
Administration Guide

December 2009

C O N F I D E N T I A L

KeyMaster 5.0

i

Administration Guide

© Caplin Systems Ltd. 2007 – 2009

Contents

CONFIDENTIAL

KeyMaster 5.0

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 2About Caplin document formats

.. 2Who should read this document1.2

.. 2Related documents1.3

.. 3Typographical conventions1.4

.. 4Feedback1.5

.. 4Acknowledgments1.6

.. 4Open Source Software1.7

.. 5Overview2

.. 6Technical assumptions and restrictions3

.. 7Installing KeyMaster4

.. 7Important note on security of installation4.1

.. 7Prerequisites4.2

.. 7Installing on Linux or Sun Solaris4.3

.. 8Installing on a Windows platform4.4

.. 9Installed Files4.5

.. 9Generating the required keys4.6

.. 12Deploying KeyMaster5

.. 12Deployment on a Tomcat server5.1

.. 13Deployment on a JBoss server5.2

.. 14Deployment on a BEA WebLogic server5.3

.. 14Deployment on WebLogic 9.1

.. 16Deployment on WebLogic 8.1

.. 16Modifying the web.xml configuration file5.4

.. 19Changing KeyMaster's URL

.. 22Testing KeyMaster with the application server5.5

.. 23Testing the XHRKeymaster servlet

.. 24Setting up Liberator to work with KeyMaster6

.. 24Making the public key file available to Liberator6.1

.. 24Modifying the Liberator configuration file6.2

.. 27Modifying the users.xml authorization file for XMLauth6.3

.. 28Modifying the cfgauth.conf authorization file6.4

ii

Administration Guide

© Caplin Systems Ltd. 2007 – 2009

Contents

CONFIDENTIAL

KeyMaster 5.0

.. 29Configuring a Liberator that uses javaauth authentication6.5

.. 30Testing Java-based KeyMaster with Liberator7

.. 30Configuring the test files7.1

.. 32Launching the test page7.2

.. 35Testing KeyMaster.NET with Liberator8

.. 36Making KeyMaster production ready9

.. 37Integrating KeyMaster with a hardware Key Store10

.. 37Key Store prerequisites and assumptions10.1

.. 38Generating keys using OpenSSL10.2

.. 39Generating a private key

.. 39Generating the public key

.. 39Generating the certificate request

.. 39Obtaining a signed certificate

.. 40Converting the private key to DER format

.. 40Importing the private key file and certificate into the Key Store10.3

.. 42Verifying the key import operation10.4

.. 43Installing the required libraries10.5

.. 43Modifying the web.xml file for Key Store access10.6

.. 48Testing KeyMaster works with the Key Store10.7

.. 48Configuring Liberator to use a new public key10.8

.. 49Testing Liberator works with the new public key10.9

.. 49Tidying up10.10

.. 50Customizing KeyMaster11

.. 51Troubleshooting12

.. 51Synchronizing the servers12.1

.. 51Liberator log file messages12.2

.. 54More about configuring Keymaster13

.. 54Configuration in web.xml13.1

.. 54Adding the user name to the user credentials token13.2

.. 55Protocol and domain compatibility13.3

.. 56Configuration reference14

.. 56keygen.props configuration reference14.1

.. 58keyimporter.props configuration reference14.2

.. 60web.xml configuration reference14.3

iii

Administration Guide

© Caplin Systems Ltd. 2007 – 2009

Contents

CONFIDENTIAL

KeyMaster 5.0

.. 62<description>

.. 62<display-name>

.. 63<init-param>

.. 63<param-name>

.. 64<param-value>

.. 64<servlet>

.. 65<servlet-class>

.. 65<servlet-mapping>

.. 66<servlet-name>

.. 66<url-pattern>

.. 67<web-app>

.. 68web.xml parameters

.. 83Glossary of Terms and Acronyms15

.. 86Index

Preface

1© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

1 Preface

1.1 What this document contains

This document describes how to configure and operate the Caplin Xaqua KeyMaster product,
version 5.0, to provide a secure and reliable user authentication service.

If you are deploying the Standard Java-based KeyMaster, read the following sections:

– Installing KeyMaster

– Deploying KeyMaster

– Setting up Liberator to work with KeyMaster

– Testing Java-based KeyMaster with Liberator

– Making KeyMaster production ready

If you are deploying Java-based KeyMaster and intend to store private keys in a dedicated secure
hardware module (a “Key Store”), follow the instructions in the section Important note on security of
installation .

You will also find the following sections useful:

– Customizing KeyMaster

– Troubleshooting

– More about configuring KeyMaster

– Configuration reference

If you are deploying a KeyMaster Signature Generator that you have implemented using
KeyMaster.NET, read the following sections:

– Setting up Liberator to work with KeyMaster

– Testing KeyMaster.NET with Liberator

– Making KeyMaster production ready

– Troubleshooting (some sections).

– Protocol and domain compatibility

7

12

24

30

36

7

50

51

54

56

24

35

36

51

55

Preface

2© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

About Caplin document formats

This document is supplied in three formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document navigate to the HTMLDoc_m_n folder and open the file index.html.

Microsoft HTML Help (.CHM file), which is an HTML format contained in a single file.

To read a .CHM file just open it – no web browser is needed.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Restrictions on viewing .CHM files

You can only read .CHM files from Microsoft Windows.

Microsoft Windows security restrictions may prevent you from viewing the content of .CHM files that are
located on network drives. To fix this either copy the file to a local hard drive on your PC (for example the
Desktop), or ask your System Administrator to grant access to the file across the network. For more
information see the Microsoft knowledge base article at
http://support.microsoft.com/kb/896054/.

1.2 Who should read this document

This document is intended for System Administrators who need to deploy Caplin Liberator within an
existing single sign-on system or authentication service. It is assumed that the reader has an
understanding of network systems, running Java programs from the command line, and using application
servers such as Tomcat, JBoss, or BEA WebLogic.

1.3 Related documents

KeyMaster Overview

Describes what KeyMaster is and what it can be used for, the architecture of the product, how it fits
into the overall Caplin Xaqua product architecture and third party/customer systems, and key
concepts relating to the product. It also gives some examples of how the product can be used in real
business situations.

KeyMaster Java API Reference.

Defines the public Java classes and interfaces available in Java KeyMaster. Refer to it when
customizing KeyMaster Java code.

KeyMaster.NET API Reference

Defines KeyMaster.NET classes and interfaces that can be used to implement a Microsoft .NET
application that generates KeyMaster user credentials tokens.

XML Auth Administration Guide

Describes the XMLauth Module, and how it enables programmers and system administrators to use
XML to create their own permissioning structures and control entitlement to objects held on Caplin
Liberator.

http://support.microsoft.com/kb/896054/

Preface

3© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Liberator Administration Guide

Describes how to install and configure the Caplin Liberator server. It includes full reference
information for the Liberator configuration.

Liberator Authentication C API Reference

Describes how to implement custom authentication modules for Liberator, in C code.

JavaAuth API Reference

Describes the library of classes (javaauth) that enables developers to create custom authentication
modules for Liberator in Java.

StreamLink for Browsers API Reference

The API reference documentation for StreamLink for Browsers. In release 4.5.2 and upwards, the
section on “Using SL4B With KeyMaster” explains how StreamLink for Browsers can be configured to
use KeyMaster for logging in to the Liberator.

StreamLink for Java API Reference

The API reference documentation for StreamLink for Java. The section on “Caplin KeyMaster
integration” explains how KeyMaster authentication can be integrated into web client applications that
use StreamLink for Java.

StreamLink.NET API Reference

The API reference documentation for StreamLink .NET.

StreamLink for Silverlight API Reference

The API reference documentation for StreamLink for Silverlight.

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Preface

4© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

 Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Please email your feedback to documentation@caplin.com.

1.6 Acknowledgments

Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Silverlight is a trademark of Microsoft Corporation in the United States and other countries.

Sun, Solaris and Java, are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

RSA® is a registered trademark of RSA Security Inc.

nCipher is a trademark or registered trademark of nCipher Corporation Ltd.

thawte is a registered trademark of VeriSign in the United States and/or other countries.

1.7 Open Source Software

This Caplin Xaqua component incorporates the following Open Source software:

Open Source item Use in KeyMaster Further information

Public key encryption software
from The Legion Of The Bouncy
Castle.

Used in Standard KeyMaster to
generate encryption key pairs,
and encrypt and decrypt digital
signatures using these keys.

www.bouncycastle.org

OpenSSL Cryptographic algorithms from
the OpenSSL crypto library, and
the OpenSSL commands for
generating RSA key pairs and
self-signed certificates.

www.openssl.org

mailto:documentation@caplin.com
http://www.bouncycastle.org
http://www.openssl.org

Overview

5© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

2 Overview

Caplin KeyMaster is used to integrate Caplin Liberator with an existing single sign-on system, so that end
users do not need to explicitly log in to a Liberator in addition to their normal log in procedure. It provides a
more secure and convenient authentication method than just using simple user names and passwords.

KeyMaster implements a secure method of user authentication via a user credentials token that is digitally
signed using public key encryption.

It comprises two tools for enabling users to be authenticated: a key generator and a signature generator.

Key Generator

The Key Generator is an application used to create an encryption key pair; one key is the private key
and the other is the public key. KeyMaster uses the private key to sign a user credentials token that
authenticates a user's access to the Liberator. The public key is exported to the data provider’s
Liberator for use during the authentication process.

