

Caplin Platform 6.0
How To Create C And Lua Blades

December 2012

Caplin Platform 6.0
How To Create C And Lua Blades Contents

Contents
1 Preface .. 1

1.1 What this document contains .. 1
About Caplin document formats .. 1

1.2 Who should read this document .. 1
1.3 Related documents .. 1
1.4 Typographical conventions .. 3
1.5 Feedback ... 3
1.6 Acknowledgments ... 4

2 Getting started .. 5
2.1 Blade naming conventions .. 6

3 Creating and developing a C-based Adapter blade .. 7
3.1 C-based Adapter blade structure... 7
3.2 Creating the C-based Adapter blade ... 7

Deploying the Caplin Platform Deployment Framework .. 7
Creating the Adapter blade’s directory structure ... 8
Creating the fields file ... 8
Writing the core component configuration ... 9
Integrating the initial blade configuration with the Deployment Framework 13
Writing the DataSource configuration for the Integration Adapter ... 14

3.3 Developing the new C-based Integration Adapter ... 16
3.4 Starting the new C-based Adapter blade .. 17

4 Packaging the new blade .. 18
Creating the blade kit on Windows .. 18
Creating the blade kit on Linux .. 18

5 Deploying the finished blade .. 19
5.1 Removing old versions of the blade .. 19
5.2 Setting up an Adapter blade’s host machine ... 19
5.3 Deploying the blade ... 20
5.4 Troubleshooting the blade ... 21

Troubleshooting Adapter blades .. 21
Troubleshooting Lua Module blades ... 21

6 Creating and developing a Lua module blade .. 22
6.1 Lua module blade structure ... 22
6.2 Creating the Lua module blade ... 22

© Caplin Systems Ltd. 2012 i

Caplin Platform 6.0
How To Create C And Lua Blades Contents

© Caplin Systems Ltd. 2012 ii

Deploying the Caplin Platform Deployment Framework .. 22
Creating the Lua module blade’s directory structure ... 23
Creating the fields file ... 23
Writing the core component configuration ... 23

6.3 Developing the new Lua module ... 26
Deploying and testing the Lua module blade .. 26

6.4 Deploying the new Lua module blade to the production system ... 26

7 Glossary of terms and acronyms ... 27

Caplin Platform 6.0
How To Create C And Lua Blades Preface

1 Preface

1.1 What this document contains
This document describes how to create new ‘C’ and Lua-based Caplin Platform blades. It also
explains how to deploy a finished blade to the Caplin Platform Deployment Framework.

If you wish to create a JavaTM-based blade, see the document
Caplin Integration Suite: How To Create A Platform Java Blade.

About Caplin document formats

This document is supplied in Portable document format (.PDF file), which you can read on-line using
a suitable PDF reader such as Adobe Reader®. The document is formatted as a printable manual;
you can print it from the PDF reader.

1.2 Who should read this document
This document is intended for developers who want to develop C and Lua blades for a web trading
platform based on the Caplin Platform Deployment Framework.

Before reading this document, you should be familiar with the concepts and terms that are introduced
in the following documents.

♦ Caplin Platform Overview (all sections)

♦ Caplin Platform: Deployment Framework Overview (all sections)

♦ Caplin Liberator Administration Guide (Overview section)

1.3 Related documents
♦ Caplin Platform: Overview

A business and technical overview of the Caplin Platform
♦ Caplin Platform: Deployment Framework Overview

Gives an overview of the Caplin Platform Deployment Framework, and explains the concept of
Caplin Platform blades.

♦ Caplin Platform: How To Use The Deployment Framework

Explains how to install and use the Caplin Platform Deployment Framework. It also describes how
Caplin Platform blades are deployed to the Framework to create a working Caplin Platform
system.

© Caplin Systems Ltd. 2012 1

Caplin Platform 6.0
How To Create C And Lua Blades Preface

♦ How To Create A Platform Java blade

Explains in detail how to create new Java-based Caplin Platform Blades using the Caplin
Integration Suite Toolkit.

♦ Caplin Liberator Administration Guide

Describes the Caplin Liberator server. Includes configuration reference information and a list of
Liberator log and debug messages.

♦ DataSource For C Configuration Syntax Reference

Describes the syntax of the language that is used to configure DataSource applications that
have been built using Caplin's C DataSource API. Such applications include Caplin Liberator,
Caplin Transformer, and Integration Adapters that use this API.

♦ Caplin DataSource for C API Documentation

The reference documentation for the C DataSource API.
♦ Best Practices For Deploying the Caplin Platform

Provides recommendations for deploying Caplin Platform in a typical live environment, and
discusses failover scenarios for achieving high service availability.

© Caplin Systems Ltd. 2012 2

Caplin Platform 6.0
How To Create C And Lua Blades Preface

1.4 Typographical conventions
The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

Glossary term Items that appear in the “Glossary of terms and acronyms”

XYZ Product Overview Document name

♦ Information bullet point

� Action bullet point – an action you should
perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation
of the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

 Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

1.5 Feedback
Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Please email your feedback to documentation@caplin.com.

