
DataSource For C

March 2011

C O N F I D E N T I A L

DS4C 5.0

 Configuration Syntax Reference

i

DataSource For C Configuration Syntax Reference

© Caplin Systems Ltd. 2011

Contents

CONFIDENTIAL

DS4C 5.0

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 1Related documents1.3

.. 2Typographical conventions1.4

.. 2Feedback1.5

.. 3Acknowledgments1.6

.. 4Introduction2

.. 5Types of configuration item3

.. 5Boolean configuration items3.1

.. 5Single value configuration items3.2

.. 6Multi value configuration items3.3

.. 7Configuration items with nested options3.4

.. 8Lists3.5

.. 9Configuration Variables4

.. 9Defined variables4.1

.. 10Using complex expressions to define a variable

.. 11Environment variables4.2

.. 12Conditional flow control5

.. 13Simple conditional statements5.1

.. 14Complex conditional statements5.2

.. 16Using macros in a configuration6

.. 17Including multiple configuration files7

.. 18Obtaining configuration from a webserver8

.. 19Obtaining configuration from a script9

.. 20Enabling a macro preprocessor10

.. 22Appendix: Supported mathematical operators11

.. 23Glossary of terms and acronyms12

Preface

1© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

1 Preface

1.1 What this document contains

This document describes the syntax of the language that is used to configure Caplin's DataSource For C
product range, version 5.0.

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document, navigate to the HTMLDoc folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for System Administrators who need to install, configure, and manage
DataSource for C applications.

1.3 Related documents

Caplin DataSource Overview

A technical overview of Caplin DataSource.

DataSource for C API Reference

The API reference that allows application developers to write DataSource for C applications.

http://support.microsoft.com/kb/896054/

Preface

2© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

 Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

https://support.caplin.com/documentfeedback/?product=DS4C 5.0&doctitle=DataSource For C Configuration Syntax Reference&date=March 2011&release=1

Preface

3© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

1.6 Acknowledgments

Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Sun and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or other
countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Introduction

4© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

2 Introduction

DataSource for C applications can be configured by settings stored in one or more configuration files, or
by settings stored in a database and supplied to the DataSource application by a configuration script.

This document describes:

The syntax of the different types of configuration item used to configure a DataSource for C
application.

How variables, conditionals, and macros can be used in a configuration file.

How configuration settings supplied by a web server or configuration script can be used to configure
a DataSource for C application.

For a description of the configuration items that you can use to configure a particular DataSource for C
application (such as Liberator, Transformer or a DataSource adapter), refer the Administration Guide for
the application that you want to configure. For a description of the DataSource communications
infrastructure and how it links Caplin components together, see the Caplin DataSource Overview
document.

Types of configuration item

5© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

3 Types of configuration item

Four different types of configuration item can be used to configure a DataSource for C application:

Boolean configuration items

Single value configuration items

Multi value configuration items

Configuration items with nested options

Some of these configuration items allow you to specify a list of one or more values (see Lists).

3.1 Boolean configuration items

A boolean configuration item does not take any value, but is set to true if present in the DataSource
configuration, and to false (the default) if omitted from the configuration. An example of a boolean
configuration item is latency-chain-enable, which enables or disables latency chaining.

Example

latency-chain-enable

In this case latency chaining is enabled.

In the reference sections of the Administration Guide for the DataSource application, the syntax definition
specifies further information about boolean configuration items, as shown in the following table.

Type Default Permitted values

boolean false True or false, and a description of the effect of each value (such as
true to enable or false to disable).

3.2 Single value configuration items

Single value configuration items set something to a single value. An example of this type of configuration
item is datasrc-port, which specifies the network port that the application listens on for DataSource
messages and connection requests.

Example

datasrc-port 22001

In this case the listening port is set to 22001.

If present in the configuration file, a single value configuration item must define the value to be assigned.
If not present in the configuration file, the configuration item is assigned a default value.

5

5

6

7

8

Types of configuration item

6© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

In the reference sections of the Administration Guide for the DataSource application, the syntax definition
specifies further information about single value configuration items, as shown in the following table.

Type Default Permitted values

The type of value,
such as string or
integer.

The default value, or
<no default> if there is
no default value.

Restrictions on the permitted values for this
configuration item.

3.3 Multi value configuration items

Multi value configuration items set the value of two or more related items. An example of this type of
configuration item is add-field, which maps a field name (a string) to a field number (an integer).

