
How To Manage And Interpret Log Files

October 2014

Caplin Platform 6.2

i

How To Manage And Interpret Log Files

© Caplin Systems Ltd. 2011 – 2014

Contents

Caplin Platform 6.2

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 1Who should read this document1.2

.. 1Related documents1.3

.. 3Typographical conventions1.4

.. 4Acknowledgments1.5

.. 5The purpose of log files2

.. 5Logging levels2.1

.. 5Logging cycle periods2.2

.. 5Text and binary log files2.3

.. 6Configuration substitution characters2.4

.. 7Default log file settings3

.. 7Liberator3.1

.. 8Transformer3.2

.. 8DataSource applications3.3

.. 8C DataSource applications

.. 9Java DataSource applications

.. 9DataSource.NET applications

.. 9StreamLink3.4

.. 10StreamLink JS / StreamLink.NET

.. 10KeyMaster3.5

.. 11Development environment: enabling maximum logging4

.. 11Liberator4.1

.. 11Changing the logging level of event and auth module logs

.. 12Enabling server-side RTTP logging

.. 12Transformer4.2

.. 12DataSource applications4.3

.. 12C DataSource Applications

.. 13Java DataSource applications

.. 14DataSource.NET applications

.. 15StreamLink4.4

.. 15StreamLink JS

.. 16StreamLink Java

ii

How To Manage And Interpret Log Files

© Caplin Systems Ltd. 2011 – 2014

Contents

Caplin Platform 6.2

.. 17StreamLink.NET

.. 18StreamLink iOS

.. 18KeyMaster4.5

.. 19Production environment: recommendations5

.. 19Logging level5.1

.. 19Logging cycle period (packet logs)5.2

.. 21The investigation process6

.. 21Identifying the problem6.1

.. 21Identifying the log files you need to review6.2

.. 23Identifying the data you need to look at in log files6.3

.. 24Tracing an object request using Liberator log files7

.. 26Example investigations8

.. 26Example 1: Liberator – Integration Adapter8.1

.. 26Starting the components

.. 28Logging in

.. 30Object requests

.. 35Stopping the Integration Adapter

.. 37Example 2: Liberator – Transformer – Integration Adapter8.2

.. 37Object requests

.. 41Example 3: A 'Data Unavailable' message is displayed8.3

.. 45If you need to contact Caplin Support9

.. 46Appendix A: Packet logs and logcat10

.. 46Displaying fields and flags by name10.1

.. 47Redirecting logcat output to a text file10.2

.. 47Inspecting real time packet logs10.3

.. 48Splitting packet logs10.4

.. 49Glossary of terms and acronyms11

Preface

1© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

1 Preface

1.1 What this document contains

This document explains how you can use the log files produced by Caplin Platform components to
compare expected system behavior with actual system behavior when troubleshooting a system based on
the Caplin Platform.

About Caplin document formats

This document is supplied in Portable document format (.PDF file), which you can read on-line using a
suitable PDF reader such as Adobe Reader®. The document is formatted as a printable manual; you can
print it from the PDF reader.

1.2 Who should read this document

This document is intended for developers, testers and system administrators.

1.3 Related documents

Caplin Liberator Administration Guide

Contains a list of Caplin Liberator's log and debug messages.

For a description of the Caplin Liberator server and its place within the Caplin Platform, and reference
information about the most important configuration items, see the Liberator pages of the Caplin
Developers' web site.

DataSource C API Documentation

The reference documentation for the C DataSource API.

Caplin Integration Suite for Java API Documentation: DataSource API section

The reference documentation for the Java DataSource API.

DataSource.NET API Dcoumentation

The reference documentation for the DataSource.NET API.

Caplin Platform: Server-side RTTP Logging

Explains how to set up server-side (Liberator) logging of RTTP messages between Liberator and a
client communicating over RTTP, and how to interpret the resulting log files.

StreamLink JS API Documentation

The reference documentation for the StreamLink JS API.
Includes examples of how to use the API.

StreamLink Java API Documentation

The reference documentation for the StreamLink Java API.
Includes examples of how to use the API.

StreamLink.NET API Documentation

http://www.caplin.com/downloads/developer-docs/Liberator_Admin_Guide.pdf
http://www.caplin.com/downloads/developer-docs/Liberator_Admin_Guide.pdf
http://www.caplin.com/downloads/developer-docs/Liberator_Admin_Guide.pdf
http://www.caplin.com/downloads/developer-docs/Liberator_Admin_Guide.pdf
http://www.caplin.com/developer/component/liberator
http://www.caplin.com/developer/component/liberator
http://www.caplin.com/developer
http://www.caplin.com/developer
http://www.caplin.com/developer
http://www.caplin.com/developer
http://www.caplin.com/developer/api/cis/latest
http://www.caplin.com/developer/api/cis/latest
http://www.caplin.com/developer/api/cis/latest
http://www.caplin.com/developer/api/cis/latest
http://www.caplin.com/developer/api/cis/latest
http://www.caplin.com/developer/api/cis/latest
http://www.caplin.com/developer/api/cis/latest
http://www.caplin.com/downloads/developer-docs/ServerSideRTTPLogging62.pdf
http://www.caplin.com/downloads/developer-docs/ServerSideRTTPLogging62.pdf
http://www.caplin.com/downloads/developer-docs/ServerSideRTTPLogging62.pdf
http://www.caplin.com/downloads/developer-docs/ServerSideRTTPLogging62.pdf
http://www.caplin.com/downloads/developer-docs/ServerSideRTTPLogging62.pdf
http://www.caplin.com/developer/api/streamlinkjs/latest
http://www.caplin.com/developer/api/streamlinkjs/latest
http://www.caplin.com/developer/api/streamlinkjs/latest
http://www.caplin.com/developer/api/streamlinkjs/latest
http://www.caplin.com/developer/api/streamlinkjava/latest
http://www.caplin.com/developer/api/streamlinkjava/latest
http://www.caplin.com/developer/api/streamlinkjava/latest
http://www.caplin.com/developer/api/streamlinkjava/latest

Preface

2© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The reference documentation for the StreamLink.NET API.
Includes examples of how to use the API.

StreamLink iOS API Documentation

The reference documentation for the StreamLink iOS API.
Includes examples of how to use the API.

StreamLink Android API Documentation

The reference documentation for the StreamLink Android API.
Includes examples of how to use the API.

http://www.caplin.com/developer/api/streamlinkios/latest
http://www.caplin.com/developer/api/streamlinkios/latest
http://www.caplin.com/developer/api/streamlinkios/latest
http://www.caplin.com/developer/api/streamlinkios/latest
http://www.caplin.com/developer/api/streamlinkandroid/latest
http://www.caplin.com/developer/api/streamlinkandroid/latest
http://www.caplin.com/developer/api/streamlinkandroid/latest
http://www.caplin.com/developer/api/streamlinkandroid/latest

Preface

3© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

Glossary term Items that appear in the “Glossary of terms and acronyms”

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

 Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

Preface

4© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

1.5 Acknowledgments

Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Java is the registered trademark of Oracle® Corporation in the U.S. and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

The purpose of log files

5© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

2 The purpose of log files

Log files record error notifications, and the events that occur when a Caplin Platform system is up and
running (such as when components start and stop). Log files also record conversations between
DataSource peers and the parameters that are sent between them, such as the username or the session
ID of a new user logging into the system, trade information, filtering options, and DataSource information.
Logs recorded at a specific time show what was going on at that time in the system (for example, if a user
was disconnected, if a user initiated a new trade, a filtering query, and so on).

As each Caplin Platform system has a unique setup that can change with time, Caplin cannot replicate
every incident. This is why Caplin Support will ask for log files when you report a new incident. In most
cases the log files help Caplin Support to identify the root cause of the incident.

2.1 Logging levels

The messages that can appear in a log file are each assigned a log level by the application developer,
and the application only records a log message if the following conditions exist:

The application branches to the code that records the log message, such as when the application
encounters an error or some other condition that the developer wants to record.

The application is configured to record log messages at the level assigned to the log message.

Log levels have a hierarchical order. This means that if an application is configured to record log
messages at a particular level, then messages at that and higher log levels will be recorded in the log file.

For example, Liberator can be configured to record event log messages at any one of following logging
levels (in hierarchical order): CRITICAL (only records critical errors, which produces the smallest log file
sizes), ERROR, NOTIFY, WARN, INFO, and DEBUG (records all errors and events, which can produce
very large log file sizes). If the configured log level of Liberator is NOTIFY, Liberator will record events at
the NOTIFY, CRITICAL, and ERROR levels.