© Caplin Systems Ltd. 2012 3

mailto:documentation@caplin.com

Caplin Platform 6.0
How To Create C And Lua Blades Preface

1.6 Acknowledgments
Adobe Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Java is a trademark or registered trademark of Oracle® Corporation in the U.S. and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Lua is free software from the Pontifical Catholic University of Rio de Janeiro.
Lua 5.0 license Copyright © 1994-2007 Lua.org, PUC-Rio.

© Caplin Systems Ltd. 2012 4

Caplin Platform 6.0
How To Create C And Lua Blades Getting started

2 Getting started
The concept of Caplin Platform blades and the framework used to deploy them are both described in
the Caplin Platform Deployment Framework Overview. In summary, a Caplin Platform blade is a
re-usable software module containing the code and resources needed to implement a working
feature of a trading system that uses the Caplin Platform.

Each blade is a self contained set of files. There are three types of blade:
♦ Config blade

This type of blade consists solely of configuration for the Platform’s core components (Liberator
and/or Transformer).

♦ Adapter blade

This type of blade connects to, and supplies data to, a Liberator or Transformer. It consists of an
Integration Adapter (an executable binary file), DataSource configuration, and core component
configuration. Integration Adapters can be written in Java or C.

♦ Service blade

This type of blade contains a module written in C, Java, or Lua that is to be loaded into one of the
core components; for example, a permissioning auth (authorization) module that is loaded into
Liberator.

This document explains how to develop:
♦ Adapter blades written in C using the C DataSource API

(Called C-based Adapter blades in the rest of this document)
♦ Service blades for Caplin Transformer, written in Lua

(Called Lua module blades in the rest of this document)

In the rest of this document Caplin Platform blades are just called blades.

Tip: If you wish to develop Adapter blades in Java, see the document
Caplin Integration Suite: How To Create A Platform Java Blade.

© Caplin Systems Ltd. 2012 5

Caplin Platform 6.0
How To Create C And Lua Blades Getting started

2.1 Blade naming conventions
When developing a new blade, you should follow some naming conventions that will make it easier to
maintain the blade in future:
♦ The blade name should reflect the feature that the blade implements.

For example, TradeFXBlade.

♦ The name of the root directory where the blade files are located must be the blade name.

For example, the blade called TradeFXBlade, must be located in the directory TradeFXBlade
For another example of this, see “Creating the Adapter blade’s directory structure” in section
3.2 “Creating the C-based Adapter blade”.

♦ For C-based Adapter blades, in DataSource configuration that refers to the Adapter, the label and
remote-name options of the add-peer configuration item should contain the name of the blade.

For an example of this, see “Liberator configuration” and “Transformer configuration” in section
3.2 “Creating the C-based Adapter blade”.

♦ If the blade provides a data service to Liberator, the service-name option in the add-data-
service configuration item of the Liberator configuration should contain the name of the blade.

For an example of this, see “Liberator configuration” in section
3.2 “Creating the C-based Adapter blade”.

© Caplin Systems Ltd. 2012 6

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

3 Creating and developing a C-based Adapter blade
This section explains how to create and develop an Adapter blade where the Integration Adapter part
is written in C.

Tip: If you wish to develop an Adapter blade in Java, see the document
Caplin Integration Suite: How To Create A Platform Java Blade.

3.1 C-based Adapter blade structure
A C-based Adapter blade contains:

• The blade’s field definitions in <blade_name>/blade_config/fields.conf

• Liberator related configuration in <blade_name>/Liberator/etc/rttpd.conf

• Transformer related configuration in <blade_name>/Transformer/etc/transformer.conf

• Configuration, binary files, and startup scripts for the Integration Adapter itself are in
<blade_name>/DataSource/

3.2 Creating the C-based Adapter blade
The following sections describe how to create a C-based Adapter blade. The best way to describe
the development is to describe an example Integration Adapter that is implemented in C and is called
NewAdapterBlade. This Adapter connects to the Liberator and Transformer and provides
/ADAPTEREXAMPLELIB and /ADAPTEREXAMPLETRANS data containing specific fields.

Deploying the Caplin Platform Deployment Framework

Since the blade is part of the Caplin Platform Deployment Framework it uses configuration from that
kit to define Liberator and Transformer peer connections. This configuration must be available during
development. A convenient way to achieve this is to deploy a Caplin Platform Deployment
Framework on the machine where you wish to develop the Adapter blade

 To deploy the Framework, follow the instructions in the document

Caplin Platform: How To Use The Deployment Framework.

 You will need a Caplin Transformer and/or Caplin Liberator to help test your Adapter blade whilst
you develop it. If you do not have Transformer/Liberator already deployed on a machine for this
purpose, you may wish to deploy one or both of these components on your development
machine, to the Framework you have just deployed. To do this, follow the instructions in the
above document.

© Caplin Systems Ltd. 2012 7

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Creating the Adapter blade’s directory structure

 Create a directory with the name of the blade (for example, NewAdapterBlade) and its
subdirectories.