A useable Key Generator is provided with the Standard KeyMaster product, as a Java servlet. Key
pairs can also be generated using third-party tools, such as the OpenSSL key generation commands
(see www.openssl.org). This is necessary if the KeyMaster Signature Generator is implemented
using KeyMaster.NET (see the KeyMaster.NET API Reference), or if KeyMaster is to be integrated
with a secure key storage hardware module (see Integrating KeyMaster with a hardware Key Store

).

Signature Generator

The Signature Generator creates a user credentials token, which it digitally signs (encrypts) using the
KeyMaster private key. This token is used by Caplin Liberator to validate an end-user's login to the
Liberator server.

The Signature Generator is usually an application server module. A useable Signature Generator is
provided with the Standard KeyMaster product, as a Java servlet. You can customize this servlet as
required, or you can use it to guide the design of a similar module in another technology.

Using KeyMaster.NET, you can also implement the Signature Generator as a Microsoft .NET
application (typically deployed as an ASP.NET web page); for more information, see the KeyMaster.
NET API Reference.

Subsequent sections of this guide describe how to configure and operate these two tools.

Note: If you are unfamiliar with KeyMaster, you are recommended to read the KeyMaster Overview
before reading this Administration Guide.

37

http://www.openssl.org

Technical assumptions and restrictions

6© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

3 Technical assumptions and restrictions

Platforms and Java

KeyMaster is supported on the following operating systems:

Linux®

Sun® SolarisTM

Microsoft® Windows® XP

Microsoft Windows 2000

Microsoft Windows 2003 Server

All these platforms must run the Java Runtime Environment (JRETM) or Java Development Kit (JDKTM).
The Java version must be at least the greater of:

Java version 1.4

The minimum Java version specified for the web application server under which KeyMaster will be
deployed.

Encryption software

The following encryption software is used in Standard KeyMaster:

Public key encryption software from The Legion Of The Bouncy Castle

See Open Source Software .

The Key Generator generates the key pair using the Sun® SHA1PRNG secure random number
generator and the RSA® key pair generation algorithm.

Digital signatures are generated using the MD5withRSA algorithm.

For an explanation of this algorithm see the KeyMaster Overview.

Web application server versions

The instructions in this document for deploying KeyMaster on various web application servers (see
Deploying KeyMaster) assume the following server versions:

Server Minimum version

Tomcat 5.0.16

JBoss 4.0.0

BEA WebLogic 8.1

4

12

Installing KeyMaster

7© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

4 Installing KeyMaster

 These sections do not apply to KeyMaster.NET.

4.1 Important note on security of installation

Note: The instructions in this guide describe how to set up KeyMaster so that it can be tested easily.
However, in this state KeyMaster is not secure, and it should not be used in a production
environment.
To deploy KeyMaster securely you will need to integrate it with your single sign-on system in a
way that is compliant with your organization's security policies, and is compatible with the web
application server that hosts the KeyMaster servlets.
For more information, see Making KeyMaster production ready .

To ensure that KeyMaster is deployed in a highly secure manner, you may wish to store the private keys in
a dedicated secure hardware module (a “Key Store”), instead of on disk. To do this:

Follow the installation and configuration instructions for Standard KeyMaster:

– Installing KeyMaster

– Deploying KeyMaster

– Setting up Liberator to work with KeyMaster

– Testing Java-based KeyMaster with Liberator

Then follow the instructions in Integrating KeyMaster with a hardware Key Store .

4.2 Prerequisites

Before installing Java-based KeyMaster on your machine, make sure there is a suitable version of
the Java Runtime Environment (JRE) or Java Development Kit (JDK) installed; see Technical
assumptions and restrictions .

Note: On Microsoft Windows platforms there is a Microsoft version of the Java Virtual Machine (JVM)
built into some versions of Windows Internet Explorer®. However, the web application server
may not be able to run using this JVM. Check the installation requirements for your web
application server – you may need to install the JRE or JDK from Sun Microsystems.
See Technical assumptions and restrictions .

4.3 Installing on Linux or Sun Solaris

The install kit is contained in a zip file called KeyMaster-<version_number>.zip

1. Copy the zip file to a base directory where you want the installed software to be located, such as /
apps/caplin

Make sure that the directory and its sub-directories are accessible from your chosen application
server (see Deploying KeyMaster).

2. Unzip the file:

unzip KeyMaster-<version_number>.zip

36

7

12

24

30

37

6

6

12

Installing KeyMaster

8© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

The software will be unzipped into a new directory
/KeyMaster-<version_number>
under your base directory,
for example /apps/caplin/KeyMaster-4.4.0

Note: In the rest of this guide the directory where the KeyMaster software is located is referred to as
$KM_INSTALL_DIR
For example, $KM_INSTALL_DIR could refer to

/apps/caplin//KeyMaster-4.4.0

Tip: When you have finished installing KeyMaster read the release note
$KM_INSTALL_DIR/RELEASENOTE.txt
before proceeding any further.

Now see the section Installed Files .

4.4 Installing on a Windows platform

The install kit is contained in a zip file called KeyMaster-<version_number>.zip

1. Copy the zip file to a base directory where you want the installed software to be located, such as C:
\Program Files\apps\Caplin

Make sure that the directory and its sub-directories are accessible from your chosen application
server (see Deploying KeyMaster).

2. Unzip the file using a suitable zip utility

The software will be unzipped into a new directory
\KeyMaster-<version_number> under your base directory,

for example C:\Program Files\apps\Caplin\KeyMaster-4.4.0

Note: In the rest of this guide the directory where the KeyMaster software is located is referred to as
$KM_INSTALL_DIR
For example, $KM_INSTALL_DIR could refer to

C:\Program Files\apps\Caplin\KeyMaster-4.4.0

Tip: When you have finished installing KeyMaster read the release note
$KM_INSTALL_DIR\RELEASENOTE.txt
before proceeding any further.

Now see the section Installed Files .

9

12

9

Installing KeyMaster

9© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

4.5 Installed Files

KeyMaster-4.4.x-xx.zip contains the following files:

examples/flatfile/FlatFileServlet.java

examples/keygen.props

examples/keyimporter/KeyImporter.java

examples/keyimporter/KeyImportVerifier.java

examples/keyimporter.props

examples/news/NewsFormatter.java

examples/usercredentials/ExampleCredentialsProvider.java

doc/* (The KeyMaster documentation set)

deploy/keymaster.war

lib/keyMaster.jar

lib/bcprov-jdk<version>.jar (The BouncyCastle encryption JAR)

RELEASENOTE.txt

README.txt

Check the release notes in RELEASENOTE.txt for important information about the KeyMaster
release that you are installing.

Now follow the instructions in Generating the required keys .

4.6 Generating the required keys

KeyMaster uses three encryption key files: a public key file, a private key file, and a DER key file (which is
a binary version of the public key). These key files must be generated before KeyMaster authentication
can be used.

Follow these steps to generate the keys:

1. Make sure you have the following JAR files. These should be present in the lib directory of your
KeyMaster installation:

The BouncyCastle encryption JAR (bcprov-jdk<version>.jar).

The KeyMaster JAR containing all the classes KeyMaster needs to execute (keymaster.jar).

2. KeyMaster uses a properties file keygen.props that is used to initialize and configure the Key

Generator. There is an example keygen.props file in $KM_INSTALL_DIR/examples/. You can use
this file for your KeyMaster installation, if it is suitable for your needs. Alternatively you can create
your own version of this file; refer to the keygen.props configuration reference .

Note: The rest of this installation guide assumes the names of the encryption key files are as defined
in the example version of keygen.props, namely privatekey.store, publickey.store and

publickey.der

9

56

Installing KeyMaster

10© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

3. Check whether $KM_INSTALL_DIR contains existing key files that have the same name as the key

files that are going to be created. For example, if you are going to use the example keygen.props
properties file provided with the install kit, then check $KM_INSTALL_DIR for files called privatekey.
store, publickey.store and publickey.der. If any or all of these files are already present then delete,
move or rename them.

4. Now run the Key Generator. This is the Java class com.caplin.keymaster.keygenerator.
KeyGenerator, included in $KM_INSTALL_DIR/lib/keymaster.jar

The Key Generator requires two command line arguments:

The name of the properties file that will be used to create the keys

An identifier for the key

The identifier can be set to any string value. It will be referred to in the web.xml file that configures
the KeyMaster Signature Generator used to generate user credentials tokens – see Modifying the
web.xml configuration file .

The format of the command to run the Key Generator is:

On Linux or Sun Solaris:

java -classpath lib/bcprov-jdk14-125.jar:lib/keymaster.jar
com.caplin.keymaster.keygenerator.KeyGenerator <properties-file> <key-identifier>

On Windows:

java -classpath lib/bcprov-jdk14-125.jar;lib/keymaster.jar
com.caplin.keymaster.keygenerator.KeyGenerator <properties-file> <key-identifier>

Run the command from the $KM_INSTALL_DIR directory.

For example, to run the Key Generator using the example properties file, the command is:

On Linux or Sun Solaris:

java -classpath lib/bcprov-jdk14-125.jar:lib/keymaster.jar
com.caplin.keymaster.keygenerator.KeyGenerator examples/keygen.props keyid1

On Windows:

java -classpath lib/bcprov-jdk14-125.jar;lib/keymaster.jar
com.caplin.keymaster.keygenerator.KeyGenerator examples/keygen.props keyid1

If the command runs successfully the Key Generator displays this message:

"Retrieved a KeyStoreElement containing a public key from input key store
 for name keyid1"

16

Installing KeyMaster

11© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Tip: Make a note of the key identifier that you specified in the key generator command (keyid1 in

the example above). You will need it later when you set up the web.xml file that configures the
KeyMaster Signature Generator.
See Modifying the web.xml configuration file , and the parameter
encrypting.generator.key.identifier in web.xml parameters .