Example

add-field Bid 22

In this case the Bid field is mapped to field number 22.

If a multi value configuration item is present in the configuration file, values must be defined for all related
items that are not optional (such as the field name and field number in the example above). If a related
item is described as optional in the Administration Guide (such as optional field flags data), the value for
that related item can be omitted from the configuration. Values are assigned according to the position of
the value in the list of ordered values. If the configuration item is not present in the configuration file,
related items are assigned default values.

In the reference sections of the Administration Guide for the DataSource application, named position
indicators in the syntax definition indicate how values of related items must be ordered. In the example
add-field configuration item above, the syntax would look something like this.

Example Syntax for the add-field configuration item

add-field FieldName FieldNumber

Further information about the items that these named position indicators represent are shown in a table
like this.

Options

Name Type Default Description

The name of the
position indicator,
such as FieldName.

The type of value,
such as string or
integer.

The default value, or
<no default> if there
is no default value.

Describes the item
represented by the named
position indicator, and
defines any restrictions on
its value.

Types of configuration item

7© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

3.4 Configuration items with nested options

This type of configuration item takes nested options, where each nested option can be any one of the four
types of configuration item (boolean, single value, multi value, and nested). An example of this type of
configuration item is add-peer, which specifies options for connecting to a remote DataSource.

Example

add-peer
 addr liberator.example.com
 port 25000
end-peer

In this case the address of the remote DataSource is set to liberator.example.com, and the port that
it listens on to 25000.

In the reference sections of the Administration Guide for the DataSource application, the syntax definition
specifies the configuration items that can be nested. In the example add-peer configuration item above,
the syntax would look something like this.

Example Syntax for the add-peer configuration item

add-peer
 addr <value>
 port <value>
end-peer

This syntax indicates that if the addr and port configuration items are present in the configuration, then a
value must be defined for each of these items. The angle brackets indicate that <value> is only a place
holder for the value, and not the value itself.

The next example shows the syntax for other types of nested configuration item.

Syntax for nested configuration items

add-something
 boolean-type
 single-value-type <value>
 multi-value-type <values>
end-something

The syntax shows that the add-something configuration item has three nested options, each type
identified by the values they take:

boolean-type Set to true if present in the configuration, otherwise false.

single-value-type Sets a single value if present in the configuration, otherwise takes a default value.

multi-value-type Sets multiple values if present in the configuration, otherwise takes default values.

Types of configuration item

8© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

3.5 Lists

Some configuration items allow you to specify a list of one or more values, where each value is the
same type. An example is addr, which defines a list of addresses that the DataSource will attempt to
connect to.

In the reference sections of the Administration Guide for the DataSource application, the syntax definition
specifies the types that can be listed, as shown in the following table.

List Type Description Example

string list A space separated list (array) of one
or more strings.

A space separated list of IP addresses.

127.0.0.0 192.255.129.1

integer list A space separated list (array) of one
or more integers.

A space separated list of port numbers.

22001 22002

Configuration Variables

9© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

4 Configuration Variables

Two kinds of variable can be used to configure a DataSource for C application: defined variables and
environment variables.

4.1 Defined variables

A configuration variable is defined using the define configuration directive, and undefined using the
undefine directive. The scope of the variable is the configuration file in which it is defined, and any files
that include this configuration file using the include-file directive
(see Including multiple configuration files).

Notation: defining and undefining a variable

define VARIABLE value

undefine VARIABLE

In the notation shown above, VARIABLE is the name of the variable and value is the value that it takes.
The name of the variable can contain alphanumeric characters and the characters "." and "_" (without the
quotation marks), and by convention is always uppercase. If value is a string that contains spaces, the
string must be enclosed in single or double quotation marks.

The following notation shows how a variable is used to set the value of a configuration item.

Notation: using a variable in the configuration

config-item ${VARIABLE}

In the notation shown above, config-item is the name of the configuration item, and VARIABLE is the
name of the variable that sets the value of the configuration item.

When a variable is used to set the value of a configuration item, the name of the variable must be
enclosed in curly braces and preceded by the $ character. If an undefined variable is used in the
configuration, the value of the configuration item is set to an empty string and a warning is logged to the
console and log file.

The following example defines a variable, and sets the value of a configuration item using that variable.