The directory tree must be in the active_blades directory of the Caplin Platform Deployment
Framework on your development machine. It must have the following structure:

Note: Initially the var directory contains no files, but it must exist and it must become part of the
blade kit. This directory is used by the Integration Adapter at run time.

Creating the fields file

 Create a fields.conf file listing all the fields provided by the Integration Adapter and put it in the
blade_config directory of the blade.

Example of fields.conf entries for a C-based Adapter blade:

add-field ExampleAdapterField1 -99000 0
add-field ExampleAdapterField2 -99001 0

© Caplin Systems Ltd. 2012 8

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Writing the core component configuration

Your new Adapter blade must include configuration for the core components that it interacts with.
This configuration should typically consist of:
♦ Data services for the data provided by the blade.
♦ An add-peer configuration entry if the Integration Adapter connects to the core component.
♦ Failover configuration if the Integration Adapter can be located in a failover leg.

Which core components require configuration depends on how your Integration Adapter is to interact
with the Caplin Platform. The most typical situations are:
♦ The Integration Adapter connects directly to a Liberator and does not send data to or require any

services from a Transformer.

In this case, you only need to define Liberator configuration for the blade – for connections to the
Adapter, and usually for one or more data services.

♦ The Integration Adapter connects to a Transformer and sends data to it; the Transformer forwards
the (usually modified) data on to a Liberator.

In this case, you need to define both Transformer and Liberator configuration for the blade. The
Transformer configuration must define connections to the Adapter, and usually one or more data
services. The Liberator configuration typically defines one or more data services (that are served
by the Transformer), but no Adapter connections.

Background information
♦ For more information about data services, see the Caplin Platform Overview and the Caplin

Liberator Administration Guide.
♦ For more information about failover legs, see the document Caplin Platform: How To Use The

Deployment Framework.

© Caplin Systems Ltd. 2012 9

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Liberator configuration
 Create a Liberator configuration file called rttpd.conf in NewAdapterBlade/Liberator/etc/
 The contents of this file are typically:

Integration Adapter configuration for Liberator (rttpd.conf)

Peer connection to primary instance
of the example Integration Adapter,
with heartbeats configured.

add-peer
 remote-id ${THIS_LEG}9999
 remote-type active
 remote-name NewAdapterBlade${THIS_LEG}
 label NewAdapterBlade${THIS_LEG}
 heartbeat-time 15
 heartbeat-slack-time 5
end-peer

Peer connections to the secondary instance
of the example Integration Adapter.
Only configured if failover is enabled –
see global_config/environment.conf
in the Caplin Platform Deployment Framework.

if "${FAILOVER}" == "ENABLED"
 add-peer
 remote-id ${OTHER_LEG}9999
 remote-type active
 remote-name NewAdapterBlade${OTHER_LEG}
 label NewAdapterBlade${OTHER_LEG}
 heartbeat-time 15
 heartbeat-slack-time 5
 end-peer
endif

© Caplin Systems Ltd. 2012 10

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Data service for the example Integration Adapter.
The Integration Adapter provides data in
the namespace /ADAPTEREXAMPLELIB to the Liberator.
If failover is enabled the secondary example Integration Adapter
will provide the data when a failover occurs.

add-data-service
 service-name NewAdapterBlade${THIS_LEG}
 include-pattern ^/ADAPTEREXAMPLELIB

 add-source-group
 required
 add-priority
 label NewAdapterBlade${THIS_LEG}
 end-priority

 if "${FAILOVER}" == "ENABLED"
 add-priority
 label NewAdapterBlade${OTHER_LEG}
 end-priority
 endif

 end-source-group
end-data-service

This is fairly standard configuration. The blade-specific points to note are:
♦ The blade name is used in label configuration options, service-name options, and remote-name

options (see section 2.1 “”).
♦ The macros THIS_LEG and OTHER_LEG are used to differentiate the configuration of primary and

secondary failover legs.
♦ The FAILOVER macro conditionally enables configuration of a failover peer connection to

Liberator and configuration of failover data services.
♦ The Integration Adapter’s connection to Liberator uses heartbeats with the recommended

heartbeat configuration (configuration options heartbeat-time and heartbeat-slack-time).
♦ All the macros in the configuration above are defined in the global configuration of the

Deployment Framework (global_config/environment.conf).

© Caplin Systems Ltd. 2012 11

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Transformer configuration
 Create a Transformer configuration file called transformer.conf in

NewAdapterBlade/Transformer/etc/
 The contents of this file are typically:

Integration Adapter configuration for Transformer (transformer.conf)

Peer connection to primary instance
of the example Integration Adapter
with heartbeats configured.

add-peer
 remote-id ${THIS_LEG}9999
 local-type active
 remote-name NewAdapterBlade${THIS_LEG}
 label NewAdapterBlade${THIS_LEG}
 heartbeat-time 15
 heartbeat-slack-time 5
end-peer

Peer connections to the secondary instance
of the example Integration Adapter.
Only configured if failover is enabled –
see global_config/environment.conf.
in the Caplin Platform Deployment Framework.