$KM_INSTALL_DIR should now contain the newly generated key files: privatekey.store, publickey.store
and publickey.der.

If a key file with the same name as that specified in keygen.props already exists in $KM_INSTALL_DIR,
then the Key Generator will overwrite the old key file and will display messages of the following form:

Adding the private key replaced the existing key for the same server:
com.caplin.keymaster.encrypted.PrivateKeyStoreElement@d1fa5
Retrieved a KeyStoreElement containing a public key from input key store
for name keyid1
Adding the public key replaced the existing key for the same server:
com.caplin.keymaster.encrypted.PublicKeyStoreElement@134e4fb

16

68

Deploying KeyMaster

12© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

5 Deploying KeyMaster

 These sections do not apply to KeyMaster.NET.

The following sections explain how to deploy KeyMaster on a number of different application servers. Once
you have installed and configured the server, and configured KeyMaster to work with the server, the run-
time module of KeyMaster will be able to generate user credentials tokens for the server to pass back to
requesting clients.

5.1 Deployment on a Tomcat server

To deploy KeyMaster on a Tomcat web application server, carry out the following steps. These instructions
assume you are deploying KeyMaster on a Tomcat server running under Linux or Sun Solaris.

Note: Make sure your version of the Tomcat server is at least the minimum specified in Technical
assumptions and restrictions .

1. Install Tomcat to your desired directory (called $SERVER_HOME in the rest of these instructions)
and configure it as required.

2. You may want to start up Tomcat to test that it is working. If you do, then shut it down before
proceeding with the next steps.

Start the Tomcat server by going to the directory $SERVER_HOME/bin and entering the
command:

./startup.sh

To stop the Tomcat server, go to the directory $SERVER_HOME/bin and enter the command:

./shutdown.sh

3. Open the $SERVER_HOME directory.

4. Go to the directory webapps.

5. Copy the file $KM_INSTALL_DIR/deploy/keymaster.war to the current directory (webapps).

The keymaster.war file contains files relating to the KeyMaster Signature Generator that will be

unpacked into a directory called keymaster and used at run time.

6. Check whether the webapps directory already contains a directory called keymaster. If it does, then

either delete the keymaster directory or change its name, as appropriate.

7. Start the Tomcat server.

8. Tomcat will now deploy the keymaster.war file and create the required KeyMaster structures in

$SERVER_HOME/webapps/keymaster/

9. Go to the directory $SERVER_HOME/webapps/keymaster/WEB-INF/
This directory contains a configuration file called web.xml. This file needs to be edited, so that
KeyMaster knows where to find the private encryption key in order to generate user credentials
tokens.

Follow the instructions in Modifying the web.xml configuration file .

6

16

Deploying KeyMaster

13© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

5.2 Deployment on a JBoss server

To deploy KeyMaster on a JBoss web application server, carry out the following steps. These instructions
assume you are deploying KeyMaster on a JBoss server running under Linux or Sun Solaris.

Note: Make sure your version of the JBoss server is at least the minimum specified in Technical
assumptions and restrictions .

1. Install JBoss to your desired directory (called $SERVER_HOME in the rest of these instructions) and
configure it as required.

2. You may want to start up JBoss to test that it is working. If you do, then shut it down before
proceeding with the next steps.

Start the JBoss server by going to the directory $SERVER_HOME/bin and entering the
command:

./run.sh

Control will not be returned to your command window until you have stopped the server.

To stop the JBoss server, enter the command:

ctrl/C

3. Open the $SERVER_HOME directory.

4. Go to the directory server/default/deploy/

5. Create a directory called keymaster.war and go to this directory.

6. Copy the file $KM_INSTALL_DIR/deploy/keymaster.war to the current directory (keymaster.war).

The keymaster.war file contains files relating to the KeyMaster Signature Generator that will be

unpacked into a directory called keymaster and used at run time.

7. Extract the files from the keymaster.war file, using the Java jar command:

jar –xvf keymaster.war

8. Go to the directory $KM_INSTALL_DIR/deploy/WEB-INF.

In this directory is a configuration file called web.xml. This file needs to be edited so that KeyMaster
knows where to find the private encryption key in order to generate user credentials tokens.

Follow the instructions in Modifying the web.xml configuration file .

6

16

Deploying KeyMaster

14© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

5.3 Deployment on a BEA WebLogic server

This section explains how to implement a basic deployment of KeyMaster on a BEA WebLogic application
server.

Deployment on WebLogic 9.1

To deploy KeyMaster on a BEA WebLogic 9.1 application server, carry out the following steps.

Set up KeyMaster files

1. Create a KeyMaster deployment directory path in a location that can be accessed by the WebLogic
server. The name of the lowest level directory in the path should be keymaster.war.

For example /Caplin/KeyMasterDeploy/keymaster.war/

Go to this directory

2. Copy the file $KM_INSTALL_DIR/deploy/keymaster.war to the current directory (keymaster.war).

The keymaster.war file contains files relating to the KeyMaster Signature Generator that will be

unpacked into a directory called keymaster and used at run time.

3. Extract the files from the keymaster.war file, using the Java jar command:

jar –xvf keymaster.war

4. Copy the private encryption key file privatekey.store key from $KM_INSTALL_DIR to the top level of
the KeyMaster deployment directory.

For example, copy the key file to /Caplin/KeyMasterDeploy/

Deploy KeyMaster in WebLogic

1. Start the WebLogic server for the domain you wish to use

The example domain installed with WebLogic version 9.1 is wl_server.

4. Start up the Server Administration Console by opening a web browser and entering a URL of the
form:

http://server-address:7001/console

(Assuming that you have not changed the default port number of 7001.)

5. Log in and then under 'Domain Structure' click the link for 'Deployments'.

6. Click the Lock & Edit button to enable the Install button, then Click the Install button.

7. Browse to $KM_INSTALL_DIR/deploy/ and select the keymaster.war file.

8. Click Next.

A page called 'Choose targeting style' is displayed.

9. Select the choice labeled 'Install this deployment as an application'
and click Next.

The 'Optional Settings' page is displayed.

Deploying KeyMaster

15© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

10. The default deployment settings will be used, so click Next

The 'Review your choices page' is displayed.

The summary of choices will look like this:

Deployment: <file-path-to-KeyMaster-deployment>/keymaster.war
Name: KeyMaster
Staging mode: Use the defaults defined by the chosen targets
Security Model: DDOnly: Use only roles and policies that are defined in the
deployment descriptors.

11. Click the Finish button.

The 'Settings for KeyMaster page' is displayed.

12. Click the Save button.

The message 'Settings updated successfully' should be displayed in the Messages area at the
top of the page.

13. There will be a message in the Change Center bar on the top left hand side of the page:

'Pending changes exist. They must be activated to take effect.'

Click the Activate Changes button (located below the message).

14. Now start the KeyMaster web application as follows:

15. Click on the Control tab

The displayed page should show that the KeyMaster application is in the state 'Prepared'.

16. Click the Lock & Edit button, to enable the Start button.

17. Select the KeyMaster application

18. Click the Start button and select 'Servicing all requests'.

The 'Start Application Assistant' page is displayed.

19. Click the Yes button

The message 'Start requests have been sent to the selected Deployments' should be
displayed in the Messages area at the top of the page.

The KeyMaster state should now be 'Active'.

20. Click the Release Configuration button

21. Close down the WebLogic Administration Console by clicking on the Log out tab.

22. Go to the directory $KM_INSTALL_DIR/deploy/WEB-INF.

In this directory is a configuration file called web.xml. This file needs to be edited so that KeyMaster
knows where to find the private encryption key in order to generate user credentials tokens.

Follow the instructions in Modifying the web.xml configuration file .16

Deploying KeyMaster

16© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Deployment on WebLogic 8.1

To deploy KeyMaster on a BEA WebLogic 8.1 application server, carry out the following steps.

1. Start the server for the domain you wish to use (the example domain installed with WebLogic is
mydomain).

2. Open up a web browser and go to the URL of the console for the desired domain.

For example:

http://xyz:7001/console

(Assuming that the default port number has not been changed.)

3. Log in and then go to “Your Deployed Resources” and underneath click the link for “Applications”.

4. Select “Deploy a new Application” and then click on applications.

Following this click on “upload your files”.

5. A screen that tells you the types of files you can upload will now be displayed.
KeyMaster currently has a war format .

6. Browse to the location of the keymaster.war file and then select "open".

Now click the upload button and the file will be copied to the relevant location.

7. The server will extract the files from the .war file and put them in

/mydomain/myserver/stage/_appsdir_keymaster_war/keymaster.war/WEB-INF/

8. One of the files extracted to the WEB-INF directory is called web.xml. This file needs to be edited, so
that KeyMaster knows where to find the private encryption key in order to generate user credentials
tokens.

Follow the instructions in Modifying the web.xml configuration file .

5.4 Modifying the web.xml configuration file

 This section and its subsections do not apply to KeyMaster.NET.

The web.xml configuration file needs to be edited, so that the KeyMaster Signature Generator knows
where to find the private encryption key in order to generate user credentials tokens. You also specify in
here the servlet's error logging environment.

The web.xml file is located in a directory of your web application server; the precise directory path depends

on which application server you are using, but it usually ends in WEB-INF/. For example, if KeyMaster is

deployed on a Tomcat application server, web.xml is in the directory $SERVER_HOME/webapps/
keymaster/WEB-INF/.