2.2 Logging cycle periods

Log files can become quite large if they are not regularly cycled throughout the day. For this reason, log
files can be configured to cycle at regular intervals. When a log file cycles, the current log file is closed and
a new log file is opened.

2.3 Text and binary log files

All log files created by Caplin Platform components are pure text files that can be viewed in a text editor,
except packet logs, which are binary files that can only be viewed using Caplin's logcat utility.

For further information about using the logcat utility to view packet logs, see Appendix B: Packet logs and
logcat .46

The purpose of log files

6© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

2.4 Configuration substitution characters

The configuration options for C DataSource applications, Java DataSource applications and
DataSource.NET applications can have values that include substitution characters. The following
substitution characters are used in the logging configuration examples shown in this document.

Substitution
characters

Description Example
configuration item

Description of example

%r
The root directory of the
installed application.

log-dir %r/var

The configured location of
log files (in the var
subdirectory of the installed
application).

%u
The day of the week as an
integer (range 1 to 7, Monday
being 1).

log-cycle-suffix %u
The suffix appended to the
name of log files when the
log files are cycled.

Liberator and Transformer are C DataSource applications.

Default log file settings

7© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

3 Default log file settings

Each Caplin Platform component has its own default log files, and its own default configuration settings
for these files.

3.1 Liberator

Liberator logging is enabled by default. Liberator produces a large number of log files that can be
categorized according to the available log level settings:

Multi log-level log files: This category of log file can be configured to one of several log levels. The
log level setting can be changed in the log file configuration, or dynamically using UDP or monitoring
commands. The event log (event-rttpd.log) and auth module logs (javaauth.log, xmlauth.log, and

tokenauth.log) are in this category.

Single log-level log files: This category of log file has only one log level: DEBUG. The following log
files are in this category:

session-rttpd.log, object-rttpd.log, request-rttpd.log, HTTP logs (http-access-rttpd.log and
http-error-rttpd.log), and the Liberator packet log (packet-rttpd.log).

The default settings of Liberator log files are summarized in the following tables:

The Event Log

Log File Name Default Directory Default Logging
Level

Default Logging Cycle

event-rttpd.log %r/var INFO
Logs cycle every 24 hours at 4am,
log file suffix %u

Auth Module Logs

Default Directory Default Logging
Level

Default Logging Cycle

%r/var INFO Logs cycle every 24 hours at 4am, log file suffix %u

All Other Logs

Default Directory Fixed Logging Level Default Logging Cycle

%r/var DEBUG Logs cycle every 24 hours at 4am, log file suffix %u

Default log file settings

8© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

3.2 Transformer

Transformer logging is enabled by default. Transformer only produces two categories of log file: the
Transformer event log and the packet log.

The default settings of Transformer log files are summarized in the following tables:

The Event Log

Log File Name Default Directory Default Logging
Level

Default Logging Cycle

transformer.log %r/var INFO
Logs cycle every 24 hours at 4am,
log file suffix %u

The Packet Log

Log File Name Default Directory Fixed Logging
Level

Default Logging Cycle

packet-
transformer.log

%r/var DEBUG
Logs cycle every 24 hours at 4am,
log file suffix %u

Note: More log files are produced if Transformer uses any Transformer Modules.

3.3 DataSource applications

The way that log files are configured, and whether they are enabled by default, depends on the software
library used by the DataSource application.

C DataSource applications

C DataSource logging is enabled by default. The default settings of C DataSource log files are
summarized in the following tables:

The event log

Log File Name Default
Directory

Default Logging
Level

Default Logging Cycle

event-<appname>.log %r/var INFO
Logs cycle every 24 hours at 4am,
suffix %u

Default log file settings

9© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The packet log

Log File Name Default
Directory

Fixed Logging
Level

Default Logging Cycle

packet-<appname>.log %r/var DEBUG
Logs cycle every 24 hours at 4am,
suffix %u

The default name of a log file depends on the name of the C DataSource application. For example, if the
name of the C DataSource application is datasrc, the default name of the event log is

event-datasrc.log, and the default name of the packet log is packet-datasrc.log.

For more about configuring logging for DataSource applications, see Logging in DataSource applications

Java DataSource applications

Java DataSource applications created using the Caplin Integration Suite (CIS)

Java DataSource applications created as Platform blades using using the Caplin Integration Suite (CIS)
have logging enabled by default. The logging configuration is defined as for a C-based DataSource, using
a DataSource configuration file, and is then automatically converted to XML when you deploy the blade.
Please refer to the previous section, C DataSource applications , for more information.

Java DataSource applications created without the CIS

In Java DataSource applications that are created without the CIS, logging is not enabled by default. For
further information about configuring logging for such applications, see the section Java DataSource
applications in Development Environment: Enabling maximum logging .

DataSource.NET applications

DataSource.NET applications do not have logging is not enabled by default.

For further information about configuring logging for a DataSource.NET application, see C DataSource /
DataSource.NET in Development Environment: Enabling maximum logging .

3.4 StreamLink

The RTTP messages that are sent between the client application and Liberator can be found in the
StreamLink log files.

The way that the log files are configured, and whether they are enabled by default, depends on the
software library used by the client application.

StreamLink logs are not enabled by default, and the way that you enable logging depends on the software
library used by the client application. For further information, see StreamLink JS , StreamLink Java
and StreamLink iOS in Development Environment: Enabling maximum logging .

8

13 11

12 11

15 16

18 11

http://www.caplin.com/developer/component/datasource/features-and-concepts/datasource-logging-in-datasource-applications
http://www.caplin.com/developer/component/datasource/features-and-concepts/datasource-logging-in-datasource-applications
http://www.caplin.com/developer/component/datasource/features-and-concepts/datasource-logging-in-datasource-applications
http://www.caplin.com/developer/component/datasource/features-and-concepts/datasource-logging-in-datasource-applications

Default log file settings

10© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

StreamLink JS / StreamLink.NET

StreamLink logs are not enabled by default, and the way that you enable logging depends on the software
library used by the client application. For further information, see StreamLink JS and StreamLink.NET

 in Development Environment: Enabling maximum logging .

3.5 KeyMaster

When KeyMaster is used for authentication, logging is enabled by default and records information about
user logins.

Log File Name Default Directory Default Logging
Level

Default Logging Cycle

servlet.log

Tomcat server: the top level
installation directory of the
server.

JBoss server: the directory
where the server was
started.

BEA WebLogic server: the
domain directory where the
server was started.

ALL
Logs cycle at 12am every
24 hours

15

17 11

Development environment: enabling maximum logging

11© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

4 Development environment: enabling maximum
logging

This section describes how to enable maximum logging by Caplin Platform components for development
purposes and debugging. In each case, log file names and directories are the defaults, as described in
Default log file settings .

Note: Maximum logging should only be used for troubleshooting, as the performance of the Caplin
Platform applications is reduced when maximum logging is enabled. For a production system,
the recommended logging levels are described in Production environment: recommendations

.

4.1 Liberator

The event and auth module logs are the only Liberator logs that have a logging level you can change.
Server-side RTTP logging is disabled by default, but can be enabled for a particular user.

Changing the logging level of event and auth module logs

The Liberator event and auth module logs are enabled for maximum logging by setting the log-level
configuration option to Debug in the Liberator and auth module configuration files, as shown in the
following table:

Event log settings

Log File Name Configuration Option Configuration File Configuration File
Directory

event-rttpd.log log-level DEBUG rttpd.conf %r/etc

Auth module log settings

Log File Name Configuration Option Configuration File Configuration File
Directory

javaauth.log log-level DEBUG javaauth.conf %r/etc

xmlauth.log log-level DEBUG xmlauth.conf %r/etc

tokenauth.log log-level DEBUG tokenauth.conf %r/etc

The auth module that Liberator uses to authenticate users is defined by the auth-module configuration
option in the Liberator configuration file rttpd.conf (see the Caplin Liberator Administration Guide for
further information).

7

19

Development environment: enabling maximum logging

12© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Enabling server-side RTTP logging

Server-side RTTP logging is disabled by default but can be enabled on a per-user basis, either in the
Liberator configuration file or dynamically using the Caplin Management Console.

Tip: For further information about how to set up server-side RTTP logging, refer to the document
RTTP: Server-side RTTP Logging.

Note: All server-side RTTP log files are created in the directory %r/var/rttp by default, where %r is

the current working directory. Please make sure the rttp directory exists before you enable
RTTP logging.