if "${FAILOVER}" == "ENABLED"
 add-peer
 remote-id ${OTHER_LEG}9999
 local-type active
 remote-name NewAdapterBlade${OTHER_LEG}
 label NewAdapterBlade${OTHER_LEG}
 heartbeat-time 15
 heartbeat-slack-time 5
 end-peer
endif

© Caplin Systems Ltd. 2012 12

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Data service for the example Integration Adapter.
The Integration Adapter provides data in
the namespace /ADAPTEREXAMPLETRANS to the Transformer.
If failover is enabled the secondary example Integration Adapter
will provide the data when a failover occurs.

add-data-service
 service-name NewAdapterBlade${THIS_LEG}
 include-pattern ^/ADAPTEREXAMPLETRANS

 add-source-group
 required
 add-priority
 label NewAdapterBlade${THIS_LEG}
 end-priority

 if "${FAILOVER}" == "ENABLED"
 add-priority
 label NewAdapterBlade${OTHER_LEG}
 end-priority
 endif

 end-source-group
end-data-service

This is fairly standard configuration. The same blade specific points apply as for the Liberator
configuration.

Integrating the initial blade configuration with the Deployment Framework

When you have created the initial core component configuration for your Adapter blade, you can use
this configuration to allow a Transformer and/or Liberator in your development environment to accept
peer connections from the Integration Adapter you are developing.
 Copy the NewAdapterBlade directory and its subdirectories to each server machine where the

Transformer and/or Liberator run. Put the directory tree in the active_blades directory of the server
machine‘s Caplin Platform Deployment Framework.

 Stop each of the Deployment Frameworks and restart them.

(See “Starting and stopping the Deployment Framework” in
Caplin Platform: How To Use The Deployment Framework.)

At this stage the Liberator and Transformer are running and will accept peer connections from the
new Integration Adapter in your development environment if it attempts to connect into them.

Tip: At this stage you do not need to have populated any of the blade’s
DataSource directory tree.

© Caplin Systems Ltd. 2012 13

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Writing the DataSource configuration for the Integration Adapter

You must define some DataSource configuration for the Integration Adapter part of your new Adapter
blade. This configuration only needs to be defined on the machine where the blade is being
developed; it does not need to be copied to the other Deployment Frameworks where the
Transformer and/or Liberator run.
 Create a configuration file called <adapter_binary_name>.conf in

NewAdapterBlade/DataSource/etc, where <adapter_binary_name> is the name of the binary
executable file for the Integration Adapter.

 The contents of this file are typically:

Integration Adapter’s DataSource configuration (<adapter_binary_name>.conf)
Include base configuration
include-file "${ENV:CONFIG_BASE}/bootstrap.conf"

include-file "${ENV:FIELDS_DIR}fields.conf"

Event logging configuration

log-dir %r/var
log-level INFO

DataSource identifier.
Each DataSource application must have a unique identifier.

datasrc-id ${THIS_LEG}9999

Peer connection to primary Liberator with heartbeats configured.

add-peer
 local-type active|contrib
 remote-name liberator${THIS_LEG}
 addr ${LIBERATOR_HOST_${THIS_LEG}}
 port ${LIBERATOR_DATASRCPORT_${THIS_LEG}}
 heartbeat-time 15
 heartbeat-slack-time 5
end-peer

© Caplin Systems Ltd. 2012 14

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Peer connections to secondary Liberator and Transformer. Only
configured if failover is enabled - see environment.conf.

if "${FAILOVER}" == "ENABLED"
 add-peer
 local-type active|contrib
 remote-name liberator${OTHER_LEG}
 addr ${LIBERATOR_HOST_${OTHER_LEG}}
 port ${LIBERATOR_DATASRCPORT_${OTHER_LEG}}
 heartbeat-time 15
 heartbeat-slack-time 5
 end-peer

 add-peer
 local-type active|contrib
 remote-name transformer${OTHER_LEG}
 addr ${TRANSFORMER_HOST_${OTHER_LEG}}
 port ${TRANSFORMER_DATASRCPORT_${OTHER_LEG}}
 heartbeat-time 15
 heartbeat-slack-time 5
 end-peer
endif

Peer connection to primary Transformer with heartbeats configured.

add-peer
 local-type active|contrib
 remote-name transformer${THIS_LEG}
 addr ${TRANSFORMER_HOST_${THIS_LEG}}
 port ${TRANSFORMER_DATASRCPORT_${THIS_LEG}}
 heartbeat-time 15
 heartbeat-slack-time 5
end-peer

The blade-specific points to note here are:
♦ In this example, the Integration Adapter can connect to both a Liberator and a Transformer.

If your Adapter only connects to one of these core components, omit the configuration
for the other component.

♦ The DataSource Adapter must be given an ID number that is unique across all instances of
DataSource applications (other Adapters, Liberators, and Transformers) deployed on all server
machines in the Platform. The ID is defined by the configuration item datasrc-id.

© Caplin Systems Ltd. 2012 15

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

Note: It is recommended that datasrc_ids for new blades start from 10000 for the primary
instance of an Integration Adapter, and from 20000 for the secondary (failover) instance.
This avoids any clash with the IDs allocated to core components. When adding a new
Integration Adapter blade, review the IDs used for existing blades and select a new one for
the new Integration Adapter.