Edit web.xml as follows:

1. Find the entry called encrypting.generator.private.key.store.filename:

<init-param>
 <param-name>encrypting.generator.private.key.store.filename</param-name>
 <param-value>privatekey.store</param-value>
 <description>File name and location for the private key</description>
</init-param>

16

Deploying KeyMaster

17© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Change the content of the <param-value> tag to specify the name and location of the previously
created private key file (see Generating the Required Keys). The directory will normally be the
$KM_INSTALL_DIR directory, but it may be a different location depending on the application server
being used (see the deployment instructions for your application server in Deploying KeyMaster) .

Example:

<init-param>
 <param-name>encrypting.generator.private.key.store.filename</param-name>
 <param-value>/Caplin/KeyMaster/privatekey.store</param-value>
 <description>File name and location for the private key</description>
</init-param>

In this example the $KM_INSTALL_DIR directory is /Caplin/KeyMaster/

2. Find the entry called encrypting.generator.key.identifier.
This needs to be changed to the key identifier that was passed as the second argument to the
KeyMaster Key Generator when the key was created (see Generating the required keys).

Example:

<init-param>
 <param-name>encrypting.generator.key.identifier</param-name>
 <param-value>keyid1</param-value>
 <description>Name of the server the token is generated for.</description>
</init-param>

3. Change the name and location of the KeyMaster Signature Generator's error log file as required.

This is specified in the web.xml entry called key.generator.FilenameAttribute. If the entry
does not contain a file path, then the log file will be located in a default directory whose location
depends on the type of web application server:

On a Tomcat or JBoss server this is the ‘bin’ directory where the web application server was
started.

On a BEA WebLogic server this is the domain directory where WebLogic was started.

Example:

<init-param>
 <param-name>key.generator.FilenameAttribute</param-name>
 <param-value>servlet.log</param-value>
 <description>KeyMaster log file</description>
</init-param>

4. Specify the KeyMaster Signature Generator's logging level.

The logging level is specified in the web.xml entry called key.generator.Level. The level should
be one of the logging levels defined in the Java class java.util.logging.Level. It is recommended that
you initially set the logging level to ALL, so that KeyMaster will record the maximum amount of
information about any installation problems. When you are satisfied that KeyMaster is behaving
correctly, it is recommended that you change the logging level to WARNING. For more information on
setting logging levels see the Servlet Configuration section in the KeyMaster Java API Reference.

9

12

9

Deploying KeyMaster

18© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Example:

<init-param>
 <param-name>key.generator.Level</param-name>
 <param-value>ALL</param-value>
 <description>KeyMaster logging level</description>
</init-param>

Tip: For more information on configuring the KeyMaster servlet in the web.xml file, see the web.xml
configuration reference section.

5. If you want client applications to access the KeyMaster servlet from a different URL, follow the
instructions in Changing KeyMaster's URL .

6. For the configuration changes to take effect, you will need to reload the KeyMaster web application
and possibly restart the application server.

If you are deploying KeyMaster to a newly installed JBoss server, start the server once you have
modified web.xml.

7. Now check that KeyMaster has been correctly deployed on the web application server, by following
the instructions in Testing KeyMaster with the application server .

60

19

22

Deploying KeyMaster

19© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Changing KeyMaster's URL

Standard Java-based KeyMaster's Signature Generator is accessed from clients through the the URL /
servlet/StandardKeyMaster. You may wish to access this servlet from a different URL; for example,
because you have customized the servlet and wish to distinguish it from the standard one.

To configure a different URL, edit the web.xml configuration file, as follows:

1. Find the <servlet-mapping> tag with the child <servlet-name> tag whose content is
"StandardKeyMaster":

 <servlet-mapping>
 <servlet-name>StandardKeyMaster</servlet-name>
 <url-pattern>/servlet/StandardKeyMaster</url-pattern>
 </servlet-mapping>

Change the URL in the <url-pattern> tag that follows the <servlet-name> to the new URL:

 <servlet-mapping>
 <servlet-name>StandardKeyMaster</servlet-name>
 <url-pattern>/servlet/CustomizedKeyMasterName</url-pattern>
 </servlet-mapping>

2. If client applications will access KeyMaster through StreamLink for Browsers 4.5.2 or later (for
example, when the client application is Caplin Trader version 1.4.2 or later), you must also declare
the new URL for access by the XHRKeymaster servlet.

Find the <servlet-name> defining XHRKeymaster, and locate the child <param-name> tag
defining the parameter keymaster.url:

 <servlet-name>XHRKeymaster</servlet-name>
 <init-param>
 <param-name>keymaster.url</param-name>
 <param-value>/servlet/StandardKeyMaster</param-value>
 <description>The url of the Standard KeyMaster page,
 for XHRKeyMaster to attach to.</description>
 </init-param>

Change the <param-value> to the new URL of the customized KeyMaster:

 <servlet-name>XHRKeymaster</servlet-name>
 <init-param>
 <param-name>keymaster.url</param-name>
 <param-value>/servlet/CustomizedKeyMasterName</param-value>
 <description>The url of the customized KeyMaster page,
 for XHRKeyMaster to attach to.</description>
 </init-param>

Also see the web.xml configuration reference section, and the definition of the web.xml parameter
keymaster.url

60

79

Deploying KeyMaster

20© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Changing the KeyMaster Poll servlet's URL

When clients access Java-based KeyMaster through StreamLink for Browsers version 4.5.2 or later (for
example, when the client application is Caplin Trader version 1.4.2 or later), StreamLink for Browsers
accesses a servlet called Poll at regular intervals, so as to keep the session with the KeyMaster servlet
alive.

If you wish to access the Poll servlet from a different URL, you must configure the URL by editing the web.
xml configuration file, as follows:

1. Find the <servlet-mapping> tag with the child <servlet-name> tag whose content is "Poll":

 <servlet-mapping>
 <servlet-name>Poll</servlet-name>
 <url-pattern>/servlet/Poll</url-pattern>
 </servlet-mapping>

Change the URL in the <url-pattern> tag that follows the <servlet-name> to the new URL:

 <servlet-mapping>
 <servlet-name>Poll</servlet-name>
 <url-pattern>/servlet/newPollLocation</url-pattern>
 </servlet-mapping>

2. You must also declare the Poll servlet's new URL for access by the XHRKeymaster servlet.

Find the <servlet-name> defining Poll, and locate the child <param-name> tag defining the
parameter keymaster.poll.url:

 <servlet-name>XHRKeymaster</servlet-name>
 <init-param>
 <param-name>keymaster.poll.url</param-name>
 <param-value>/servlet/Poll</param-value>
 <description>The url of the KeyMaster polling page,
 for XHRKeyMaster to attach to.</description>
 </init-param>

Change the <param-value> to the new Poll URL:

 <servlet-name>XHRKeymaster</servlet-name>
 <init-param>
 <param-name>keymaster.poll.url</param-name>
 <param-value>/servlet/newPollLocation</param-value>
 <description>The url of the KeyMaster polling page,
 for XHRKeyMaster to attach to.</description>
 </init-param>

Also see the web.xml configuration reference section, and the definition of the web.xml parameter
keymaster.poll.url

60

80

Deploying KeyMaster

21© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Changing the KeyMaster Dependencies servlet's URL

When clients access Java-based KeyMaster through StreamLink for Browsers version 4.5.2 or later (for
example, when the client application is Caplin Trader version 1.4.2 or later), KeyMaster uses a servlet
called Dependencies.

If you have changed the location of the XHRKeymaster servlet so that its URL is not
/servlet/XHRKeymaster, you must change the location of the Dependencies servlet to match the new
location of XHRKeymaster.
For example, if XHRKeymaster has been moved to the URL
/mylocation/myservlets/XHRKeymaster, the Dependencies servlet must be moved to the URL
/mylocation/myservlets/dependencies/*

Note: Do not rename or modify the Dependencies servlet, otherwise KeyMaster will not work correctly
with StreamLink for Browsers.

To specify the new URL for the Dependencies servlet, edit the web.xml configuration file, as follows:

Find the <servlet-mapping> tag with the child <servlet-name> tag whose content is
"Dependencies":

 <servlet-mapping>
 <servlet-name>Dependencies</servlet-name>
 <url-pattern>/servlet/dependencies/*</url-pattern>
 </servlet-mapping>

Change the URL in the <url-pattern> tag that follows the <servlet-name> to the new URL:

 <servlet-mapping>
 <servlet-name>Poll</servlet-name>
 <url-pattern>/mylocation/myservlets/dependencies/*</url-pattern>
 </servlet-mapping>

Also see the web.xml configuration reference section.60

Deploying KeyMaster

22© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

5.5 Testing KeyMaster with the application server

1. Start up a web browser.

2. If you are using a Tomcat, JBoss or BEA WebLogic application server, enter the address of your web
application server, and (if required) its port number, followed by:

/keymaster/servlet/StandardKeyMaster?username=aname

where aname is any user name.

For example:

http://myserver.abc.com:9127/keymaster/servlet/StandardKeyMaster?
username=davids

(Later on, when you set up the Liberator to work with KeyMaster, you will configure, in the users.xml
file of XMLauth, the valid set of user names for authentication by KeyMaster – see Modifying the
users.xml authorization file .)

3. If the test has worked, text with the following format should be displayed on the screen:

credentials=ok
username=davids
token=0laUyFtRh1xkrZD85ASoegZtBc4C3gQBivbM
zXADZQHeMl/knTv3vyUUe1azdharQHysA89zMptD+T4F8pGCjkY1tejaq/
VAATgnVkyetjs33NEIulsL0zXaSPxZs8sQ0zOG8v7E/
uV3Da46FB+jmlZ6VwJN7ioQWDD7SYKZaJ8

4. If the test fails, any errors will be logged in the servlet log specified in the web.xml file.

5. If clients will be accessing KeyMaster through StreamLink for Browsers version 4.5.2 or later (for
example, when the client application is Caplin Trader version 1.4.2 or later), also follow the
instructions in Testing the XHRKeymaster servlet .