4.2 Transformer

The Transformer event log is enabled for maximum logging by setting the log-level configuration option to
Debug in the Transformer configuration file rttpd.conf, as shown in the following table:

Log File Configuration Option Configuration File Configuration File
Directory

transformer.log log-level DEBUG transformer.conf %r/etc

Note: If Transformer uses any Transformer Modules, the logging level of each module can be
changed using the log-level configuration option in the corresponding module configuration file.

4.3 DataSource applications

The way that DataSource applications are enabled for maximum logging depends on the software library
used by the DataSource application.

C DataSource Applications

C DataSource applications use the same plain text configuration options as Liberator and Transformer.

The DataSource event log is enabled for maximum logging by setting the

log-level configuration option to Debug in the DataSource configuration file datasource.conf, as shown in

the following table:

Log File Name Configuration Option Configuration File
Name

Configuration File
Directory

event-datasrc.log log-level DEBUG datasource.conf %r/etc

Development environment: enabling maximum logging

13© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Because logs are saved to the %r/var directory by default, there is no need to specify the log file directory.
If DataSource.NET is launched from an IIS web server, it is recommended that you set the name and
directory of the log file using the following configuration options, so that log files are written to a known
location.

Configuration Option Description Example

event-log Defines the name of the log file. event-log MyLogFileName.log

log-dir
Defines the directory of the log
file.

log-dir MyLogFilePath

Java DataSource applications

Setting up logging through configuration

Java-based DataSource applications are configured in the same way as C-based DataSource applications.

For Java DataSource applications that have been built using the Caplin Integration Suite (CIS) you can
configure maximum logging in the same way as described in C DataSource Applications .

For Java DataSource applications that haven't been built using the Caplin Integration Suite, to configure
maximum logging, follow these steps:

1. Create a folder called etc within your application.

2. Create a file called datasource.conf, where you configure the peer that the DataSource application is
connecting too in the same way as for C-based DataSource applications.

3. Set the log-level configuration option to DEBUG (this is the same as FINE):

Log File Name Configuration Option Configuration File
Name

Configuration File
Directory

event-datasrc.log log-level DEBUG datasource.conf %r/etc

4. Create a folder called var within your application.

Once you have started the application, you will see the logs created within the var folder.

For debugging purposes, we recommend using one of the following log levels:

DEBUG (or FINE): used for tracing messages

FINER: used for fairly detailed tracing messages

FINEST: used for the most finely tracing messages

Setting up logging in the application code

There is another way to enable logging from within the application code, by passing the logger in to the
factory that creates an instance of the DataSource object. This is the recommended approach as it allows
you to have full control of how event logging is implemented.

12

Development environment: enabling maximum logging

14© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Here is an example of how to do this:

import java.io.File;
import java.io.IOException;
import java.util.logging.Logger;

import org.xml.sax.SAXException;

import com.caplin.datasource.DataSourceFactory;
import com.caplin.datasrc.DataSource;

public class DataSourceConstruction
{
 public static void main(String[] args) throws IOException, SAXException
 {
 com.caplin.datasource.DataSource newDS =
 DataSourceFactory.createDataSource(
 args, Logger.getAnonymousLogger());
 }
}

This example outputs the logs in the console XML configuration schema with a logging level of INFO. To
change the logging level (say to FINEST), just set it in the logger:

This example outputs to the console all log messages with a logging level of INFO. To change the logging
level just set it in the logger:

logger.setLevel(Level.FINEST);

For more about setting up logging from within the application code, see the DataSource API section of the
Caplin Integration Suite for Java API Documentation.

DataSource.NET applications

Setting up logging through configuration

DataSource.NET applications are configured in the same way as C-based DataSource applications.You
enable the DataSource event log is enabled for maximum logging by setting the log-level configuration

item to DEBUG in the DataSource configuration file datasource.conf as follows:

Log File Name Configuration Option Configuration File
Name

Configuration File
Directory

event-datasrc.log log-level DEBUG datasource.conf %r (within the project)

To specify where the logs will be saved, just specify the log-dir configuration item and point it to the
desired path.

Setting up logging in the application code

Another way of logging in DataSource.Net applications is by implementing the ILogger interface to
receive log messages from the Caplin DataSource API. You can use the ConsoleLogger class that
implements the ILogger interface to output all log messages to the console.

Development environment: enabling maximum logging

15© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Example

public class Demosource
{
 private IDataSource dataSource;
 private ILogger logger;

 public Demosource(string[] args)
 {
 logger = new ConsoleLogger();
 dataSource = new DataSource("demosource.conf", args, logger);

 new MyDataProvider(dataSource);
 }
}

Tip: If you choose to implement your own ILogger make sure you wrap the log files so that the
individual files don't get too big.

4.4 StreamLink

The way that StreamLink applications are enabled for maximum logging depends on the software library
used by the client application.

StreamLink JS

Logging for StreamLink JS is disabled by default, but can be enabled by simply appending the query
string ?debug=<required-logging-level> to the application URL.

For example, the URL of the application will look something like this:

http://myapp.novobank.com:50180

To enable logging and set the logging level set to FINER, append the query string ?debug=finer at the end
of the URL:

http://myapp.novobank.com:50180?debug=finer

The StreamLink JS log opens in a separate Debug browser window (the StreamLink console).

You may find the following log levels useful when debugging connection problems:

FINE is used for tracing messages. It includes the size of the response and update message queues
for messages received from Liberator.

FINER is used for fairly detailed tracing messages. It includes the RTTP messages sent in each
direction between the client application and Liberator.

FINEST is used for the most detailed tracing messages. It includes the HTTP headers of the HTTP
communication with Liberator.

Note: Depending on the volume of data that is sent, low-level logging can severely impact the
performance of the client. For that reason StreamLink logging should be only used for
debugging purposes.

For more about this, see the StreamLink JS API Documentation.

http://www.caplin.com/developer/api/streamlinkjs/latest
http://www.caplin.com/developer/api/streamlinkjs/latest
http://www.caplin.com/developer/api/streamlinkjs/latest
http://www.caplin.com/developer/api/streamlinkjs/latest

Development environment: enabling maximum logging

16© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

StreamLink Java

The Logger interface allows StreamLink Java log messages to be written to a destination of your choice.
To obtain an instance of the interface just call streamLinkInstance.getLogger() on your
StreamLink instance.

You can use caplin.streamlink.Logger to write StreamLink's log messages to some other
destination, such as a window that also contains log messages originating from your application. To do
this, implement a LogListener that receives the StreamLink messages and logs them to the required
destination, as this example shows:

// Set up log listener.

LogListener loglistener = new LogListener() {

@Override
 public void onLog(LogInfo logInfo) {
 System.out.println(logInfo);
 }
};

Once you have implemented the LogListener, you can obtain an instance of Logger and call
addListener() to attach the LogListener to the instance. You can also choose the logging level in
this step:

streamLink.getLogger().addListener(loglistener, LogLevel.FINEST);

This example outputs the log messages to the console. For an example off how to display the log
messages in a window, take a look at the StreamLink swing demo application that comes with the
StreamLink Java kit.

Log levels

The logging level determines how much information is logged, and you may find the following levels useful
when debugging problems:

FINE is used for tracing messages. It includes the size of the response and update message queues
for messages received from Liberator.

FINER is used for fairly detailed tracing messages. It includes the RTTP messages sent in each
direction between the client application and Liberator.

 FINEST is used for the used for the most detailed tracing messages. It includes the HTTP headers of
the HTTP communication with Liberator

For more about this, see the StreamLink Java API documentation.

http://www.caplin.com/developer/api/streamlinkjava/latest
http://www.caplin.com/developer/api/streamlinkjava/latest
http://www.caplin.com/developer/api/streamlinkjava/latest
http://www.caplin.com/developer/api/streamlinkjava/latest

Development environment: enabling maximum logging

17© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

StreamLink.NET

The ILogger interface allows StreamLink.NET log messages to be written to a destination of
your choice. To obtain an instance of the interface just call streamLinkInstance.getLogger()
on your StreamLink instance.

You can use caplin.streamlink.Logger to write StreamLink's log messages to some other
destination, such as a window that also contains log messages originating from your
application. To do this:

1. Implement the ILogListerner interface.

2. Create an instance of the ILogListerner implementation.

3. Attach this instance to an instance of ILogger.

The following code example shows a simple anonymous implementation of this interface:

using Caplin.StreamLink;
using System;
namespace com.caplin.streamlink.examplesnippets.logging
{
 public class LogListenerSnippet
 {
 public LogListenerSnippet(IStreamLink streamLink)
 {
 streamLink.Logger.AddListener(new ExampleLogListener(),
 LogLevel.FINEST);
 }
 class ExampleLogListener : ILogListener
 {
 public void OnLog(ILogInfo logInfo)
 {
 Console.WriteLine(logInfo.Message);
 }
 }
 }
}

Log levels

The logging level determines how much information is logged, and you may find the following levels useful
when debugging problems:

FINE is used for tracing messages. It includes the size of the response and update message queues
for messages received from Liberator.