The example configuration file shown here qualifies the ID by the failover leg (THIS_LEG)
to which the Adapter instance belongs. This ensures that the primary ID is of the form
1nnnn, and the secondary ID is of the form 2nnnn.

♦ The Liberator and Transformer’s hostnames, as used in the addr option of add-peer, and their
DataSource ports, as used in the port option of add-peer, are defined by global configuration
macros (LIBERATOR_HOST, LIBERATOR_DATASRCPORT, TRANSFORMER_HOST, and
TRANSFORMER_DATASRCPORT)

♦ The configuration defines connections to a failover Liberator and a failover Transformer.
♦ The THIS_LEG and OTHER_LEG macros are used in the remote_name, addr, and port options

of add-peer, to distinguish these option settings according to the failover leg to which they refer.
♦ The Integration Adapter’s connections to Liberator and Transformer use heartbeats with the

recommended heartbeat configuration (configuration options heartbeat-time and heartbeat-
slack-time).

3.3 Developing the new C-based Integration Adapter
 Develop your C-based Integration Adapter following the usual pattern as described in the

Caplin DataSource for C API Documentation.
 When the development is complete, copy the new files into the relevant blade directories:

File type: Copy to directory in blade:

Binary files NewAdapterBlade/DataSource/bin/

Library files NewAdapterBlade/DataSource/lib/

etc/datasrc files in the
DataSource for C SDK

NewAdapterBlade/DataSource/etc/<adapter_binary_name>/
where <adapter_binary_name> is the name of the binary
executable file for the Integration Adapter.

Any other configuration files
required; for example,
java.conf, jmx.conf

NewAdapterBlade/DataSource/etc/

© Caplin Systems Ltd. 2012 16

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a C-based Adapter blade

3.4 Starting the new C-based Adapter blade
 To enable the newly written C-based Adapter blade to be started in your development

environment, add the following line to the global_config/hosts.conf file of the Deployment
Framework on the host machine where you are developing the blade:

Add this line to global_config/hosts.conf

define NewAdapterBlade${THIS_LEG}_HOST <hostname>

where <hostname> is the hostname of the development host machine on which the Integration
Adapter runs.

Tip: <hostname> can be set to localhost, but it is good practice to always set it to the actual
hostname of the machine.

 Make sure the Transformer and/or Liberator are running on their host machines
(so as to accept connection requests from the new Integration Adapter).

 To start the blade’s Integration Adapter, run the following command from
NewAdapterBlade/DataSource/:
./etc/<binary name> start

 When the Integration Adapter has started, examine its log files in
NewAdapterBlade/DataSource/var/
to see if it has connected to the Transformer and/or Liberator as appropriate.

Tip: An Integration Adapter can create several types of log file. Generally there will be an event
log and a packet log. There may be other DataSource specific logs depending on your
Adapter implementation.

 If the Integration Adapter should return data to Liberator, use the Liberator’s Liberator Explorer or

Object Browser to request data for the relevant subjects (for example, data for the subjects
/LIBERATORBLADE and /TRANSFORMERBLADE).

 To stop the blade’s Integration Adapter, run the following command from
NewAdapterBlade/DataSource/:
./etc/<binary name> stop

© Caplin Systems Ltd. 2012 17

Caplin Platform 6.0
How To Create C And Lua Blades Packaging the new blade

4 Packaging the new blade
Before a new Adapter blade or Lua module blade can be deployed to the production Deployment
Framework, you must package it into a kit.

 The name of the blade kit must have the format:

<blade_name>-<build_number>

<build_number> is optional, but the <blade_name> must be followed by a ‘–‘
(hyphen character).

Creating the blade kit on Windows

 To create the new blade kit on Windows®, use the following command:

zip –qyr <blade_name>-<build_number>.zip <blade_name>

For example:

zip –qyr NewAdapterBlade-000017.zip NewAdapterBlade

Creating the blade kit on Linux

 To create the new blade kit on Linux®, use the following commands:

tar cf <blade_name> -<build_number>.tar <blade_name>

gzip <blade_name> -<build_number>.tar

For example:

tar cf NewAdapterBlade -000017.tar NewAdapterBlade

gzip NewAdapterBlade -000017.tar

© Caplin Systems Ltd. 2012 18

Caplin Platform 6.0
How To Create C And Lua Blades Deploying the finished blade

5 Deploying the finished blade
When you have finished developing an Adapter blade or Lua module blade, you can deploy it to the
production Deployment Framework.

5.1 Removing old versions of the blade
 Before deploying the new version of a blade, remove all <BladeName> directories (for example

NewAdapterBlade) from the active_blades directory of all the production Deployment
Frameworks.