6. If you are integrating KeyMaster with a hardware Key Store,
now follow the instructions in Configuring Liberator to use a new public key
otherwise follow the instructions in Setting up Liberator to work with KeyMaster .

27

23

48

24

Deploying KeyMaster

23© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Testing the XHRKeymaster servlet

This test is only needed if clients will need to access KeyMaster through StreamLink for Browsers version
4.5.2 or later (for example if you are using Caplin Trader version 1.4.2 or later). Make sure you have run
the general application server test first – see Testing KeyMaster with the application server .

1. In the web browser enter the address of your web application server, and its port number (if required),
followed by the relative URL of the XHRKeymaster servlet, which is:

/keymaster/servlet/XHRKeymaster

For example, enter the web address:

http://myserver.abc.com:9127/keymaster/servlet/XHRKeymaster

You should see a web page with a single text box, containing the default user name "fred" and
three buttons. The buttons allow you to test the XHRKeymaster's connection to the
StandardKeyMaster.

XHRKeyMaster test page

2. Click the button labeled KeyMaster.requestToken.

After a short pause, an alert should appear containing text with the following format:

Success: fred
VffpUBLvSArQhJbrTIpJ5aTgaPgbbBLmZuzpp/3niQHMRYVeU/K/+0H1XqJlJEjdH2M9r20p+
XdGGGcMlVsmRDHfcHnzhFN/ASwn/CU2vsIkH6SZMOPAk++AKdSUX8q0Nuj/Zqa54Ip9G65sp
M0VOdM2hxTnIkNkSY0DextmNsw=~20090415120338~1~fred

3. If you are integrating KeyMaster with a hardware Key Store,
now follow the instructions in Configuring Liberator to use a new public key
otherwise follow the instructions in Setting up Liberator to work with KeyMaster .

22

48

24

Setting up Liberator to work with KeyMaster

24© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

6 Setting up Liberator to work with KeyMaster

 This section and its subsections apply to Java-based KeyMaster and to KeyMaster.NET.

Once the encryption keys have been generated (see Generating the Required Keys), you need to set
up your Liberator so that it can work with KeyMaster.

To do this you:

make the public key file available to Liberator,

modify the Liberator configuration file rttpd.conf,

modify the users.xml authorization file if the Liberator uses the XMLauth module to authenticate
users, or

modify the cfgauth.conf authorization file if the Liberator uses the cfgauth module to authenticate
users.

When you have completed the Liberator set up, follow the instructions in:

Testing Java-based KeyMaster with Liberator (if you have installed Java-based KeyMaster)

or

Testing KeyMaster.NET with Liberator (if you have installed a KeyMaster Signature Generator
developed using KeyMaster.NET).

6.1 Making the public key file available to Liberator

Copy the DER public key file in the KeyMaster $KM_INSTALL_DIR directory to Caplin Liberator. The

name of this file ends in .der, for example publickey.der.

Put the file in the /etc directory of the Liberator installation.

Tip: If you copy the file using FTP (because the KeyMaster and Liberator are on different machines),
make sure you use binary mode, as the DER file contains binary data.

6.2 Modifying the Liberator configuration file

Edit the Liberator's configuration file etc/rttpd.conf to set up the configuration items that will allow it to work
with KeyMaster. These configuration items are:

Liberator
configuration item

Description Required?

signature-validtime Length of time in seconds for which a user
credentials token is valid. This time out applies to
any user credentials token that does not have a
specific timeout configuration item defined for it
(see below).

The default value of signature-validtime is 600
seconds (10 minutes)

No

9

30

35

Setting up Liberator to work with KeyMaster

25© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Liberator
configuration item

Description Required?

add-sigkey Begins a signature key definition group. Yes

key-id Identifies this signature key definition group.
(Corresponds to a sigkey-id attribute in the

XMLauth users.xml configuration file.)

Yes

timeout Length of time in seconds for which a user
credentials token is valid.
This overrides the signature-validtime
configuration item.

Yes

keyfile The filename and path of the public key file, in DER
(binary) format.

Yes

end-sigkey Ends the signature key definition group. Yes

signature-hashsize The size in buckets of the hash table for storing
signature keys.

This configuration item can be changed to tune the
Liberator's performance when authorizing users; set
it to twice the number of user credentials tokens
that are likely to be created within the configured
time out period (as defined by the configuration
items signature-validtime and timeout).

No
Default = 8192
buckets

signing-algorithm The algorithm to use for validating the digital
signature in user credentials tokens provided by
KeyMaster.

If you are deploying Java-based KeyMaster and
KeyMaster has been configured to generate tokens
using the SHA256withRSA algorithm (see the web.
xml parameter encrypting.generator.
signature.algorithm in web.xml parameters

), change this configuration item to sha256.

If you are deploying a Signature Generator
developed using KeyMaster.NET, set this
configuration item to the particular algorithm that
you have built into the Signature Generator. In
KeyMaster.NET, this algorithm is called the
“hashing algorithm" – see the
KeyMasterHashingAlgorithm enumeration in the
KeyMaster.NET API Reference.
The list of valid algorithm names is defined in the
reference entry for signing-algorithm in the
Liberator Administration Guide.

Note: The signing-algorithm configuration
parameter is only available in Liberator versions
4.5.7 and above. Earlier versions of Liberator use
the MD5withRSA digital signature algorithm, which
is compatible with Java-based KeyMaster's default
setting.

No
Default = md5

68

Setting up Liberator to work with KeyMaster

26© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

The most important configuration item is add-sigkey and its children. The add-sigkey ... end-
sigkey configuration item group defines a public key. Liberator uses this key when it authenticates a user
by verifying the digital signature in the user credentials token.

Example of add-sigkey:

AUTH
#
#

auth-module xmlauth

add-sigkey
 key-id testkey
 timeout 600
 keyfile %r/etc/publickey.der
 signing-algorithm sha256
end-sigkey
...

The key-id configuration item (testkey in this example) identifies this signature key definition group.

It is referred to in a sigkey-id attribute in the users.xml configuration file of XMLauth – see
Modifying the users.xml authorization file .

Note: The value of key-id is not related to the key identifier specified in the command that generates
the encryption keys (see Generating the Required Keys).

The timeout value has been set to 600 seconds in the example. This means that, when a user
credentials token has been created, the Liberator will consider it to be invalid after 10 minutes. An
end user must therefore connect to the Liberator within 10 minutes of KeyMaster granting the token;
after this time the Liberator will reject attempts to log in using the token.

The keyfile configuration item must point to the DER key file that was generated using KeyMaster
(see Making the public key file available to Liberator). The %r in the file path means the root
directory of the Liberator installation.

27

9

24

Setting up Liberator to work with KeyMaster

27© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

6.3 Modifying the users.xml authorization file for XMLauth

If the Caplin Liberator is configured to use the XMLauth user authentication module, then you will need to
configure in the users.xml file all the users who are authorized to access the Liberator via KeyMaster
authentication.

The users.xml file is located in the Liberator's /etc directory. It contains a <USER> tag for each authorized
user. This file is usually created by a script which interfaces with an existing permissions system (for
example DACS).

For each user who is to be authenticated with KeyMaster, add the following attributes to their <USER> tag:

XMLauth <USER>
tag attribute

Description

sigkey-id Identifies the public encryption key that is to be
used when verifying a user credentials token for
this user.

This attribute must match a key-id configuration
item within a signature key definition group (add-
sigkey) in the Liberator configuration file etc/
rttpd.conf.
See Modifying the Liberator configuration file .

sigcheck Must be set to "TRUE".

Example of the users.xml file:

<ET_USERS>
 <USER name="admin" pass="admin" logons="2">
 <PERM subject="*" action="grant" />
 </USER>
 <USER name="davids" logons="10"
 sigkey-id="testkey" sigcheck="TRUE">
 <PERM subject="*" action="grant" />
 <PERM subject="/DEMO/*" action="grant" />
 </USER>
</ET_USERS>

In this example the user 'davids' (name = "davids") is configured to log in to Liberator using KeyMaster
authentication. The sigkey-id attribute "testkey" refers to the keyid configuration item called "
testkey" in the example Liberator configuration file – see Modifying the Liberator configuration file).
Therefore, when a client application tries to log user 'davids' in to the Liberator, his user credentials token
will be authenticated using the DER format public encryption key in publickey.der in the Liberator's
etc/ directory.

The entry for user 'admin' has no sigkey-id and sigcheck, attributes so 'admin' is configured to log in
to the Liberator directly.

Note: When defining a Liberator user who is to be authenticated using KeyMaster, do not assign the
user a password – omit the pass attribute option from the <USER> tag in users.xml.

For more information on configuring the users.xml file see the XML Auth Administration Guide .

24

24

Setting up Liberator to work with KeyMaster

28© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

6.4 Modifying the cfgauth.conf authorization file

If the Caplin Liberator is configured to use the cfgauth user authentication module, then you will need to
configure in the cfgauth.conf file all the users who are authorized to access the Liberator via KeyMaster
authentication.

The cfgauth.conf file is located in the Liberator's /etc directory.

It contains an add-user entry for each authorized user. For each user who is to be authenticated with
KeyMaster, add the following options to their add-user entry:

cfgauth add-user
option

Description

sigcheck Must be set to "TRUE".

siguser Identifies the public encryption key that is to be
used when verifying a user credentials token for
this user.