FINER is used for fairly detailed tracing messages. It includes the RTTP messages sent in each
direction between the client application and Liberator.

 FINEST is used for used for the most detailed tracing messages. It includes the HTTP headers of the
HTTP communication with Liberator

For more about this, see the StreamLink .NET API documentation.

Development environment: enabling maximum logging

18© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

StreamLink iOS

StreamLink iOS does not automatically create log files on the device. The implementation of logging on
iOS devices depends on the requirements of your application, which should take into account ease of
support and the expectations of your application's end users.

To obtain logs from StreamLink iOS, you can use the SLConsoleLogger with the logging level set to the
most detailed level (FINEST). Then run the application under the XCode debugger, and capture the
logging information from the console window.

You may find the following log levels useful for development purposes:

SL_LOG_DEBUG is used for tracing messages.

SL_LOG_FINER is used for fairly detailed tracing messages.

SL_LOG_FINEST is used for used for the most detailed tracing messages.

Note: We strongly recommend that you only use SLConsoleLogger during development and not in a
product deployment.

For more about this, see the StreamLink iOS API documentation.

4.5 KeyMaster

KeyMaster is enabled for maximum logging by default, or by setting the key.generator.level configuration
option to ALL in the XML configuration file web.xml, as shown in the following table:

Log File Configuration Option Configuration
File

Configuration File
Directory

server.log key.generator.level=ALL web.xml %r/WEB-INF

Tip: You may need to enable maximum logging in the configuration file if logging is already enabled,
but the logging level is not set to ALL.

Note: The default logging level is ALL, which means that all events are logged. When KeyMaster is
not being debugged, the recommended logging level is WARNING.

http://www.caplin.com/developer/api/streamlinkios/latest
http://www.caplin.com/developer/api/streamlinkios/latest
http://www.caplin.com/developer/api/streamlinkios/latest
http://www.caplin.com/developer/api/streamlinkios/latest

Production environment: recommendations

19© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

5 Production environment: recommendations

The Caplin Platform can generate very large log files in a production environment. For this reason the
following logging levels and cycle periods are recommended.

Note: All log file configuration settings must be verified before the Caplin Platform system is put into
production. In particular, sufficient disk space must be available for the configured logging level
and logging cycle period.

5.1 Logging level

In a production environment, the recommended logging level for all Caplin Platform products except
KeyMaster is INFO. The recommended logging level for KeyMaster is WARNING. All log files should be
retained for 7 days.

Tip: The recommended logging levels ensure significant problems with Caplin Platform components
are recorded.

5.2 Logging cycle period (packet logs)

Liberator and Transformer packet logs can become quite large if they are not regularly cycled throughout
the day. For this reason it is recommended that packet logs are cycled every 15 to 30 minutes.

Example configuration
add-log
name packet_log
 period 15
 suffix .%u%H%M
end-log

In the example configuration shown above, packets logs are configured to cycle every 15 minutes, creating
a new log file of the form packet-rttpd.%u%H%M.

When specifying the suffix of the packet log, the following substitution characters can be used in the
configuration:

Substitution characters Description

%u The day of the week as an integer (range 1 to 7, Monday being 1).

%H The hour as a decimal number (range 00 to 23).

%M The minutes past the hour.

Production environment: recommendations

20© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Because the log file suffix in this example contains %u, packet logs will be overwritten every 7 days.

Tip: When reporting a problem to Caplin's Issue Management System (Jira), small file sizes also
reduce the time it takes to transfer each log file. See If you need to contact Caplin Support
for contact details.

Tip: Appendix B has tips on how to split large log files.

45

46

The investigation process

21© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

6 The investigation process

When you are investigating an issue, the following structured approach is recommended.

1. Identify the problem.

2. Identify the log files you need to review.

3. Identify the data you need to look at in these log files.

A structured approach will help you to narrow your search area. There will be fewer log messages to read
and the log files will be easier to interpret.

6.1 Identifying the problem

When identifying the problem, try to gather as much relevant information as possible. Typical questions
you can try to answer are:

Did the incident occur at a particular time?

Did an operation at the client application fail?

Is the problem occurring consistently or did it occur only once?

Do you know which system components are affected?

Have any system changes been made recently?

Is the problem affecting a new user?

The actual questions you ask depends on the problem you are trying to solve. The answer to these
questions will help you identify the messages you expect to see in log files, allowing you to compare the
expected system behavior with the actual system behavior.

6.2 Identifying the log files you need to review

Once you have identified the problem, try to identify the Caplin Platform components that may be
contributing to the problem. Typical questions you can ask are:

Is the problem caused by Liberator or Transformer?

Is it a DataSource issue or an issue with the client application (such as Caplin Trader)?

If you can answer these questions, then you can limit the component log files you need to look at.

The investigation process

22© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

When you have identified the Caplin Platform components that may be contributing to the problem, there
are eight categories of log file that you can review:

Log Category Description

Auth module logs (Liberator
only)

Auth module logs record information about the authorization and
authentication of Liberator users.

Event logs

Event logs record ongoing component activity (such as the
component starting or stopping). The more verbose the
configured logging level, the more information you can obtain
from these logs.

HTTP logs (Liberator only)

HTTP access logs record HTTP requests.

HTTP error logs record HTTP requests that cause 'object not
found' errors.

Object logs (Liberator only)
Object logs record request and discard commands for objects,
and whether or not those commands were successful. Object
logs are only created by Liberator.

Packet logs

Packet logs record the messages that are exchanged between
DataSource peers, such as updates, requests, discards, peer
status information, and so on. These logs tell you if a request
sent from one peer was received by another.

Request logs (Liberator only)
Request logs record the RTTP messages sent by client
applications to Liberator. Request logs are only created by
Liberator.

Session logs (Liberator only)
Session logs record information about Liberator sessions and
events, including the session ID allocated to a user. Session
logs are only created by liberator.

Client logs

Client logs record the RTTP messages that are sent between
the client application and Liberator. Client logs can either be
viewed at the client side (see StreamLink) or at the Liberator
server side (see Enabling server-side RTTP logging) .

The messages that can appear in Liberator logs are described in the document Caplin Liberator
Administration Guide.

15

12

The investigation process

23© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

6.3 Identifying the data you need to look at in log files

When you have identified the problem and the components that may be contributing to the problem, try to
identify the data that you need to look at in the log files. In a production environment, a simple packet log
can contain thousands of lines, and you don’t want to look at every line!

For example, if you know that a user was disconnected from the system at a particular time, you could look
in the session logs for messages that might indicate the reason for the disconnection.

Tools like the Linux grep utility can be used to filter the content of log files, reducing the amount of
information you need to review. The following example filters the packet log packet-rttp.log for lines that
contain the text PEERINFO.

Example packet log filter

...bin/logcat packet-rttp.log | grep PEERINFO

Because the Caplin logcat utility must be used to view the content of packet log files, the output of logcat
is piped to grep. The filtered output of this command would only show lines that contain the string
PEERINFO:

Example filter output

2014/08/11-09:05:29.425 +0100: 192.168.50.51 < PEERINFO 1795 DataProviderA1 0 ACTIVE
2014/08/11-09:05:29.425 +0100: 192.168.50.51 > PEERINFO 101 liberator1 0 BROADCAST

For further information about viewing packet logs using the logcat utility, see Appendix B: Packet logs and
logcat .46

Tracing an object request using Liberator log files

24© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

7 Tracing an object request using Liberator log
files

The following diagram shows some of the log files produced by Liberator, and how they can help you to
assess the state of the system when an end-user logs in and the client application requests an object:

Tracing an object request using Liberator log files

Other DataSource applications, such as Transformer, also produce event and packet logs that can help
you to assess the state of the system.

session-rttpd.log

If you know the username of the end-user, you can verify that they successfully logged in by inspecting
the recorded LOGIN messages. This file also records the session id of the logged in user, which you will
need when verifying object requests in other log files.

Tracing an object request using Liberator log files

25© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

http-access-rttpd.log

This file logs URL requests and HTTP status codes.

request-rttpd.log

If you don’t know which objects were requested, you can look in the request log for object requests
associated with the client session id.