Example: defining and using a variable

define HTTP_PORT 8080

http-port ${HTTP_PORT}

In this case, the value of the http-port configuration item is set to 8080 (using the HTTP_PORT variable).

Variables can also be concatenated with surrounding text and other variables.

Example: concatenating a variable with surrounding text

http-port 1${HTTP_PORT}

17

Configuration Variables

10© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

In this case, the value of the http-port configuration item is set to 18080.

Pre-defined Variables

The following variables are pre-defined by the DataSource for C library:

Pre-defined variables

Name Description

APP_NAME The name of the DataSource for C application. Examples are transformer
and rttpd.

CPU The type of processor. Examples are i686 and sparc.

HOME_DIR The home directory of the process owner.

HOST_NAME The name of the host machine.

MAJOR_VERSION The major version of the DataSource for C library (for example, 5)

MINOR_VERSION The minor version of the DataSource for C library (for example, 0)

OS The name of the operating system that the DataSource for C library was
built for.

Examples are linux-gnu and solaris2.10.

OS_TRIPLET The GNU configuration triplet
(of the form cpu-manufacturer-operating_system).

Examples are i686-pc-linux-gnu and sparc-sun-solaris2.10.

Using complex expressions to define a variable

Configuration variables can be defined using complex expressions that are evaluated by an arithmetic
expressions calculator. The expressions calculator is invoked using the following notation:

Notation to invoke the expressions calculator

${EVAL:expression}

In the notation shown above, expression is a list of items and arithmetic operators that the expressions
calculator evaluates. Each item in expression must have a numeric value, and the valid arithmetic
operators are + (addition), - (subtraction), / (division), and * (multiplication). Parenthesis can also be
used to group parts of an expression (see Appendix: Supported mathematical operators for
examples of operator precedence).

22

Configuration Variables

11© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

The following example uses the expressions calculator to add 80 to the value of the defined variable
PORT_BASE.

Expressions calculator: setting a port number

define PORT_BASE 20000
http-port ${EVAL:${PORT_BASE} + 80}

In this case the expression evaluated is ${PORT_BASE} + 80. Because PORT_BASE has the value
20000, the http-port configuration item (the HTTP port number) is set to 20080.

The @ operator allows a configuration item to be used inside an expression. The next example sets the
HTTP port number to 8080, and then uses this setting to calculate and set the HTTPS port number.

Expressions calculator: evaluating a configuration item

http-port 8080
https-port ${EVAL:@http-port + 1}

In this case http-port (the HTTP port number) is set to 8080, and https-port (the HTTPS port number) is
set to 8081.

4.2 Environment variables

Environment variables can be used to set the value of a configuration item.

Notation: using an environment variable in the configuration

config-item ${ENV:VARIABLE}

In the notation shown above, config-item is the name of the configuration item and VARIABLE is the
name of the environment variable that sets the value of the configuration item.

The name of the environment variable must be preceded by the text ENV: and enclosed in curly braces,
and the braces must be preceded by the $ character. If the environment variable has not been defined,
the value of the configuration item is set to an empty string and a warning is logged to the console and log
file.

The following example sets the value of a configuration item using an environment variable.

Example: defining and using an environment variable

runtime-user ${ENV:USER}

In this case, the value of runtime-user is set to the value of the USER environment variable.

Conditional flow control

12© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

5 Conditional flow control

DataSource for C libraries support conditional flow control constructions that have
if/else/elseif/endif statements in the DataSource configuration.

Flow control construction

if condition1
...configuration 1
elseif condition2
...configuration 2
else
...configuration 3
endif

In the notation shown above, condition1 and condition2 are conditions that evaluate to true or false.

If condition1 evaluates to true, configuration 1 is applied, otherwise the elseif condition is
tested.

If the elseif condition is tested and condition2 evaluates to true, configuration 2 is
applied.

If condition1 and condition2 evaluate to false, configuration 3 is applied.

The elseif and else statements are optional and the endif statement ends the conditional flow
control. There can be more than one elseif statement inside an if/endif construct, but only one else
statement.

Each condition can have a simple or complex form, depending on whether the condition is part of a
simple or complex conditional statement.

Conditional flow control

13© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

5.1 Simple conditional statements

A simple conditional statement is shown below.

Simple conditional statement

if test value

In a simple conditional statement, test is a data item to test and value is the value to test against.