This attribute must match a key-id configuration
item within a signature key definition group (add-
sigkey) in the Liberator configuration file etc/
rttpd.conf.
See Modifying the Liberator configuration file .

Example of an add-user entry in the cfgauth.conf file:

add-user
 username davids
 read 0 20 21 22
 licenses 2
 sigcheck TRUE
 siguser testkey
end-user

In this example the user 'davids' (username davids) is configured to log in to Liberator using KeyMaster
authentication. The siguser option testkey refers to the key-id configuration item called "testkey" in
the example Liberator configuration file – see Modifying the Liberator configuration file . Therefore,
when a client application tries to log user 'davids' on to the Liberator, his user credentials token will be
authenticated using the DER format public encryption key in publickey.der in the Liberator's etc/
directory.

Note: When defining a Liberator user who is to be authenticated using KeyMaster, do not assign the
user a password – omit the password option from the add-user entry of cfgauth.conf.

For more information on configuring the cfgauth.conf file see the Liberator Administration Guide.

24

24

Setting up Liberator to work with KeyMaster

29© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

6.5 Configuring a Liberator that uses javaauth authentication

Your Liberator may use authentication that has been developed using the javaauth SDK (see the
JavaAuth API Reference). If the authentication uses KeyMaster to provide single sign-on capability, then
bespoke code will have been written to integrate KeyMaster with the javaauth implementation. Any
configuration required to make Liberator work with KeyMaster will be specific to this implementation.
Consult your system developers for information on how to set up the configuration.

Testing Java-based KeyMaster with Liberator

30© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

7 Testing Java-based KeyMaster with Liberator

 This section and its subsections do not apply to KeyMaster.NET.

This section explains how to test that the KeyMaster installation, web application server, and Liberator, all
work together properly.

The test involves configuring some test files and then launching a web page. The web page communicates
with KeyMaster and Liberator to authenticate a user.

First check that you have set up KeyMaster according to the steps described in Installing KeyMaster .
In particular make sure that:

You have created the encryption keys – see Generating the Required Keys .

You have set up the Liberator to accept and validate User Credentials Tokens created by KeyMaster
– see Setting up Liberator to work with KeyMaster .

You have deployed the KeyMaster.war file – see Deploying KeyMaster .

You have edited the web.xml file – see Modifying the web.xml configuration file .

7.1 Configuring the test files

The KeyMaster test uses a Real Time Scripting Layer (RTSL) test page, supplied with the installation kit.
The RTSL page has two parts, one HTML page called test.html, and an accompanying javascript file
called
keymaster-config.js. You need to edit both of these files before running the test.

The files are located in the keymaster directory of the web applications area in your web application server:

If you are using a Tomcat server the files are in $SERVER_HOME/webapps/keymaster/

If you are using a JBoss server the files are in $SERVER_HOME/server/default/deploy/keymaster.
war/

If you are using a WebLogic server the files are in the keymaster.war directory of the KeyMaster
deployment area (see Deployment on a BEA WebLogic server).

Editing the KeyMaster-config.js file

Edit the keymaster-config.js file so that it points to the URL of the Caplin Liberator and specifies a valid
user name. The following lines must be changed:

var l_sLiberatorUrl = "http://caplin.liberator.address:portNo"
var l_sUser = "validUser";

Change the string assigned to the variable l_sLiberatorUrl to the URL of your Liberator.

7

9

24

12

16

14

Testing Java-based KeyMaster with Liberator

31© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Note 1: If the Liberator is on a different machine to the web application server, then the Liberator URL
must be a fully qualified domain name and port.
The web application server and Liberator must share a common domain. For example, an
application server at myserver.example.com and a Liberator at myliberator.example.
com share the domain, example.com.
See Protocol and domain compatibility .

Example of Liberator URL:

var l_sLiberatorUrl = "http://myliberator.abc.com:8127"

Change the string assigned to the variable l_sUser to be the name of a valid user that you

previously specified in the Liberator's users.xml file (see Modifying the users.xml authorization file
).

Example of Liberator user name:

var l_sUser = "davids";

Editing the test.html file

Edit the test.html file to point to the Liberator's Stream Link for Browsers (SL4B) page:

<SCRIPT id="sl4b"
 language="JavaScript"
 src="http://caplin.liberator.address:portNo/sl4b/index.js"
 rttpprovider="javascript"
 credentialsprovider="keymaster"
 configurationfile="keymaster-config.js">
</SCRIPT>

The src attribute "http://caplin.liberator.address:portNo/sl4b/index.js" defines the

URL that points to the StreamLink for Browsers source page (index.js in the Liberator directory htdocs/
sl4b/).

Change the first part of the URL (http://caplin.liberator.address:portNo/) to the URL of
your Liberator; for example: http://myliberator.abc.com:8127/

 src="http://myliberator.abc.com:8127/sl4b/index.js"

Note 2: If the Liberator is on a different machine to the web application server, then the Liberator URL
must be a fully qualified domain name and port.
The web application server and Liberator must share a common domain. For example, an
application server at myserver.example.com and a Liberator at myliberator.example.
com share the domain, example.com.
See Protocol and domain compatibility .

55

27

55

Testing Java-based KeyMaster with Liberator

32© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Note 3: Change the URL in place. Do not comment out the existing URL line and add the replacement
underneath it, because putting HTML comment tags (<!-- ... -->) inside the <SCRIPT>
tag may cause the JavaScript to execute incorrectly and the test will then fail.

7.2 Launching the test page

First make sure that your application server and Liberator are both running.

Now launch the test page:

1. Start up a web browser.

2. Enter the address of your web application server and (if required) its port number, followed by:

/KeyMaster/test.html

For example:

http://myserver.abc.com:9127/keymaster/test.html

Note: If the Liberator is on a different machine to the web application server, then the application
server address must be a fully qualified domain name.
If the address is not a fully qualified domain name (for example it is an IP address in dot
notation), then the test page will hang.

The test page contacts the KeyMaster Signature Generator and gets a user credentials token to
access the Liberator. It then attempts to log in to the Liberator using this token. If the Liberator deems
that the user is valid, and the token is also valid, then the test page will display a success message,
as shown below.

Successful installation

Testing Java-based KeyMaster with Liberator

33© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Tip: If you are using Internet Explorer 7 and you wish to look at the Liberator's status page while you
run the test, make sure that the status page is loaded in a separate copy of the browser.
If you display both the KeyMaster test page and the Liberator status page as tabs within a
single copy of the browser, the test will fail with a General Connection Error (see below).

Test errors

If the Liberator does not recognize the user, or the user credentials token is not valid, then the status line
on the test page goes red and the page displays an error message.

Two typical error pages are shown below.

Example error page (1)

Testing Java-based KeyMaster with Liberator

34© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Example error page (2)

The Liberator login may also fail if the Liberator already has the maximum number of concurrent logins for
the user. In this case the error message is

USER+LICENCE+EXCEEDED

Determining the cause of an error

The page that reports errors lists the possible errors that it can detect, and suggests reasons for each
error and how to investigate it further (see the example error pages above). If an error is reported, check
the Liberator’s event log file (var/event-rttpd.log) to see if there are problems with the user trying to log in.
See the Liberator log file messages .51

Testing KeyMaster.NET with Liberator

35© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

8 Testing KeyMaster.NET with Liberator

 This section applies only to KeyMaster.NET.

To test your .NET-based KeyMaster Signature Generator with Liberator ensure you have:

Generated the encryption key pair as described in the “Generating Keys” section of the KeyMaster.
NET API Reference.

Set up the Liberator to accept and validate user credentials tokens created by KeyMaster – see
Setting up Liberator to work with KeyMaster .

Deployed your Signature Generator to an IIS web server.

You can then use any KeyMaster-enabled StreamLink application to log in to Liberator using tokens
generated by your .NET-based Signature Generator.

24

Making KeyMaster production ready

36© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

9 Making KeyMaster production ready

 This section applies to Java-based KeyMaster and to KeyMaster.NET.

The instructions in this guide describe how to set up KeyMaster so that it can be tested easily.
However, in this state KeyMaster is not secure, and it should not be used in a production environment.

KeyMaster.NET

To make KeyMaster.NET production ready:

You must configure the web application server to which you have deployed KeyMaster, so that
access to the ASP.NET pages requires authentication.

Java-based KeyMaster

To make Java-based KeyMaster production ready:

You must configure the web application server to which you have deployed KeyMaster, so that
access to the KeyMaster servlets requires authentication.

For Java-based KeyMaster, you must ensure that the private key file defined in the web.xml
parameter
encrypting.generator.private.key.store.filename is only accessible to persons and
processes trusted to create users able to log into the Liberator.

In Java-based KeyMaster, the default setting of the web.xml parameter http.remote.user
causes the KeyMaster Signature Generator to obtain the user name from an HTTP request
parameter sent by the application. This will not be secure if the client can access the user name, so,
depending on the configuration of your single sign-on system, you may need to change this setting so
the servlet instead obtains the user name from the REMOTE_USER attribute of the HTTP header.

For more information see Adding the user name to the user credentials token .

Tip: The correct way to ensure secure access to the KeyMaster servlets will vary depending on your
web application server. Consult the documentation that came with the server for further
information.

For Java-based KeyMaster, also see:

Integrating KeyMaster with a hardware Key Store

The definitions of encrypting.generator.private.key.store.filename and
http.remote.user in the web.xml parameters section of the web.xml configuration
reference .

54

37

73

78 68

60

Integrating KeyMaster with a hardware Key Store

37© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

10 Integrating KeyMaster with a hardware Key
Store

 This section and its subsections do not apply to KeyMaster.NET.