Note: Although it is possible to check the request in the packet logs if you know which object was
requested, sometimes it is better to verify the request using the request logs, as you can also
verify that the request came from the correct client by looking at the session id.

event-rttpd.log

When you have identified the requested object, you can look at the event log to assess the state of
Liberator at the time the object was requested.

object.rttpd.log

You can also look at the object log to see if the requested object is mapped, and if it is, that the object
mapping is correct. For example, if the object /FX/EUR is mapped to /EUR/FX, Liberator returns the
object /EUR/FX in response to a client request for /FX/EUR.

packet-rttpd.log

Liberator packet logs record object request messages. In this way you can verify that Liberator received
the object request and forwarded it on to the correct DataSource. You can also look for other messages
that could indicate there was a problem providing the requested data.

Example investigations

26© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

8 Example investigations

The following examples show how log files can be used to asses the state of a Caplin Platform system
when an end-user logs in and the client application requests an object.

8.1 Example 1: Liberator – Integration Adapter

In this example investigation, the Caplin Platform system consists of a Liberator and an Integration
Adapter.

Liberator and Integration Adapter

Log files record the state of the system when components start and stop, and when the client application
requests an object. You can use this information to determine whether or not the system is behaving as
expected.

Starting the components

When an Integration Adapter (or other DataSource application), starts and connects to Liberator, the
Liberator packet log packet-rttpd.log records the PEERINFO messages that are exchanged between
Liberator and the Integration Adapter.

Liberator and Integration Adapter
message exchange

The Liberator packet log is a binary file and you must use the logcat utility to view the content of the log
file. To filter the packet log for PEERINFO messages, pipe the output of logcat to grep.

Example investigations

27© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Using logcat and grep to filter the packet log

The PEERINFO messages record the date and time the connection request from the broadcast
DataSource (DataProviderA1) was accepted by Liberator (liberator1):

Filtered PEERINFO messages

Date-Time
+Zone

IP Origin/
Destination

In (<)/
Out (>)

Message
Type

Peer
ID

Peer Label Field
Not
used

Peer Type

2014/08/11-
09:05:29.425
+0100

192.168.5
0.51

< PEERINFO 1795
DataProviderA
1

0 ACTIVE

2014/08/11-
09:05:29.425
+0100

192.168.5
0.51

> PEERINFO 101 Liberator1 0 BROADCAST

The StreamLink JS and server-side RTTP logs also record information that shows the active DataSource
connecting to Liberator.

Typical StreamLink JS log

2014/08/11-12:13:18.197 +0100 - FINER : < 7_ 1795 DataProviderA1 DataProviderA1+IS+UP
2014/08/11-12:13:18.198 +0100 - FINER : < 83
 DataProviderAPricingSvc1 DataProviderAPricingSvc1+IS+OK

In this case the StreamLink JS logging level is set to FINER. The amount of information that is displayed in
the log is determined by the log level that you set (see StreamLink JS for further information about
enabling the StreamLink JS log).

Typical server-side RTTP log

7_ 1795 DataProviderA1 DataProviderA1+IS+UP
83 DataProviderAPricingSvc1 DataProviderAPricingSvc1+IS+OK

The numbers at the beginning of each line are RTTP codes that identify the type of message. In this case
7_ identifies a 'DataSource up' message, and 83 identifies a 'Data Service OK' message. To enable
server-side RTTP logging, see Enabling server-side RTTP logging .

15

12

Example investigations

28© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Logging in

When an end-user logs in from a client application such as Caplin Trader, Liberator allocates a session ID
to the user session. You may need this information later because it is the session ID and not the username
that is recorded in other log files, such as the event and object logs, when an object is requested.

Client application and Liberator message exchange

The session ID is assigned to the client as soon as it establishes a connection with the Liberator (before it
has retrieved the credentials and logged in. The session ID allocated to a user session is recorded in
LOGIN messages in the Liberator session log session-rttpd.log. The session log is a text file, and you can
use grep to filter the LOGIN messages.

Using grep to filter the session log

Example investigations

29© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The LOGIN message shows that username admin is allocated the session ID 0AIjsrv-
PBfysTcQG74pCD, and that the login was successful (LOGIN_OK):

Filtered LOGIN message

Date-Time
+Zone

IP
Address

Connection-
Type

Msg-Type Username App-
ID

Session-
ID

Reason

2014/08/11-
12:13:18.056
+0100

192.168.
50.57

8 LOGIN_OK admin SLJS
0AIjsrv-
PBfysTcQ
G74pCD

LOGIN_OK

Session logs also record the date and time that the client application disconnects, and if the session times
out.

The SL4B and server-side RTTP logs also record information when a user logs in.

Typical StreamLink JS log

2014/08/11-12:13:17.879 +0100 - INFO : Trying next connection:
 ws://supportlinux3:18082

2014/08/11-12:13:17.879 +0100 - INFO : Using Connection Type: WebSocketConnection

2014/08/11-12:13:17.880 +0100 - INFO : Connection state changed to: CONNECTING
 ws://supportlinux3:18082

2014/08/11-12:13:18.087 +0100 - FINER : < 01 0AIjsrv-PBfysTcQG74pCD host=unknown
 version=2.1 server=unknown
 time=1407755597 timezone=0000

2014/08/11-12:13:18.092 +0100 - INFO : Connection state changed to: CONNECTED
 ws://supportlinux3:18082

2014/08/11-12:13:18.093 +0100 - INFO : Connection state changed to:
 RETRIEVINGCREDENTIALS ws://supportlinux3:18082

2014/08/11-12:13:18.094 +0100 - FINE : Received credentials:
 Credentials [username=admin, password=admin]

2014/08/11-12:13:18.094 +0100 - INFO : Connection state changed to:
 CREDENTIALSRETRIEVED ws://supportlinux3:18082

2014/08/11-12:13:18.097 +0100 - FINER : > 0AIjsrv-PBfysTcQG74pCD+LOGIN+0+SLJS/+RTTP/
2.1+admin+admin+HttpRequestLineLength%3D%2CHttpBodyLength%3D%2CMergedCommands
%3D%2CHeartbeatInterval%3D10000

2014/08/11-12:13:18.186 +0100 - FINER : < 1b LOGIN+OK HttpRequestLineLength=960,
 HttpBodyLength=65536…

2014/08/11-12:13:18.188 +0100 - INFO : Connection state changed to: LOGGEDIN
 ws://supportlinux3:18082

Some of the log lines contain RTTP codes:

01, which identifies a ‘Connection greeting’ message. This is the message where the Liberator sends
the session ID to the client.

1b, which identifies a ‘Login ok’ message.

Example investigations

30© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Typical Liberator session log

2014/08/11-12:13:17.940 +0100: 192.168.50.57 8 OPEN 0AIjsrv-PBfysTcQG74pCD

2014/08/11-12:13:18.056 +0100: 192.168.50.57 8 LOGIN_OK admin SLJS
 0AIjsrv-PBfysTcQG74pCD LOGIN_OK

Typical server-side RTTP log

01 0AIjsrv-PBfysTcQG74pCD host=unknown version=2.1 server=unknown time=1407755597
 timezone=0000

0AIjsrv-PBfysTcQG74pCD LOGIN 0 SLJS/ RTTP/2.1 admin admin HttpRequestLineLength=,
 HttpBodyLength=,MergedCommands=,HeartbeatInterval=10000

1b LOGIN+OK HttpRequestLineLength=960,HttpBodyLength=65536

Object requests

When a client application requests an object (such as an instrument) from Liberator, the messages that
are exchanged between Liberator and the Integration Adapter depend on whether the Adapter that
supplies the object is a broadcast DataSource or an active DataSource application.

Broadcast DataSource application message exchange

A broadcast DataSource application does not wait for an object request, but sends the objects it has to all
connected DataSource applications as soon as a connection is established. When a broadcast
DataSource application receives an update to an object, the update is also sent to all connected
DataSource applications.

The objects that Liberator receives are recorded as DATAUPDATE messages in the Liberator packet log

packet-rttpd.log. To filter the packet log for DATAUPDATE messages, you can pipe the output of logcat to
grep.

Filtered DATAUPDATE message

../bin/logcat -l packet-rttpd.log | grep DATAUPDATE

Tip: We recommend using the -l option of the logcat command so that all the message flags are
displayed.

DATAUPDATE messages record the date and time the object was received, and the subject of the received
object.