By default, the following data items can be tested:

Data items available to test

Name Description

application The name of the application
(set using the application-name configuration item).

hostname The name of the host machine.

os The name of the running operating system (such as linux-gnu,
linux-EL5-gnu, and solaris2.10).

A DataSource for C application can specify other data items to test (see ds_config_set_test() in the
DataSource for C API Reference), but no Caplin products do so.

Example

The following example sets http-port to 8080 if the application is rttp, and to 8082 otherwise.

Example of a simple conditional statement

if application rttp
 http-port 8080
else
 http-port 8082
endif

Conditional flow control

14© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

5.2 Complex conditional statements

A complex conditional statement is shown below.

Conditional statement (complex form)

if test operator value

In a complex conditional statement, test is a data item to test, value is the value to test against, and
operator is a comparison operator used to evaluate the condition.

The following operators (shown separated by commas) can be used inside a complex conditional flow
control statement (see Appendix: Supported mathematical operators for further information):

Arithmetic operators: *, -, /, +

Comparison operators: <, >, >=, <=, ==, !=

Parenthesis: ()

Logical operators: and, &&, or, ||

The @ operator identifies a configuration item.

If value is a string that contains spaces, the string must be enclosed in single or double quotation marks.

This means that the following if statements are equivalent:

if ${HOST_NAME} == "myserver"

if ${HOST_NAME} == 'myserver'

if ${HOST_NAME} == myserver

Conditions that evaluate to 0 are false, and conditions that evaluate to any other number are true.
Conditions that evaluate to a string are false.

Examples

The @ operator allows a configuration item to be used in a complex conditional statement.

Example: using the @ operator

if @http-port == 80
 https-port 443
endif

In this case the https-port is only set to 443 if the http-port is set to 80.

22

Conditional flow control

15© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

The @ operator can also be used with a boolean configuration item to construct the condition that is
evaluated.

Example: using the @ operator with a boolean configuration item

if @https-enable
 https-port 443
endif

In this case the https-port is only set if HTTPS enabled (that is, if the boolean configuration item
https-enable evaluates to true).

The next example shows how logical operators can be used to combine conditions in a flow control
statement.

Example: combining conditions using logical operators

if ${HTTPS} == 1 and ${HOST_NAME} == myserver
 https-enable
 https-port 443
endif

In this case the configuration between the if and endif statements is only applied if the configuration
variable HTTP is set to 1 and the configuration variable HOST_NAME is set to myserver.

Using macros in a configuration

16© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

6 Using macros in a configuration

Macros can make product configuration easier and less prone to errors. Although no predefined macros
are provided with the DataSource for C SDK, the DataSource for C library allows you to define and use
your own macros in a product configuration.

A macro definition starts with a defmacro directive and ends with an endmacro directive, and can span
several lines. The following example defines a macro called active_peer that can be invoked later in the
configuration.

Example macro definition

defmacro active_peer(name, id)
add-peer
 addr 127.0.0.1
 port 25000
 local-id ${id}
 local-type active
 local-name ${name}
 label ${name}
end-peer
endmacro

In this example the macro takes two arguments (name and id) that are used in the definition of an
add-peer configuration item. When the macro is invoked, a value must be passed in for each of the
required arguments.

Invoking the example macro

active_peer("SSLsrc", 10)

Invoking active-peer with the arguments shown above adds a DataSource peer to the configuration,
where local-id is set to 10, local-name to "SSLsrc", and label to "SSLsrc". Invoking active-peer with
different arguments would add a different DataSource peer.

Macro restrictions and limitations

When a macro is defined, the following restrictions and limitations apply:

The scope of the macro is the configuration file in which it is defined, and files that include this
configuration file using the include-file directive (see Including multiple configuration files).

Arguments to the macro are treated like defined variables, and are accessed in the macro definition
by enclosing the name of the argument in curly braces preceded by the $ character.

A macro can be invoked inside another macro definition.

A macro must not invoke itself.

If a macro is invoked with missing arguments, an empty string replaces the value of each missing
argument.

17

Including multiple configuration files

17© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

7 Including multiple configuration files

The include-file directive specifies that another configuration file has configuration settings for the
DataSource for C application. The * wildcard can be used in the relative path of the included file to
include multiple configuration files.

Example

include-file FX/*.conf

In this case, configuration settings from all files in the FX directory that have a .conf file extension are
included in the configuration.

Obtaining configuration from a webserver

18© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

8 Obtaining configuration from a webserver

The configuration for a DataSource for C application can be obtained from a web server by specifying the
URL of the required configuration file in an include-file directive.