5.2 Setting up an Adapter blade’s host machine
If your blade is an Adapter blade, you must decide what production server machine the Integration
Adapter is to run on, and, if failover is enabled, the production server machine on which its failover
instance is to run.
 Add the following lines to the Deployment Framework’s global_config/hosts.conf file on all the

production servers to which the Framework is deployed:

define <blade_name>${THIS_LEG}_HOST <hostname_of_primary_machine>

if "${FAILOVER}" == "ENABLED"
 define <blade_name>${OTHER_LEG}_HOST
 <hostname_of_secondary_machine>
endif

where:

<blade_name> is the name of the blade; for example, NewAdapterBlade.

Note: Each blade that is deployed to a Deployment Framework must have a unique name.

<hostname_of_primary_machine> is the hostname of the server machine on which the primary
instance of the Integration Adapter is to be located. If failover is not configured, this is the only
machine on which the Integration Adapter runs. If failover is configured, it is the machine where the
Integration Adapter in the primary failover leg runs.

<hostname_of_secondary_machine> is the hostname of the server machine where the
Integration Adapter in the secondary failover leg runs. If you do not require the Integration Adapter to
support failover, you do not need to include the lines "${FAILOVER}" … endif in hosts.conf.
Adding these lines ensures that the new Integration Adapter only starts on the host it is configured to
start on.

© Caplin Systems Ltd. 2012 19

Caplin Platform 6.0
How To Create C And Lua Blades Deploying the finished blade

5.3 Deploying the blade
To deploy a new blade to the Deployment Framework:
 Copy the new blade kit to the kits directory of the Caplin Platform Development Framework on all

the server machines that host the Framework.
 Run the deploy.sh script on each server machine:

./kits/deploy.sh

This script stops any Caplin Platform components that are running on the server, unpacks
(unzips) the blade kit, and activates the new blade.

Note: The deploy.sh script also deploys the Caplin Platform components, but does not start these
components.

 Start the Caplin Platform Deployment Framework on all the servers.
To do this, from the root directory of the installed Deployment Framework
run the script:

start-all.sh

For more information about starting and stopping the Deployment Framework, see the document
Caplin Platform: How To Use The Deployment Framework.

© Caplin Systems Ltd. 2012 20

Caplin Platform 6.0
How To Create C And Lua Blades Deploying the finished blade

5.4 Troubleshooting the blade

Troubleshooting Adapter blades

If your new Integration Adapter will not start properly, or misbehaves when running, here is a list of
commonly occurring faults to check for:

 Have you forgotten to create a var directory in the blade?
 Is the blade’s host machine defined in the hosts file?

See section 5.2 “Setting up an Adapter blade’s host machine”.
 Is there erroneously more than one instance of the Integration Adapter running?

− For Integration Adapters that connect to the Liberator, you can easily check this by looking at
the Liberator’s status page, where you will find that the DataSources section shows the
Adapter as a flashing entry.

− For Integration Adapters that connect only to the Transformer, look in the
servers/Transformer/var/transformer.* files on the server under which the Transformer is
running, and check for multiple peer connection and disconnection messages.

 Are there any errors shown in the log files in the blade’s var directory?
 On the server where the Liberator is running, check the servers/Liberator/var/event-rttpd.* files

for errors. Look out especially for field-related errors (reused field names or numbers).
 If you are using a Transformer, on the server where the Transformer is running, check the

servers/Transformer/var/transformer.* files for errors. Look out especially for field-related errors
(reused field names or numbers).

Troubleshooting Lua Module blades

 See “Deploying and testing the Lua module blade” in section 6.3 “Developing the new Lua
module”.

© Caplin Systems Ltd. 2012 21

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a Lua module blade

6 Creating and developing a Lua module blade
This section explains how to create and develop a Service blade for Caplin Transformer, where the
blade’s logic is written in Lua as a Transformer module.

6.1 Lua module blade structure
A Lua module blade contains:
♦ The blade’s field definitions in <blade_name>/blade_config/fields.conf
♦ Liberator related configuration in <blade_name>/Liberator/etc/rttpd.conf
♦ Transformer related configuration in <blade_name>/Transformer/etc/transformer.conf
♦ The configuration for the Lua pipeline in <blade_name>/Transformer/etc/pipeline.conf
♦ The Lua source for the pipeline in <blade_name>/Transformer/etc/<BladeName>.lua

6.2 Creating the Lua module blade
The following sections describe how to create a Lua module blade. The best way to describe the
development is to describe an example blade called NewLuaBlade. This blade provides
/LUALIBERATOR data which can then be requested by a Liberator.

Deploying the Caplin Platform Deployment Framework

Since the blade is part of the Caplin Platform Deployment Framework it uses configuration from that
kit. This configuration must be available during development. A convenient way to achieve this is to
deploy a Caplin Platform Deployment Framework on the machine where you wish to develop the Lua
module blade.

 To deploy the Framework, follow the instructions in the document

Caplin Platform: How To Use The Deployment Framework.

 You will need a Caplin Transformer and Caplin Liberator to help test your blade whilst you
develop it. The Transformer should be deployed on the machine where you are developing the
blade.
If you do not have Liberator already deployed on a machine for testing purposes, you could
deploy an instance on your development machine, to the Framework you have just deployed. To
do this, follow the instructions in the above document.