Example investigations

31© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Typical DATAUPDATE message

Date-Time
+Zone

IP Origin In (<) Msg-Type Peer-
Label

SeqNum Flag

2014/08/11-
14:59:14.372
+0100

192.168.50.51 < DATAUPDATE2
DataPr
ovider
A1

0

F_IMAGE|
F_CREATEPARENT
|
F_CREATEOBJECT
(4144

Subject Type Num of Fields
Field number
=Value

Field number
=Value

/RECORD1 222 2 -10022=Subscription-1
-10001=Mon Aug 11
14:59:23 BST 2014

In this case the subject of the received object is /RECORD1, and the object has two fields

When a client application requests an object supplied by a broadcast DataSource application, Liberator
can send the object to the client without first requesting the object from the DataSource application. This is
because Liberator caches all objects supplied by the broadcast DataSource application.

Message exchange between client application, Liberator,
and a broadcast DataSource application (Integration Adapter)

In the example shown above, the client application requests the object /RECORD1, which Liberator
already has in its cache.

Object request and update messages, to and from the client application, are recorded in the StreamLink
JS and server-side RTTP logs

Example investigations

32© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Typical StreamLink Java log

2014/08/11-15:23:23.065 +0100 - INFO : StreamLink subscribe /RECORD1 called.

2014/08/11-15:23:23.066 +0100 - FINER : > 0Km7En22D1-8W65nbpgq7N+REQUEST+/RECORD1

2014/08/11-15:23:23.181 +0100 - FINER : < 3U0001 /RECORD1 1=Subscription-1
 7=Mon+Aug+11+14:59:23+BST+2014 B=211
 C=DataProviderAPricingSvc1

In this example the text 0Km7En22D1-8W65nbpgq7N is the session ID, and 3U0001 is a code that
identifies the message type to Caplin Support:

In 3U-0001 consists of:

3U - the RTTP code

0001 - the object number

Typical server-side RTTP log

0Km7En22D1-8W65nbpgq7N REQUEST /RECORD1

data: 3U0001 /RECORD1 1=Subscription-1 7=Mon+Aug+11+14:59:23+BST+2014 B=211
 C=DataProviderAPricingSvc1

Active DataSource application message exchange

An active DataSource application accepts requests for an object, and only sends an object or update to an
object to DataSource peers that request the object.

Message exchange between client application, Liberator, and an active
DataSource (Integration Adapter)

In the example shown above, the client application requests the object /RECORD2. Because the
DataSource application that supplies this object is an active DataSource, Liberator must request the object
from the DataSource application before it can send it on to the client.

Several log files record the messages associated with this object request:

Liberator side: event-rttpd.log, request-rttpd.log, object-rttpd.log, packet-rttpd.log

Example investigations

33© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

DataSource side: datasrc.log, packet-datasrc.log

Packet logs are the best logs to review if you want to trace the object request, as they contain all the
messages you need to look at (except the session ID):

Using logcat and grep to trace an object request in the packet logs

The filtered output of the log files above confirm that the requested object was received by Liberator:

1. Liberator requests the object /RECORD2 from the active DataSource

(SUBJREQ message in packet-rttpd.log).

2. The DataSource receives the request and sends the requested object to Liberator
(SUBJREQ and DATAUPDATE messages in packet-datasrc.log).

3. Liberator receives the requested object /RECORD2 from the active DataSource

(DATAUPDATE message in packet-rttpd.log).

Event, object, and request logs

If the event log is configured to record DEBUG messages, the request for the object is recorded in a
REQUEST message:

Typical filtered output from the event log

2014/08/11-16:10:37.200 +0100: DEBUG: 0hGoeyrnCY4knBnFPJjSaB REQUEST /RECORD2
 (/RECORD2) [0x7f2b3d2f0bf0]

Object and request logs also record object requests in REQUEST messages:

Example investigations

34© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Typical filtered output from the object log

2014/08/11-16:10:37.200 +0100: 0hGoeyrnCY4knBnFPJjSaB REQUEST /RECORD2 (/RECORD2)

Typical filtered output from the request log

2014/08/11-16:10:37.122 +0100: 192.168.50.57 admin 0hGoeyrnCY4knBnFPJjSaB
 "0hGoeyrnCY4knBnFPJjSaB REQUEST /RECORD2"

Note that the event, object, and request logs record the session ID of the client (
0hGoeyrnCY4knBnFPJjSaB). The request log also records the username (admin). Packet logs do not
record the session ID.

StreamLink Java and server-side RTTP logs

The StreamLink Java and RTTP server-side logs also record information about object requests from the
client application.

Typical StreamLink Java log

2014/08/11-15:44:25.785 +0100 - INFO : StreamLink subscribe /RECORD2 called.
2014/08/11-16:10:37.023 +0100 - FINER : > 0hGoeyrnCY4knBnFPJjSaB+REQUEST+/RECORD2
2014/08/11-16:10:37.155 +0100 - FINER : < 380002 /RECORD2
2014/08/11-16:10:37.189 +0100 - FINER : < 6c020002 B=211 C=DataProviderAPricingSvc1
2014/08/11-16:10:37.191 +0100 - FINER : < 6c040002 1=Subscription-2
 7=Mon+Aug+11+15:44:36+BST+2014

In this example the text 0hGoeyrnCY4knBnFPJjSaB is the session ID, and 380002 and
6c020002/6c040002 are codes that identify the message type to Caplin Support.

38-0002 consists of:

38 – RTTP code that corresponds to a ‘Blank Response’ message, and means that the object is
being requested from an active DataSource application

0002 – the object id for /RECORD2

6c-02-0002 consists of:

6c – RTTP code that corresponds to a ‘Record type 1 update’

02 – sequence number

0002 – the object id for /RECORD2

Typical server-side RTTP log

0hGoeyrnCY4knBnFPJjSaB REQUEST /RECORD2
data: 6c020002 B=211 C=DataProviderAPricingSvc1
data: 6c040002 1=Subscription-2 7=Mon+Aug+11+15:44:36+BST+2014

Example investigations

35© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Stopping the Integration Adapter

If you stop an Integration Adapter (DataSource application), it sends a DOWN message to Liberator that is

recorded in the Liberator packet log (packet-rttpd.log).

Integration Adapter and Liberator
message exchange

The Liberator packet log is a binary file and you must use the logcat utility to view the content of the log
file. To filter the packet log for DOWN messages, pipe the output of logcat to grep.

The DOWN message records the peer ID of the DataSource, and the date and time that the DataSource
stopped:

Filtered DOWN message

Date-Time+Zone IP Address In Msg-Type Peer-Label

2014/08/11-20:17:20.070 +0100
192.168.50.
56

< DOWN
DataProvide
rA1

A NOTIFY message is recorded in the Liberator event log when you stop an Integration Adapter. The
event log is a text file, and you can use grep to filter NOTIFY messages.

Example investigations

36© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The StreamLink JS and server-side RTTP logs also record information when a DataSource stops.

Typical StreamLink JS log

2014/08/11-20:17:20.970 +0100 - FINER : < 84 DataProviderAPricingSvc1
 DataProviderAPricingSvc1+IS+DOWN
2014/08/11-20:17:20.970 +0100 - FINER : < 80 1795
 DataProviderA1 DataProviderA1+IS+DOWN

Typical server-side RTTP log

data: 84 DataProviderAPricingSvc1 DataProviderAPricingSvc1+IS+DOWN
data: 80 1795 DataProviderA1 DataProviderA1+IS+DOWN

Example investigations

37© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

8.2 Example 2: Liberator – Transformer – Integration Adapter

In this example investigation, a Transformer is inserted between Liberator and the Integration Adapter in
the Caplin Platform system.

The messages that are recorded when the end-user logs in, and when the Integration Adapter starts and
stops, are similar to the messages described in the previous example (Example 1: Liberator – Integration
Adapter) and will not be described again, but the object request messages are different.

Object requests

In this Caplin Platform system, Transformer receives object requests from Liberator and forwards them on
to the Integration Adapter (DataSource application), and also receives objects and object updates from the

Integration Adapter and forwards them on to Liberator.

Message exchange sequence

In this case the client requests the object /D/2, and the Integration Adapter that supplies this object is an
active DataSource.

26

Example investigations

38© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The packet logs contain all the messages you need to look at in order to trace the object request. The
following diagram shows the logs you can look at to verify steps 1 to 3 of the object request: the request
from the client application to the Integration Adapter. The circled numbers in this diagram correspond to
the process steps in the message exchange sequence diagram.

Verifying steps 1 to 3 of the object request

37

Example investigations

39© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The next diagram shows the logs you can look at to verify steps 3 and 4 of the object request: the request
by Transformer and the response from the Integration Adapter.