Specifying the URL of a configuration file

include-file http://configurationserver/rttpd.conf

The example above specifies that configuration in the file rttpd.conf can be obtained from the web server

with the domain name configurationserver using the http protocol. Note that the protocol must be HTTP.
If a retrieval utility is not specified in the configuration that contains the include-file directive, wget is
used to retrieve the configuration.

A retrieval utility can be specified using the http-download-command directive or as part of the
include-file directive. In either case the specified utility must send the configuration data to standard
output (stdout).

The following example sets wget as the retrieval utility (the default utility if the http-download-command
directive is omitted).

Obtaining a configuration using wget

http-download-command "wget -nv -O -"

include-file http://configurationserver/rttpd.conf

The next example sets curl as the retrieval utility.

Setting curl as the retrieval utility

http-download-command "curl -s"

include-file http://configurationserver/rttpd.conf

The alternative notation, which specifies the retrieval utility (in this case curl) as part of the include-file
directive, is shown below.

Setting curl as the retrieval utility: alternative notation

include-file "|curl -s http://configurationserver/rttpd.conf"

If you use this alternative notation, the argument to include-file must be enclosed in quotation marks,
and the pipe character (|) must precede the name of the retrieval utility. This instructs the DataSource for
C library to execute the named utility rather than read configuration data from a file.

Obtaining configuration from a script

19© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

9 Obtaining configuration from a script

The configuration for a DataSource for C application can be generated dynamically and obtained from a
script by specifying the script in an include-file directive. A typical example would be when a script
queries a database to obtain the configuration.

Specifying a script that returns configuration

include-file "|query_rttpd_configuration.sh"

The example above specifies that configuration can be obtained from the query_rttpd_configuration.sh
script.

The argument to include-file must be enclosed in quotation marks and the pipe character (|) must
precede the name of the script. This instructs the DataSource for C library to execute the script rather
than read configuration data from a file.

When configuration is obtained from a script, the script must write the configuration data to
standard output (stdout).

Enabling a macro preprocessor

20© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

10 Enabling a macro preprocessor

DataSource for C configuration files can be processed by a macro preprocessor before the content of the
file is parsed by the DataSource for C library. A macro preprocessor is specified by passing the
--preprocessor-binary command line option to the DataSource for C application on startup.

Tip: If a macro preprocessor is specified, it runs before macros defined in the configuration file are
processed by the DataSource for C library (see Using macros in a configuration).

The specified macro preprocessor must take the name of the configuration file as an input parameter and
print the processed configuration to standard output. The GNU M4 macro preprocessor meets this
requirement.

Note: The CPP C preprocessor also meets this requirement, but is not recommended as it corrupts
the content of configuration files.

Non GNU M4 preprocessors are not recommended in Caplin Trader installations, because Caplin Trader
uses functionality that is only present in GNU M4 preprocessors. Non GNU M4 preprocessors are also
likely to cause problems in Oracle Solaris systems.

The properties files of Java components are not processed by the macro preprocessor.

Caplin DataSource for C products – enabling a macro preprocessor

All Caplin DataSource for C products, such as Liberator and Transformer, are provided with a startup
script to start the application. Each startup script contains a PREPROCESSOR environment variable that

sets the value of the --preprocessor-binary command line option when the application starts. The
PREPROCESSOR environment variable can either be set to the path of the macro preprocessor binary, or
to a script that starts the macro preprocessor.

Some macro preprocessors have built in commands that must be disabled. An example is the GNU M4
macro preprocessor, which removes all instances of the word 'format' from the files that it processes. This
causes a problem with the configuration of Caplin Transformer, which has a module called format. If the
word 'format' is removed from the Transformer configuration, an invalid Transformer licence is reported
and Transformer will fail to start.

To overcome this problem, the PREPROCESSOR environment variable (in the application startup script)
can be set to a script that starts the macro preprocessor but disables the unwanted 'format' command.

Setting the PREPROCESSOR environment variable in the application startup script

PREPROCESSOR=/usr/local/bin/preprocess.sh

In this case the PREPROCESSOR environment variable is set to /usr/local/bin/preprocess.sh.

The content of /usr/local/bin/preprocess.sh is shown below.