© Caplin Systems Ltd. 2012 22

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a Lua module blade

Creating the Lua module blade’s directory structure

 Create a directory with the name of the blade (for example, NewLuaBlade) and its subdirectories.

The directory tree must be in the active_blades directory of the Caplin Platform Deployment
Framework on your development machine. It must have the following structure:

Creating the fields file

 Create a fields.conf file listing all the fields provided by the Lua module and put it in the
blade_config directory of the blade.

Example of fields.conf entries for a Lua module blade

add-field NewDSField1 1 0
add-field NewDSField2 2 0
add-field NewDSField3 3 0

Writing the core component configuration

Your new Lua module blade must include configuration for the core components that it interacts with.
This configuration should typically consist of:
♦ Data service definitions for the Liberator that allow the Liberator to request the data provided by

the blade.
♦ Transformer pipeline component configuration for the Lua module.

Background information
♦ For more information about data services, see the Caplin Platform Overview and the Caplin

Liberator Administration Guide.

© Caplin Systems Ltd. 2012 23

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a Lua module blade

Liberator configuration
 Create a Liberator configuration file called rttpd.conf in NewLuaBlade/Liberator/etc/
The contents of this file are typically:

Lua module blade configuration for Liberator (rttpd.conf)

Liberator configuration for data from the NewLuaBlade Lua module blade.

add-data-service
 service-name NewLuaBlade${THIS_LEG}
 include-pattern ^/LUALIBERATOR /

 add-source-group
 required true
 add-priority
 label transformer${THIS_LEG}
 end-priority
 if "${FAILOVER}" == "ENABLED"
 add-priority
 label transformer${OTHER_LEG}
 end-priority
 endif
 end-source-group
end-data-service

This is fairly standard configuration. The blade specific points to note are:
♦ The blade name is used in service-name configuration options

(see section 2.1 “Blade naming conventions”).
♦ The macros THIS_LEG and OTHER_LEG are used to differentiate the configuration of primary and

secondary failover legs.

© Caplin Systems Ltd. 2012 24

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a Lua module blade

Transformer configuration
 Create a Transformer pipeline configuration file called pipeline.conf in

NewLuaBlade/Transformer/etc
 The contents of this file are typically:

Lua module blade’s Transformer pipeline configuration (pipeline.conf)

Location of the Lua module blade’s pipeline components

pipeline-paths ${ccd}/pipeline/

add-pipeline
 id NewLuaBlade${THIS_LEG}
 pipeline-file NewLuaBlade.lua

 provider-regex ^/LIBERATORLUA/.*

 request-func request
end-pipeline

The blade specific points to note are:
♦ The blade name is used as the pipeline id, and in the Lua module name that is defined by the

pipeline-file configuration option.

♦ The ccd macro defines the current directory path of the file in which it is referenced. So in this
example, because the ccd reference is in the file NewLuaBlade/Transformer/etc/pipeline.conf,
the macro defines the path NewLuaBlade/Transformer/etc

♦ The line
pipeline-paths ${ccd}/pipeline/
instructs the Transformer to look for the blade’s pipeline files in the directory
NewLuaBlade/Transformer/etc/pipeline/

© Caplin Systems Ltd. 2012 25

Caplin Platform 6.0
How To Create C And Lua Blades Creating and developing a Lua module blade

6.3 Developing the new Lua module
 Write your Lua module to conform to the requirements of a Transformer pipeline module.

 When the development is complete, copy the Lua files that implement the pipeline into the into the

directory <BladeName> NewLuaBlade/Transformer/etc/pipeline/

For example, copy the files to NewLuaBlade/Transformer/etc/pipeline/

Deploying and testing the Lua module blade

 Copy the new Lua blade’s directory structure and contents to all the active_blades directories of
all the Caplin Platform Deployment Frameworks in your test environment.

For example, copy NewLuaBlade and its subdirectories into active_blades

 Stop each of the Deployment Frameworks and restart them.

(See “Starting and stopping the Deployment Framework” in
Caplin Platform: How To Use The Deployment Framework.)

At this stage the Liberator and Transformer are running and the Liberator should be able to
request the data provided by the Transformer pipeline module that the new blade implements.

 If there is any issue with your new Lua module blade, check for errors in the
servers/Transformer/var/pipeline.* files on the server where the Transformer is running.

6.4 Deploying the new Lua module blade to the production system
When you have tested the new Lua blade to your satisfaction, you can deploy it to the production
system:

 First, package the blade into a deployable kit:

follow the steps in section 4 “Packaging the new blade”.
 Then deploy the blade kit:

follow the steps in section 5 “Deploying the finished blade”.

© Caplin Systems Ltd. 2012 26

Caplin Platform 6.0
How To Create C And Lua Blades Glossary of terms and acronyms

7 Glossary of terms and acronyms
This section contains a glossary of terms, abbreviations, and acronyms used in this document.

Term Definition

Adapter blade A blade for the Caplin Platform that consists of an
Integration Adapter and associated configuration.
Also see, C-based Adapter blade.

Blade A re-usable software module containing the code and
resources needed to implement a business feature.
In this document the term blade is short for Caplin Platform
blade.