KeyMaster generates tokens using a private key, which is normally saved to disk as a file. However, for
added security, you can store private keys in a dedicated secure hardware module (a “Key Store”) instead
of on disk.

In this case, JCE (Java Cryptography Extension) can be used to retrieve keys directly from the Key Store.
JCE is a Java extension that allows classes to register as cryptography providers. KeyMaster can retrieve
keys from any Key Store that implements the JCE provider interface.

Tip: In the sections that follow, the secure hardware module is referred to as the Key Store (space
between the two words). Note that JCE also has a class called KeyStore (no space between
the two words).

The following sections explain how to set up KeyMaster so that it can use a Key Store. In summary, having
first installed, deployed, and tested KeyMaster without using the Key Store, you then:

Generate a new set of keys and a certificate, using OpenSSL.

Import the private key file and certificate into the Key Store.

Verify the key import operation.

Install the required libraries.

Edit the web.xml configuration file so that the KeyMaster Signature Generator knows how to retrieve
the private encryption key from the Key Store.

Test that KeyMaster works with the Key Store.

Configure the Liberator to use the new public key.

10.1 Key Store prerequisites and assumptions

Before continuing, ensure that you have successfully installed and deployed KeyMaster by following the
instructions in the sections:

Installing KeyMaster

Deploying KeyMaster

Setting up Liberator to work with KeyMaster

Testing KeyMaster with Liberator

The instructions in the following sections assume that the private key file is called privatekey.der, the

public key file is called publickey.der, and the certificate file is called cert.crt.

The example values given for configuration options are the correct values for integrating KeyMaster with
an nCipher Hardware Security Module, which is one of the commercial products available for the secure
storage of keys. You will need to change these values accordingly if you are using a different security
module product.

7

12

24

30

Integrating KeyMaster with a hardware Key Store

38© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Note: Disclaimer: The references to nCipher and thawteTM in this document do not imply any
endorsement by Caplin Systems Ltd of any products or services supplied by these
organizations.

nCipher (http://www.ncipher.com) is just one of a number of suppliers of hardware security
modules.

thawte (http://www.thawte.com) is just one of a number of organizations that provide certificate
signing services.

10.2 Generating keys using OpenSSL

 This section and its subsections do not apply to KeyMaster.NET.
For information on how to generate key files in KeyMaster.NET,
see the KeyMaster.NET API Reference.

KeyMaster uses three key files to produce tokens:

An RSA private key for signing text.

A matching RSA public key which is deployed to Liberator, allowing it to verify tokens.

A certificate for the private key, which enables it to be added to a Java KeyStore class.

To integrate KeyMaster with your hardware Key Store, you must first generate the following key files using
OpenSSL:

An RSA private key in DER format (used to sign user credentials tokens).

A matching RSA public key, also in DER format.

An X.509 certificate for the private key, in CRT format.

The following sections explain how to generate these files using the OpenSSL library. OpenSSL (http://
www.openssl.org) is open source software and can be freely downloaded.

Note: The files generated by the Caplin KeyGenerator class that you generated when installing
KeyMaster (see Generating the required keys) are not the right format for use with a
hardware Key Store. You must use OpenSSL to generate a new set of keys.

Tip: Documentation detailing how to install OpenSSL as a command line tool is available on the
OpenSSL web site at http://www.openssl.org/docs/.

To generate keys for your hardware Key Store using OpenSSL:

Generate a private key.

Generate the public key from the private key.

Generate a certificate request from the private key.

Obtain a signed certificate.

Convert the private key to DER format.

The instructions in the following sections show the OpenSSL commands needed to perform these steps.

9

http://www.ncipher.com
http://www.thawte.com
http://www.openssl.org
http://www.openssl.org
http://www.openssl.org/docs/

Integrating KeyMaster with a hardware Key Store

39© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Generating a private key

Generate the private key file in PEM format:

openssl genrsa -out privatekey.pem 2048

This produces an unencrypted file called privatekey.pem, which is the RSA private key.

Generating the public key

Generate the public key from the private key:

openssl rsa -in privatekey.pem -pubout -outform DER -out publickey.der

This produces a file called publickey.der, which is the public key that Liberator will use to verify
KeyMaster tokens.

Tip: Public encryption keys can be distributed freely without any security risk, so publickey.der does
not need to be stored in the hardware security module.

Generating the certificate request

To store a private key in a Java KeyStore class it must be accompanied by a certificate. The first step
towards getting a certificate is to generate a certificate signing request (CSR) from the private key:

Generate the certificate signing request:

openssl req -new -key privatekey.pem -out certrequest.csr

You will then be prompted to enter information to be encoded in the certificate, such as country,
company name, and organizational unit. When you have entered all the information, a certificate
request file called certrequest.csr is produced.

Obtaining a signed certificate

To get a properly signed certificate, you can submit the certificate request (see Generating the certificate
request) to a recognized Certificate Authority such as thawte (http://www.thawte.com). However it is
also possible to self-sign your CSR, which produces a self-signed certificate – this will be adequate for
KeyMaster, because KeyMaster tokens are not public facing.

To produce a self-signed certificate:

openssl x509 -req -in certrequest.csr -signkey privatekey.pem -out cert.
crt

This produces a file called cert.crt, which is the signed certificate. The certrequest.csr file is no
longer needed and should be securely deleted (for example, through a software shredder).

39

http://www.thawte.com

Integrating KeyMaster with a hardware Key Store

40© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Converting the private key to DER format

The private key generated through OpenSSL (see Generating a private key) is a PEM format file,
which is human readable. However JCE only accepts keys in DER format.

To convert the key to DER format:

openssl pkcs8 -topk8 -inform PEM -outform DER -in private.pem -out
private.der -nocrypt

This produces a file called privatekey.der, which is the reformatted private key. The privatekey.pem
file is no longer needed and should be securely deleted (for example, through a software shredder).

10.3 Importing the private key file and certificate into the Key
Store

Import the newly generated private key into the Key Store.

Caplin provides a tool called Key Importer for this purpose. Key Importer reads a properties file to obtain
the information needed to import the key. There is an example keyimporter.props file in

$KM_INSTALL_DIR/examples. Alternatively you can create your own version of this file; see the

keyimporter.props configuration reference .

Example keyimporter.props:

key.importer.security.provider.class.name=com.ncipher.provider.km.nCipherKM
key.importer.keystore.type=ncipher.sworld
key.importer.keystore.provider.name=nCipherKM
key.importer.keystore.location=/opt/keystore.dat
key.importer.private.key.location=/opt/privatekey.der
key.importer.private.key.alias=privatekey
key.importer.certificate.location=/opt/cert.crt
key.importer.certificate.alias=certificate

key.importer.keystore.passphrase=keystorepassphrase
key.importer.key.passphrase=keypassphrase

The last two properties are optional:

key.importer.keystore.passphrase can be omitted if the Key Store is not protected by a
passphrase.

key.importer.key.passphrase can be omitted if you do not want the key that you are importing
to be protected with a passphrase.

The format of the command to run Key Importer is:

java –classpath lib/keymaster.jar:<JCE-provider-classpath>
com.caplin.keymaster.keyimporter.KeyImporter <key-importer-properties-
file>

where:

<JCE-provider-classpath> is the Java classpath of the JCE provider class.
The JCE provider class is normally provided by the supplier of the Key Store hardware, and is the
class referenced by the key.importer.security.provider.class.name property in

keyimporter.props. <JCE-provider-classpath> can, of course, be the name of a JAR file
containing the required class.

39

58

Integrating KeyMaster with a hardware Key Store

41© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

<key-importer-properties-file> is the path name of the properties file containing the
information needed to import the key.

Example command on Linux, Sun Solaris, or Windows:

java –classpath lib/keymaster.jar:/opt/nfast/java/classes/nCipherKM.jar
com.caplin.keymaster.keyimporter.KeyImporter examples/keyimporter.props

In this example the <JCE-provider-classpath> is the JAR file path /opt/nfast/java/classes/
nCipherKM.jar

Key Importer reads in the private key file and adds it to the hardware Key Store. Key Importer produces
the following output if it is successful.

KeyImportVerifier started
Adding security provider with class name=com.ncipher.provider.km.nCipherKM ... done
Getting KeyStore instance with type=ncipher.sworld, provider=nCipherKM ... done
Loading empty KeyStore with passphrase=null ... done
Checking private key filename ...done
Reading private key file from location=/opt/privatekey.der ... done
Creating PKCS8 encoded key spec from file ... done
Generating PrivateKey object using KeyFactory with algorithm=RSA ... done
Reading certificate file from location=/opt/cert.crt ... done
Generating Certificate object using CertificateFactory with type=X.509 ... done
Adding certificate to KeyStore with alias=certificate ... done
Adding private key to KeyStore with alias=privatekey ... done
Writing KeyStore file to location=/opt/keystore.dat ... done
Key import successful.

If the hardware module provides a way to list the stored keys, then you should now be able to see new
entries in the list. For example, nCipher provides a GUI application called KeySafe which can be used to
list the keys contained within the hardware module.

Note: The Key Importer generates a file that acts as a reference to the hardware Key Store. This file
will be required in subsequent steps.
In this example, the file was written to /opt/keystore.dat; that is, the location defined by the

key.importer.keystore.location property in keyimporter.props.

Tip: Do not delete keyimporter.props because you will need to refer to it again when editing web.xml
(see Modifying the web.xml file for Key Store access).

Tip: The source code of the Key Importer tool is provided in $KM_INSTALL_DIR/examples/
keyimporter.

Also see the keyimporter.props configuration reference section.