Verifying steps 3 and 4 of the object request

Example investigations

40© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The final diagram in this example shows the logs you can look at to verify steps 4 and 5 of the object
request: the receipt of the requested object at Transformer and Liberator.

Verifying steps 4 and 5 of the object request

To verify step 6, the receipt of the requested object at the client, you need to review the StreamLink JS or
server-side RTTP logs (as shown in Object requests of Example 1).30

Example investigations

41© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

8.3 Example 3: A 'Data Unavailable' message is displayed

This example investigation simulates the following situation:

An end-user logs in to a Caplin Trader client application.

The client application requests the container object /E/CONTAINER.

A Data unavailable error message is displayed on the screen of the client application.

The displayed error message

Following the structured approach described in The investigation process , you can gather information
that will help you to narrow the search area.

Identifying the problem

The end-user user1@caplin.com successfully logged in.

An error message is displayed when the container object /E/CONTAINER is requested.

The container has five records of the form /E/RECORDx, where x is an integer (0-4).

Identifying the log files you need to review

In this case the end-user logged in to Caplin Trader, and the Caplin Platform system consists of a
Liberator, Transformer, and an Integration Adapter that is an active DataSource.

For this system, the log files to review are the Liberator logs, the Transformer logs, and the
Integration Adapter logs.

Identifying the data you need to look at in the log files

The username of the logged in end-user is user1@caplin.com.

The requested container object is /E/CONTAINER.

The container /E/CONTAINER has five records: /E/RECORD0 ... /E/RECORD4.

21

Example investigations

42© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The following diagram shows the expected sequence of messages when a container like this is requested.
When you review the log files, you can compare the expected messages with the actual messages that
were logged.

Expected sequence of messages

Several log files record messages associated with this container object request:

Liberator side: event-rttpd.log, session-rttpd.log, request-rttpd.log, packet-rttpd.log

Transformer side: transformer.log, packet-transformer.log

DataSource (Integration Adapter) side: datasrc.log, packet-datasrc.log

Example investigations

43© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

A review of the log files reveals the actual messages recorded (timestamps have been removed for
clarity):

The packet-transformer.log shows that Transformer received the request for the container
/E/CONTAINER, as recorded in the SUBJREQ message, but returned a NODATA message to Liberator in
response to this request. A NODATA message means that the requested object does not exist (see the
Caplin Liberator Administration Guide). The reason for this could be:

The Integration Adapter is down. Look at the Transformer packet log for PEERINFO messages that
show the DataSource started. If the DataSource is down, try starting it.

Incorrect configuration. Review the Transformer and Integration Adapter configuration files for errors
in the configuration, and correct as necessary.

Example investigations

44© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

If the cause of the error is still not found, you can review activity in the component event logs. Remember
that the event log only records detailed information if the logging level is set for maximum logging
(see Development environment: enabling maximum logging).

In a production environment you may find issues that are more complicated than the situation described in
this simple example, but the investigation process is the same. The more you know about your system, the
easier it is to diagnose any problems that arise.

11

If you need to contact Caplin Support

45© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

9 If you need to contact Caplin Support

If you have a problem with a Caplin Platform system that you cannot resolve, and you have a support
contract with Caplin Systems, you can contact Caplin Support for assistance.

Before you do, gather as much information about the problem as possible. In particular:

How does the problem occur?

Can you replicate it?

What was the time of the incident?

Have any system changes been made recently?

Take copies of all components logs.

If any errors are displayed, take screenshots.

You can contact Caplin Support in the following ways. Please supply the log files that you captured,
together with any other information that will help Caplin Support to quickly diagnose and correct the
problem.

Log the problem in Caplin's Issue Management System (Jira): https://jira.caplin.com

Email Caplin Support: support@caplin.com

Telephone Caplin Support: +44 (0) 20 7826 9601

https://jira.caplin.com
mailto:support@caplin.com

Appendix A: Packet logs and logcat

46© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

10 Appendix A: Packet logs and logcat

Most Caplin Platform component logs are simple text files that can be viewed using a suitable text display
utility or text editor, such as the Linux commands cat, more, and vim.

Packet logs have a binary format and must be viewed using Caplin's logcat utility. logcat is used in the
same way as the standard Linux cat command, and is located in the bin directory of the Liberator and
Transformer installation.

This appendix provides four tips that may help you when you review or transfer packet logs. If you need
more information about the logcat utility, please refer to the Liberator Administration Guide, which
contains a detailed description of logcat options (Section Viewing log files: the Logcat utility). You can
also run logcat --help in the command line to view the available logcat options.

10.1 Displaying fields and flags by name

When you use logcat to display messages that contain fields or flags, logcat normally displays the fields
and flags by number. For example, the following command pipes the output of logcat to grep, which filters
the packet log for DATAUPDATE messages.

Filter packet log for DATAUPDATE messages

../bin/logcat packet-rttpd.log | grep DATAUPDATE

In this example the DATAUPDATE message has one flag (4144) and two fields (field numbers 4 and 5).

Example DATAUPDATE message showing fields and flags by number

Date-Time
+Zone

IP Origin In (<) Msg-Type Peer-ID SeqNum Flag

2014/08/21-
12:47:20.712
+0000

127.0.0.1 < DATAUPDATE2 10 1 4144

Subject Type
Num of
Fields

Field number
=Value

Field number
=Value

/F/0 222 2 4=64.91 5=65.14

To display fields and flags by name rather than by number, add the following arguments to the logcat
command.

-F Display fields by name.

-f The file that maps field names to numbers. The default value is fields.conf in the current directory.

-l Display flags by name.

Appendix A: Packet logs and logcat

47© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

The following example uses these arguments to filter the same packet log for DATAUPDATE messages.

Filter packet log with arguments

../bin/logcat -F -f ../../CommonConfig/fields-caplintrader.conf -l packet-rttpd.log
| grep DATAUPDATE

Fields and flags are now displayed by name and not by number.

Example DATAUPDATE message showing fields and flags by name

Date-Time
+Zone

IP Origin In (<) Msg-Type Peer-ID SeqNum Flag

2014/08/21-
12:47:20.712
+0000

127.0.0.1 < DATAUPDATE2 10 1

F_IMAGE|
F_CREATEPARENT|
F_CREATEOBJECT
(4144)

Subject Type
Num of
Fields

Field name
=Value

Field name
=Value

/F/0 222 2 BestBid=64.91 BestAsk=65.14

In this example the flag indicates that the packet is an image and not an update. For a description of each
flag that a DataSource can send, see the DataSource API reference documentation.

10.2 Redirecting logcat output to a text file

The output of Caplin's logcat utility is normally displayed on the screen, but you can redirect the output to
a text file that can be viewed later using a text editor. The following example runs logcat on the packet log
packet-rttpd.log, and redirects the output to the text file packet-rttpd.txt.

Example command

logcat packet-rttpd.log > packet-rttpd.txt

Message displayed on the screen

Logcat: Log Type 'packet' Version 4 created by 'rttpd' in timezone 'Europe/London

10.3 Inspecting real time packet logs

The tail command can be used with logcat to display the last part of a packet log on the screen. The
following example displays the last part of the packet log packet-rttpd.log in real time (as the log is being
created).

Example command

 tail -f packet-rttpd.log | ../bin/logcat

The tail argument -f specifies that data is appended to the output as the log file grows in size (as more
data is logged).

Appendix A: Packet logs and logcat

48© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Typical information displayed on the screen

2014/08/21-09:21:17.375 +0100: 127.0.0.1 < DATAUPDATE2 1 632 48
/Examples/Records/Stocks/JAVAD 222 4 10441=21.0321 10005=09:21:17 13010=1302769277374
10436=20.9921
2014/08/21-09:21:17.474 +0100: 127.0.0.1 < DATAUPDATE2 1 633
8240 /Examples/Broadcast/Stocks/GOOG 222 6 10005=09:21:17
10056=-0.3753 10011=0.5721 13010=1302769277474 10032=5219000 10006=723.9571
2014/08/21-09:21:17.494 +0100: 127.0.0.1 < DATAUPDATE2 1 634
8240 /Examples/Broadcast/FX/ZAR 222 4 10441=6.7488
10005=09:21:17 13010=1302769277494 10436=6.7388

10.4 Splitting packet logs

The Linux split command can be used to split a packet log into multiple files of a smaller size. This can be
useful if you want to review a large packet log, or if you need to transfer a packet log to Caplin's Issue
Management System (Jira), which limits the size of file you can transfer. The following example splits the
text version of the packet log packet-rttp.txt (see Redirecting the logcat output to a text file), but you
can also split the binary version of a packet log.