The macro preprocessor startup script

#!/bin/sh
m4 –Uformat $1

16

Enabling a macro preprocessor

21© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

In this case the script starts the M4 macro preprocessor and disables the 'format' command. A suitable
M4 startup script that disables the 'format' command is provided with Caplin Xaqua installations.

Custom DataSource for C applications – enabling a macro preprocessor

To specify a macro preprocessor to a custom DataSource for C application that you write, pass the
--preprocessor-binary command line option to the application on startup. The command line option must
specify the path of the macro preprocessor binary, or a custom script that starts the macro preprocessor.

Command line option specifying a macro preprocessor startup script

--preprocessor-binary=/usr/local/bin/preprocess.sh

In this case the --preprocessor-binary command line option specifies a macro preprocessor startup script

(/usr/local/bin/preprocess.sh), and not a macro preprocessor binary.

Appendix: Supported mathematical operators

22© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

11 Appendix: Supported mathematical operators

The following mathematical operators can be used in a conditional flow control statement.

The operators are listed in order of precedence (operators at the top of the table have higher precedence
than operators at the bottom of the table).

Supported operators (in order of precedence)

Operators Description

() Parenthesis (grouping).

* / Multiplication and division.

+ - Addition and subtraction

< <= > >= Comparisons: less than, less than or equal to, more than, more than or
equal to.

== != Comparisons: equal to, not equal to.

&& and Logical AND (&& or and can be used).

|| or Logical OR (|| or or can be used).

The following table shows some examples of operator use and precedence:

Operator use and precedence

Example Comment

2 + 3 * 3 = 11 Multiplication is completed before addition.

(2 + 3) * 3 = 15 The operation in parenthesis is completed before the
multiplication.

if ${HTTPS} == 1 &&
${HOST_NAME} == myserver

True if the variable HTTPS is set to 1 and the variable
HOST_NAME is set to myserver.

if ${HTTPS} == 1 or
${HOST_NAME} == myserver

True if the variable HTTPS is set to 1 or the variable HOST_NAME
is set to myserver.

For a description of the flow control constructions you can use to configure a DataSource for C
application, see Conditional flow control .12

Glossary of terms and acronyms

23© Caplin Systems Ltd. 2011

DataSource For C Configuration Syntax Reference

CONFIDENTIAL

DS4C 5.0

12 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms used in this document.

Term Definition

Caplin Liberator A real-time financial internet hub that delivers trade messages and
market data to and from subscribers over any network.

Caplin Transformer An event-driven, real-time business rules engine.

Caplin Xaqua A single-dealer platform that enables banks to deliver multi-product
trading direct to client desktops.

Configuration file A file containing the initial settings for a software application.

Configuration item An entry in a configuration file that holds the value of one or more
application settings (see Types of configuration item).

CPP A preprocessor for the C language.

DataSource adapter A DataSource application that integrates with an external (non-
Caplin) system, exchanging data and/or messages with that
system.

DataSource application A software application that communicates with other software
applications using the DataSource protocol.

DataSource for C application A DataSource application written in the C programming language
using the DataSource for C SDK. Caplin Liberator, Caplin
Transformer, and some DataSource adapters are DataSource
for C applications.

DataSource for C Library A software library that allows a DataSource for C application to
send messages using the DataSource protocol.

DataSource for C SDK A software development kit that allows you to build custom
DataSource for C applications.

DataSource protocol A bidirectional protocol that DataSource applications use to
communicate with each other.

GNU A project launched in 1984 to develop a Unix-like operating
system.

M4 A general purpose macro preprocessor.

Macro A named list of configuration items and macro arguments. A macro
is defined once in a configuration file but can be 'called' several
times later with values that customize the applied configuration
(see Using macros in a configuration).

SDK Software Development Kit

5

16

© Caplin Systems Ltd. 2011

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

DS4C 5.0: DataSource For C Configuration Syntax Reference, March 2011, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	Introduction
	Types of configuration item
	Boolean configuration items
	Single value configuration items
	Multi value configuration items
	Configuration items with nested options
	Lists

	Configuration Variables
	Defined variables
	Using complex expressions to define a variable

	Environment variables

	Conditional flow control
	Simple conditional statements
	Complex conditional statements

	Using macros in a configuration
	Including multiple configuration files
	Obtaining configuration from a webserver
	Obtaining configuration from a script
	Enabling a macro preprocessor
	Appendix: Supported mathematical operators
	Glossary of terms and acronyms

