlexTM, or any other
similar technology.

Blotter A record of the details of Trades made by an end-user of Caplin
Trader. In Caplin Trader Client the blotter is displayed in a
dedicated panel and is dynamically updated as the user progresses
through a Trade.

Blotter Channel See Blotter Channels .

Data service An abstraction layer within a DataSource that allows the
DataSource to request objects, based on their subject names,
without needing to know the specific DataSources from which the
objects originate. A data service is defined through configuration.
For more information see the Caplin DataSource Overview.

DataSource DataSources are software adapters within the Caplin Platform that
connect the Platform to external sources of real time data and
external trading systems. In other Caplin documents DataSources
are also called DataSource adapters.

ESP Executable Streaming Price Trade Model.

Liberator Caplin Liberator is a bidirectional streaming push server designed
to deliver market data and trade messages over any network that
supports Web traffic.

RFQ Request for Quote Trade Model.

SDK Software Development Kit

Throttling A Liberator feature for reducing the performance impact of high
update rates for data streamed to clients.
See Appendix: Overview of throttling .

Trade In this document the term “Trade” represents a single trade for a
user. This could be an RFQ, an execution on a streaming price (
ESP), or any other type of trade. See Trades .

Trade Channel A single user’s communication between the client application and
the Trading DataSource. See Trade Channels .

Trade Event An action by a client or an event from the trading system.
See Trade Events .

7

39

6

6

7

Glossary of terms and acronyms

42© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Term Definition

Trading DataSource The DataSource used to integrate Caplin Trader with a trading
system.

Trading DataSource API The API to the Trading DataSource that allows the DataSource to
be integrated with a trading system.

Trade Model A Trade Model represents a type of Trade, for example a Request
for Quote (RFQ) or Executable Streaming Price (ESP). Trade
Models consist of a number of states and transitions. See Trade
Models .

Trading system The term used in this document to refer to systems that support
trade capture.

6

Index

43© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Index

- A -

Abbreviations, definitions 41

Acronyms, definitions 41

add-data-service

Liberator configuration example 35

Liberator configuration item 32

add-object

discard-timeout parameter 36

Liberator configuration example 33

Liberator configuration item 32

throttle-times parameter 36

add-peer

Liberator configuration example 35

Liberator configuration item 32

add-source-group

Liberator configuration example 35

API

C++ Trading DataSource, using 25

Java Trading DataSource, using 16

Trading DataSource, overview 4

Trading DataSource, reference
documentation 2

API (C++)

ChannelListener 28

ChannelListener interface 26

TradeEvent object 27

TradeListener interface 26

TradeListener object 27

TradingApplicationListener 25, 26

TradingDataSource 25

API (Java)

ChannelListener 19

ChannelListener interface 17

TradeEvent object 18

TradeListener interface 17

TradeListener object 18

TradingApplicationListener 16, 17

TradingDataSource 16

Architecture

of Caplin Trader 2

asset class

handled by Trading DataSource 6

- B -

Blotter channel

definition of and example 7

handling in C++ 29

handling in Java 20

BlotterTradeListener (C++)

registering with TradingApplicationListener
 29

BlotterTradeListener (Java)

registering with TradingApplicationListener
 20

BlotterTradeListener interface

implementing in C++ 30

implementing in Java 22

- C -

C++

API for Trading DataSource, examples
25

Cache

in Liberator 39

Caplin Trader

architecture of 2

Caplin Trading DataSource

API reference documentation 2

Channel

blotter channel 7

trade channel 6

ChannelListener (C++)

notification of new trades 26

ChannelListener (Java)

notification of new trades 17

ChannelListener (C++)

adding to a trade channel 26

notifying channel closure 28

notifying trade closure 28

ChannelListener (Java)

adding to a trade channel 17

notifying channel closure 19

notifying trade closure 19

Configuration

of Liberator for trading 32

of RFQ trade model using XML 14

of trade model 4, 13

Conflation 39

Index

44© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

- D -

Data service

in Liberator, for trading 35

DataSource listener (C++)

handling trade messages 25

DataSource listener (Java)