C-based Adapter blade An Adapter blade written in C using the C DataSource API.

Caplin Integration Suite (CIS) A set of APIs and tools for creating adapters that integrate the
Caplin Platform with external systems.

Caplin Liberator A financial internet hub that delivers data and messages in real
time to and from subscribers over any network.

Caplin Platform An integrated suite of software that supports the services and
distribution capabilities needed for web trading. It consists of
Caplin Liberator, Caplin Transformer, Caplin KeyMaster,
Caplin Director, and Caplin Management Console.

Caplin Platform blade A blade designed for use with the Caplin Platform. A Caplin
Platform blade can be an Adapter blade, Config blade, or
Service blade.
Also see, C-based Adapter blade and Lua module blade.

Caplin Platform Deployment
Framework

A configuration and deployment environment for the Caplin
Platform that supports Caplin Platform Blades.

Caplin Transformer An event-driven, real-time data transformation engine
optimized for web trading services.

C DataSource API An implementation of the DataSource API that is written in the
C language.

Config blade A blade for the Caplin Platform that enables a feature through
configuration.

Core component A Caplin Platform component that is supplied with the Caplin
Platform Deployment Framework, but is not a blade. The
core components are Caplin Liberator and Caplin
Transformer.

© Caplin Systems Ltd. 2012 27

Caplin Platform 6.0
How To Create C And Lua Blades Glossary of terms and acronyms

© Caplin Systems Ltd. 2012 28

Term Definition

Data service A set of rules used by the Caplin Platform to determine how a
requested data item should be sourced based on its subject. A
data service can incorporate priority, failover and load
balancing.

Data services are defined in Caplin Liberator configuration.

DataSource DataSource is the messaging infrastructure used by the Caplin
Platform and Integration Adapters.

DataSource API An API that allows server applications (including Integration
Adapters) to communicate with the Caplin Platform.

DataSource application An application that uses the DataSource API.
Caplin Liberator, Caplin Transformer, and Integration
Adapters are all DataSource applications.

Deployment Framework In this document, this term is short for the Caplin Platform
Deployment Framework.

Framework In this document, this term is short for the Caplin Platform
Deployment Framework.

Integration Adapter A server application that allows an external system to
communicate with the Caplin Platform. An Integration Adapter
is a DataSource application.

Liberator The short form of Caplin Liberator.

Lua A scripting language devised by the Pontifical Catholic
University of Rio de Janeiro. See http://www.lua.org/.

Lua module blade A Service blade for Caplin Transformer that is written in Lua.

Service blade A blade for the Caplin Platform that includes a Transformer
module or a Liberator Auth module.
Also see, Lua module blade.

Transformer The short form of Caplin Transformer.

Transformer module A software module in Caplin Transformer that implements a
service. For example, the Refiner module provides a Container
filtering and sorting service.

http://www.lua.org/

Caplin Platform 6.0: How To Create C And Lua Blades, December 2012, Release 2

© Caplin Systems Ltd. 2012

Contact Us
Caplin Systems Ltd

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

www.caplin.com

 The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of this
publication may be reproduced or transmitted in any
form or by any means without the written
authorization of an Officer of Caplin Systems Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not permitted
to use any Mark without the prior written consent of
Caplin or the owner of that Mark.

This publication is provided "as is" without warranty of
any kind, either express or implied, including, but not
limited to, warranties of merchantability, fitness for a
particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to the
information herein; these changes will be
incorporated in new editions of this publication. Caplin
Systems Limited may make improvements and/or
changes in the product(s) and/or the program(s)
described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

	1 Preface
	1.1 What this document contains
	About Caplin document formats

	1.2 Who should read this document
	1.3 Related documents
	1.4 Typographical conventions
	1.5 Feedback
	1.6 Acknowledgments

	2 Getting started
	2.1 Blade naming conventions

	3 Creating and developing a C-based Adapter blade
	3.1 C-based Adapter blade structure
	3.2 Creating the C-based Adapter blade
	Deploying the Caplin Platform Deployment Framework
	Creating the Adapter blade’s directory structure
	Creating the fields file
	Writing the core component configuration
	Integrating the initial blade configuration with the Deployment Framework
	Writing the DataSource configuration for the Integration Adapter

	3.3 Developing the new C-based Integration Adapter
	3.4 Starting the new C-based Adapter blade

	4 Packaging the new blade
	Creating the blade kit on Windows
	Creating the blade kit on Linux

	5 Deploying the finished blade
	5.1 Removing old versions of the blade
	5.2 Setting up an Adapter blade’s host machine
	5.3 Deploying the blade
	Troubleshooting Adapter blades
	Troubleshooting Lua Module blades

	6 Creating and developing a Lua module blade
	6.1 Lua module blade structure
	6.2 Creating the Lua module blade
	Deploying the Caplin Platform Deployment Framework
	Creating the Lua module blade’s directory structure
	Creating the fields file
	Writing the core component configuration

	6.3 Developing the new Lua module
	Deploying and testing the Lua module blade

	6.4 Deploying the new Lua module blade to the production system

	7 Glossary of terms and acronyms