Example command

split -b 10m packet-rttp.txt packet_

This example splits the packet log packet-rttp.txt into separate files, each 10Mb in size and named

packet_aa.txt, packet_bb.txt ... (and so on).

Note: The split command can produce a lot of files if you are not careful with the size parameter.

47

Glossary of terms and acronyms

49© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

11 Glossary of terms and acronyms

This section contains a glossary of terms, abbreviations, and acronyms relating to the management and
interpretation of Caplin Platform component log files.

Term Definition

Active DataSource A DataSource application that accepts subscriptions requests for
an object, and only sends an object or update to the object to the
DataSource peers that requested it.

API Application Programming Interface

App An application that runs in a web browser or on a mobile device.

Broadcast DataSource A DataSource application that does not wait for its DataSource
peers to request an object, but sends the objects it has to all peers
that connect to it. When the broadcast DataSource receives an
update to an object, it sends the update to all connected peers.

Caplin Director A complete user administration system for the Caplin Platform.

Caplin Integration Suite (CIS) A set of APIs and tools for creating adapters that integrate the
Caplin Platform with external systems.
Also see Integration Adapter.

Caplin Integration Suite for Java
(CIS for Java)

The Java edition of the Caplin Integration Suite.

Caplin KeyMaster A component that integrates the Caplin Platform with any web-
based authentication system. It generates a secure encrypted token
that enables Caplin Liberator to identify authenticated users, and
is generally used in conjunction with a single sign-on system.

Caplin Management Console
(CMC)

A Java application that communicates with the Caplin Platform
and Integration Adapters via JMX, and provides a GUI for
monitoring and controlling these components.

Caplin Liberator A financial internet hub that delivers data and messages in real time
to and from subscribers over any network.

Caplin Platform An integrated suite of software that supports the services and
distribution capabilities needed for web trading. It consists of Caplin
Liberator, Caplin Transformer, Caplin KeyMaster, Caplin
Director, and Caplin Management Console.

Caplin Platform System A single-dealer platform that is built using the Caplin Platform.

Caplin Trader A complete development suite for creating HTML5 trading apps.
It includes BladeRunner, Verifier, the Caplin HTML5 Libraries, and
a selection of blades, Bladesets and Motifs as required.

Caplin Trader application A client application that has been built using Caplin Trader.

Caplin Transformer An event-driven, real-time data transformation engine optimised for
web trading services. These services are implemented in
Transformer Modules.

cat A Linux utility that can be used to display text from a file.

C DataSource An implementation of the DataSource API, and underlying code
library, for writing DataSource applications in the C programming
language.

Client In this document, client is short for client application.

Glossary of terms and acronyms

50© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Term Definition

Client application In the context of the Caplin Platform, a client application is any
application that uses the StreamLink API to communicate with
Caplin Liberator.

Container A data type supported by the Caplin Platform that represents a list
of items.

DataSource DataSource is the messaging infrastructure used by the Caplin
Platform and Integration Adapters.
In some older documents DataSource is also used as a synonym
(but non-preferred term) for DataSource application.

DataSource API An API that allows server applications (including Integration
Adapters) to communicate with the Caplin Platform.

DataSource application An application that uses the DataSource API.
Caplin Liberator, Caplin Transformer, and Integration Adapters
are all DataSource applications.

DataSource.NET The implementation of the DataSource API and underlying code
library for writing DataSource applications in the .NET
programming language.

DataSource peer A DataSource application that another DataSource application is
configured to communicate with.

end-user A person who logs in to, and interacts with, a client application.

grep A Linux utility that can be used to display lines in a text file that
match a pattern.

Integration Adapter A server application that allows an external system to communicate
with the Caplin Platform. An Integration Adapter is a DataSource
application and is created using the Caplin Integration Suite.

Java DataSource The implementation (in the Caplin Integration Suite) of the
DataSource API, and underlying code library, for writing
DataSource applications in the Java programming language.

Liberator In this document, Liberator is short for Caplin Liberator.

log In this document, log is short for log file. To log something means
to record it in a log file.

logcat A Caplin utility that is used to display the content of a packet log.

log file Log files record error notifications, and the events that occur when
a Caplin Platform system is up and running (such as components
starting and stopping). Log files also record conversations between
DataSource peers, and between the client application and
Liberator.

log level The log level determines the severity of errors and events that are
recorded in a log file. For some log files there is only one log level
that cannot be changed, while for other log files the log level can be
configured to be one of several permitted log levels. The log level is
sometimes referred to as the logging level.

more A Linux utility that can be used to view a text file, one screen page
at a time.

Glossary of terms and acronyms

51© Caplin Systems Ltd. 2011 – 2014

How To Manage And Interpret Log Files

Caplin Platform 6.2

Term Definition

RTTP Real Time Text Protocol

Caplin's protocol for streaming real-time financial data from Caplin
Liberator servers to client applications, and for transmitting trade
messages and other messages between clients and Liberator in
both directions.

StreamLink The library underlying the StreamLink API.

StreamLink API An API that allows a client application to communicate with a
Caplin Liberator. There are StreamLink APIs for various
technologies; for example, Java, JavaScript, .NET and Silverlight
applications, and Objective-C running on iOS.

StreamLink Java The StreamLink API for Java.

StreamLink JS The StreamLink API for JavaScript. In Caplin Platform 6 and
Caplin Trader 3 it replaces StreamLink for Browsers.

StreamLink.NET The StreamLink API for .NET.

SL4B Abbreviation for StreamLink 4 (for) Browsers.

Transformer In this document, Transformer is short for Caplin Transformer.

Transformer Module A software module in Caplin Transformer that implements a
service. For example, the Refiner module provides a Container
filtering and sorting service.

user In this document, user is short for end-user.

vim A Linux utility that can be used to edit a text file.

© Caplin Systems Ltd. 2011 – 2014

Contact Us

Caplin Systems Ltd

www.caplin.com

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

The information contained in this publication is subject
to UK, US and international copyright laws and treaties
and all rights are reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means without the
written authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications.
All trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not permitted
to use any Mark without the prior written consent of
Caplin or the owner of that Mark.

This publication is provided "as is" without warranty of
any kind, either express or implied, including, but not
limited to, warranties of merchantability, fitness for a
particular purpose, or non-infringement.

This publication could include technical inaccuracies or
typographical errors and is subject to change without
notice. Changes are periodically added to the
information herein; these changes will be incorporated
in new editions of this publication. Caplin Systems
Limited may make improvements and/or changes in
the product(s) and/or the program(s) described in this
publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for the
content of such sites.

Caplin Platform 6.2: How To Manage And Interpret Log Files, October 2014, Release 1

Caplin Systems, Inc.

7 World Trade Center

46th Floor

New York, NY 10007

Telephone: +1 (212) 266 0198

Caplin Systems (Singapore) Pte Ltd.

Level 39, MBFC Tower 2

10 Marina Boulevard

Singapore 018983

Telephone: +65 6818 6290

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Acknowledgments

	The purpose of log files
	Logging levels
	Logging cycle periods
	Text and binary log files
	Configuration substitution characters

	Default log file settings
	Liberator
	Transformer
	DataSource applications
	C DataSource applications
	Java DataSource applications
	DataSource.NET applications

	StreamLink
	StreamLink JS / StreamLink.NET

	KeyMaster

	Development environment: enabling maximum logging
	Liberator
	Changing the logging level of event and auth module logs
	Enabling server-side RTTP logging

	Transformer
	DataSource applications
	C DataSource Applications
	Java DataSource applications
	DataSource.NET applications

	StreamLink
	StreamLink JS
	StreamLink Java
	StreamLink.NET
	StreamLink iOS

	KeyMaster

	Production environment: recommendations
	Logging level
	Logging cycle period (packet logs)

	The investigation process
	Identifying the problem
	Identifying the log files you need to review
	Identifying the data you need to look at in log files

	Tracing an object request using Liberator log files
	Example investigations
	Example 1: Liberator – Integration Adapter
	Starting the components
	Logging in
	Object requests
	Broadcast DataSource application message exchange
	Active DataSource application message exchange

	Stopping the Integration Adapter

	Example 2: Liberator – Transformer – Integration Adapter
	Object requests

	Example 3: A 'Data Unavailable' message is displayed

	If you need to contact Caplin Support
	Appendix A: Packet logs and logcat
	Displaying fields and flags by name
	Redirecting logcat output to a text file
	Inspecting real time packet logs
	Splitting packet logs

	Glossary of terms and acronyms