handling trade messages 16

discard-timeout

parameter of add-object 36

- E -

ESP Trade Model

in example package of Java Trading
DataSource kit 24

in Trading DataSource kit 13

state diagram 9

Event

definition for trading 7

from trading system (C++) 26

from trading system (Java) 17

handling by listener object 16, 25

represented by TradeEvent object (C++)
 27

represented by TradeEvent object (Java)
 18

Examples

closing a trade (C++) 28

closing a trade (Java) 19

closing a trade channel (C++) 28

closing a trade channel (Java) 19

creating a new trade channel (C++) 26

creating a new trade channel (Java) 17

creation of trade event (C++) 27

creation of trade event (Java) 18

implementation of ChannelListener (C++)
 26

implementation of ChannelListener (Java)
 17

implementation of TradeListener (C++)
27

implementation of TradeListener (Java)
18

trade model configuration (RFQ) 14

Trading DataSource example (C++) 31

Trading DataSource example (Java) 24

Examples (C++)

initialization of Trading DataSource 25

Examples (Java)

initialization of Trading DataSource 16

Executable Streaming Price (ESP)

example of trade model 6

state diagram 9

- F -

Factory (C++)

for trading state machines 25

Factory (Java)

for trading state machines 16

Field

in trade event 7

- G -

Glossary 41

Guard 6

- I -

Identity theft

preventing 33

Integrity

of trading 36

- J -

Java

API for Trading DataSource, examples
16

trademark 3

- K -

KeyMaster 38

- L -

Liberator

access through KeyMaster 38

cache 39

mapping trade messaging objects 33

optimizing client reconnection time 36

Index

45© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Liberator

routing trade messages 35

session ID 38

throttling 36

Liberator configuration for trading

summary of configuration items 32

Listener interface

in trading system (C++) 26

in trading system (Java) 17

Listener object

ChannelListener (C++) 26, 28

ChannelListener (Java) 17, 19

TradeListener (C++) 26, 27

TradeListener (Java) 17, 18

Listener object (C++)

TradingApplicationListener 25

Listener object (Java)

TradingApplicationListener 16

- M -

Message

encapsulated by TradeEvent (C++) 27

encapsulated by TradeEvent (Java) 18

Messages

causing state transitions 6

custom 4

for trading 4

on blotter channel 7

on trade channels 6

raising trade event 7

transmitting RequestId and TradeId 6

MsgType field

in trade event 7

- N -

Note: 39

General Liberator configuration 32

Setting for session-id-len 38

Throtting trade messages 36

Throttle-time setting for trade messages
36

- O -

object-map

Liberator configuration example 33

Liberator configuration item 32

use in preventing identity theft 33

ORD trade model

in Trading DataSource kit 13

state diagram 11

Order (ORD)

state diagram 11

output-queue-size

Liberator configuration – definition 36

Liberator configuration item 32

- P -

Performance

of trading 36

- R -

Readership 1

Reconnection time

optimizing for client 36

Reference Implementation Trading DataSource
 24

Request for Quote (RFQ)

example of trade model 6

state diagram 12

Request for Stream (RFS)

state diagram 10

RequestId 6

RFQ Trade Model

example XML configuration 14

state diagram 12

RFS Trade Model

in example package of Java Trading
DataSource kit 24

in Trading DataSource kit 13

state diagram 10

- S -

Security

of Trades 38

Session ID

in Liberator 38

size of 38

session-id-len

Index

46© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

session-id-len

Liberator configuration item 32

recommended size 38

Single sign-on system 38

State

concept, in trade model 6

defining in XML configuration 14

State machine 16, 25

- T -

Terms, glossary of 41

throttle-times

parameter of add-object 36

Throttling

overview 39

settings for trading 36

timeout

in Trade Model on client 12

in Trade Model XML configuration 14

Tip:

Location of reference Liberator
configuration file 32

Use of the term “conflation” 39

Trade

closing (C++) 28

closing (Java) 19

definition of 6

handling new Trade using
ChannelListener (C++) 26

handling new trade using ChannelListener
 (Java) 17

security of 38

Trade Channel

definition of 6

Liberator configuration 33

notifying closure (C++) 28

notifying closure (Java) 19

notifying creation (C++) 26

notifying creation (Java) 17

Trade Event

definition of 7

handling by listener object 16, 25

Trade messaging

configuration for routing to Trading
DataSource 35

role of TradeEvent object (C++) 27

role of TradeEvent object (Java) 18

role of TradeListener object (C++) 27

role of TradeListener object (Java) 18

setting discard-timeout in Liberator 36

setting throttle-times in Liberator 36

Trade messaging (C++)

handling via DataSource listeners 25

Trade messaging (Java)

handling via DataSource listeners 16

Trade messaging object

in Liberator 33

Trade model

configuration overview 4

configuring 13

definition of 6

ESP state diagram 9

ORD state diagram 11

relationship to trade 6

relationship to Trading DataSource 4

RFQ state diagram 12

RFS state diagram 10

supported in Trading DataSource kit 13

Trade object 17, 18, 26, 27

Trade System

events raised by 18, 27

messages from TradeListener (C++) 27

messages from TradeListener (Java) 18

TradeEvent object (C++) 27

TradeEvent object (Java) 18

TradeId 6

TradeListener (Java)

custom 17

TradeListener (C++)

custom 26

handling trade events 27

TradeListener (Java)

handling trade event 18

Trading DataSource

API overview 4

example of Liberator configuration for
35

overview and architecture 4

relationship to trade models 4

standard trade models in kit 13

using the C++ API 25

using the Java API 16

Trading GUI

overview 4

Trading integrity 36

Trading performance 36

Index

47© Caplin Systems Ltd. 2007 – 2009

Integrating Caplin Trader With A Trading System

CONFIDENTIAL

Caplin Trader 1.4

Trading state machine (C++) 25

Trading state machine (Java) 16

Trading System

cancelling a trade (C++) 28

cancelling a trade (Java) 19

events from 7

events from (C++) 26

events from (Java) 17

initialization within (C++) 26

initialization within (Java) 17

listener interface (C++) 26

listener interface (Java) 17

overview 4

processing events 6

TradingApplicationListener (C++)

notifying when trade channel created 26

TradingApplicationListener (C++)

example 25

registering BlotterTradeListener 29

TradingApplicationListener (Java)

example 16

notifying when trade channel created 17

registering BlotterTradeListener 20

TradingDataSource (C++)

creating in custom application 25

TradingDataSource (Java)

creating in custom application 16

Transition

concept, in trade model 6

defining in XML configuration 14

of trade state 6

- V -

Value

in trade event 7

- X -

XML configuration

example for RFQ trade model 14

in TradingDataSource kit 13

overview 4

© Caplin Systems Ltd. 2007 – 2009

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Triton Court

14 Finsbury Square

London EC2A 1BR

Telephone: +44 20 7826 9600

Fax: +44 20 7826 9610

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

Caplin Trader 1.4: Integrating Caplin Trader With A Trading System, September 2009, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	Overview
	Trading concepts
	Trade Models
	Trade Channels
	Trades
	Trade Events
	Blotter Channels

	Example Trade Models
	Example Executable Streaming Price (ESP)
	Example Request for Stream (RFS)
	Example Order (ORD)
	Request for Quote (RFQ) with timeouts

	Configuring Trade Models
	RFQ example

	Using the Trading DataSource Java API
	Initialization
	New Trade Channels
	New Trades
	Dealing with Events
	Closing Trades
	Closing Channels
	Handling Blotter Channels
	Registering the BlotterTradeListener
	Implementing the BlotterTradeListener interface

	The Java Trading DataSource Example
	Using the Trading DataSource C++ API
	Initialization
	New Trade Channels
	New Trades
	Dealing with Events
	Closing Trades
	Closing Channels
	Handling Blotter Channels
	Registering the BlotterListener
	Implementing the BlotterListener interface

	The C++ Trading DataSource Example
	Configuring Caplin Liberator for trading
	Mapping trade messaging objects in Liberator
	Routing trade messages to the Trading DataSource
	Trading performance and integrity
	Optimizing client reconnection time
	Throttling

	Security
	Session IDs
	Single sign-on and KeyMaster

	Appendix: Overview of throttling
	Glossary of terms and acronyms