43

58

Integrating KeyMaster with a hardware Key Store

42© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

10.4 Verifying the key import operation

Verify that the import operation detailed in Importing the private key file and certificate into the Key
Store was successful.

Caplin provides a tool called Key Import Verifier for this purpose. This tool works by attempting to load
the Key Store and retrieve the key from it.

The format of the command to run Key Import Verifier is:

java –classpath lib/keymaster.jar:<JCE-provider-classpath>
com.caplin.keymaster.keyimporter.KeyImportVerifier <key-importer-
properties-file>

where:

<JCE-provider-classpath> is the Java classpath of the JCE provider class.
The JCE provider class is normally provided by the supplier of the Key Store hardware, and is the
class referenced by the key.importer.security.provider.class.name property in

keyimporter.props. <JCE-provider-classpath> can, of course, be the name of a JAR file
containing the required class.

<key-importer-properties-file> is the path name of the properties file containing the
information needed to import the key.

Example command on Linux, Sun Solaris, or Windows:

java –classpath lib/keymaster.jar;/opt/nfast/java/classes/nCipherKM.jar
com.caplin.keymaster.keyimporter.KeyImportVerifier examples/keyimporter.
props

In this example the <JCE-provider-classpath> is the JAR file path /opt/nfast/java/classes/
nCipherKM.jar.

<key-importer-properties-file> is the same properties file that was used to import the keys (see
Importing the private key file and certificate into the Key Store), and contains all of the information
needed to verify that the import operation was successful.

Key Import Verifier attempts to retrieve the key from the Key Store and uses it to sign some text. Key
Import Verifier produces the following output if it is successful:

Key Import Verifier started
Adding security provider with class name=com.ncipher.provider.km.nCipherKM ... done
Getting KeyStore instance with type=ncipher.sworld, provider=nCipherKM ... done
Loading KeyStore from file=/opt/keystore.dat with passphrase=null ... done
Retrieving key with id=privatekey and passphrase=null ... done
Casting retrieved key into a PrivateKey instance ...done
Generating Signature object with algorithm=SHA256withRSA and provider=nCipherKM ... done
Initialising Signature object ... done
Signing some text ... done
Key verification successful.

Tip: The source code of the Key Import Verifier tool is provided in $KM_INSTALL_DIR/examples/
keyimporter.

40

40

Integrating KeyMaster with a hardware Key Store

43© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

10.5 Installing the required libraries

The JCE provider class must be available to the KeyMaster servlet on your application server. This may be
a Java class file, or it may be contained within a JAR file.

For example, if the key.importer.security.provider.class.name property in keyimporter.props
has the value com.ncipher.provider.km.nCipherKM, and this class exists in the file nCipherKM.jar
, then nCipherKM.jar must be in the classpath of the KeyMaster servlet.

The correct location to put the class file varies depending on the application server used. For example, if
you are using a Tomcat server, the libraries should be placed in the directory $SERVER_HOME/webapps/
keymaster/WEB-INF/lib.

10.6 Modifying the web.xml file for Key Store access

In the KeyMaster web.xml configuration file, edit the parameters applying to the
StandardKeyMaster servlet, so that the KeyMaster Signature Generator knows how to retrieve the
private encryption key from the Key Store:

 <servlet>
 <servlet-name>StandardKeyMaster</servlet-name>
 <servlet-class>com.caplin.keymaster.servlet.StandardKeyMaster</servlet-class>

 <init-param>
 ...
 </init-param>
 ...
 </servlet>

Tip: The web.xml file is located in a directory of your web application server; the precise directory

path depends on which application server you are using, but it usually ends in WEB-INF/. For

example, if KeyMaster is deployed on a Tomcat application server, web.xml is in the directory

$SERVER_HOME/webapps/keymaster/WEB-INF/.

Tip: Some of the values that you need to set up in web.xml can be found in your keyimporter.props
file.

Edit web.xml as follows:

1. Find the entry called encrypting.generator.keystore.type:

<init-param>
 <param-name>encrypting.generator.keystore.type</param-name>
 <param-value>standard</param-value>
 <description>
 Optional parameter that accepts the values “standard” or “hardware”.
 Will default to “standard” if not present
 </description>
</init-param>

Integrating KeyMaster with a hardware Key Store

44© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Change the content of the <param-value> tag from standard to hardware.

Example:

<init-param>
 <param-name>encrypting.generator.keystore.type</param-name>
 <param-value>hardware</param-value>
 <description>
 Optional parameter that accepts the values “standard” or “hardware”.
 Will default to “standard” if not present
 </description>
</init-param>

Note: Since encrypting.generator.keystore.type is an optional parameter it may not exist in

 web.xml. If this is the case then the parameter must be added with the value hardware as
shown in the previous example.

2. Find the entry called encrypting.generator.key.identifier:

<init-param>
 <param-name>encrypting.generator.key.identifier</param-name>
 <param-value>keyid1</param-value>
 <description>Name of the server the token is generated for.</description>
</init-param>

Change the content of the <param-value> tag to the alias of the private encryption key in the Key

Store. This will be the value of the key.importer.private.key.alias property in keyimporter.
props. For example, if the key.importer.private.key.alias property was assigned the value

privatekey, then web.xml should be edited like this:

Example:

<init-param>
<param-name>encrypting.generator.key.identifier</param-name>
<param-value>privatekey</param-value>
<description>Name of the server the token is generated for.</description>

</init-param>

3. Remove the encrypting.generator.private.key.store.filename property, as it is not
used when KeyMaster is interacting with a hardware Key Store:

<init-param>
 <param-name>encrypting.generator.private.key.store.filename</param-name>
 <param-value>/Caplin/KeyMaster/privatekey.store</param-value>
 <description>File name and location for the private key</description>
</init-param>

Integrating KeyMaster with a hardware Key Store

45© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

4. Find the entry called encrypting.generator.security.provider.class.name:

<init-param>
 <param-name>encrypting.generator.security.provider.class.name</param-name>
 <param-value>org.bouncycastle.jce.provider.BouncyCastleProvider</param-value>
 <description>KeyMaster encrypting class</description>
</init-param>

Change the content of the <param-value> tag to the new JCE provider class name. This will be the

value of the key.importer.security.provider.class.name property in keyimporter.props.
For example, if the key.importer.security.provider.class.name property was assigned

the value com.ncipher.provider.km.nCipherKM, then web.xml should be edited like this:

Example:

<init-param>
...<param-name>encrypting.generator.security.provider.class.name</param-name>
...<param-value>com.ncipher.provider.km.nCipherKM</param-value>
...<description>KeyMaster encrypting class</description>
</init-param>

5. Find the entry called encrypting.generator.security.provider.name:

<init-param>
...<param-name>encrypting.generator.security.provider.name</param-name>
...<param-value>BC</param-value>
...<description>
 KeyMaster security provider - the name of the JCE provider.
 </description>
</init-param>

Change the content of the <param-value> tag to the new JCE provider name. This will be the value

of the key.importer.keystore.provider.name property in keyimporter.props. For example, if
the key.importer.keystore.provider.name property was assigned the value nCipherKM,

then web.xml should be edited like this:

Example:

<init-param>
<param-name>encrypting.generator.security.provider.name</param-name>
...<param-value>nCipherKM</param-value>
...<description>
 KeyMaster security provider - the name of the JCE provider.
 </description>
</init-param>

Integrating KeyMaster with a hardware Key Store

46© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

6. Add an entry called encrypting.generator.hardware.keystore.type where the content of

the <param-value> tag matches the value entered in keyimporter.props for the key.importer.
keystore.type property. For example, if the key.importer.keystore.type property was

assigned the value ncipherkm.sworld, then the following entry should be added to web.xml:

Example:

<init-param>
 <param-name>encrypting.generator.hardware.keystore.type</param-name>
 <param-value>ncipherkm.sworld</param-value>
</init-param>

7. Add an entry called encrypting.generator.hardware.keystore.keyfile where the content

of the <param-value> tag matches the value entered in keyimporter.props for the key.
importer.keystore.location property. This will be the location and filename of the file
generated by Key Importer. For example, if the key.importer.keystore.location property
was assigned the value /opt/keystore.dat, then the following entry should be added to web.xml:

Example:

<init-param>
 <param-name>encrypting.generator.hardware.keystore.keyfile</param-name>
 <param-value>/opt/keystore.dat</param-value>
</init-param>

8. Find the entry called encrypting.generator.signature.algorithm:

<init-param>
 <param-name>encrypting.generator.signature.algorithm</param-name>
 <param-value>MD5withRSA</param-value>
 <description>
 Optional parameter to set the algorithm used for signatures.
 Will default to MD5withRSA if this parameter is not present.
 </description>
</init-param>

This parameter defines the algorithm used to create digital signatures using the private key, and
takes one of the values MD5withRSA or SHA256withRSA. You will need to change the signature
generation algorithm if your JCE provider does not provide the MD5withRSA algorithm (which is the
case with nCipher, for example).

Example:

<init-param>
 <param-name>encrypting.generator.signature.algorithm</param-name>
 <param-value>SHA256withRSA</param-value>
 <description>
 Optional parameter to set the algorithm used for signatures.
 Will default to MD5withRSA if this parameter is not present.
 </description>
</init-param>

Integrating KeyMaster with a hardware Key Store

47© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Note: Since encrypting.generator.signature.algorithm is an optional parameter it may not

exist in web.xml. If this is the case, add this parameter with the value MD5withRSA or
SHA256withRSA, as shown in previous example.
MD5withRSA and SHA256withRSA are the only algorithms that can be used to generate
KeyMaster tokens.

Tip: The algorithm you select will also need to be added to the Liberator configuration. See
Configuring Liberator to use a new public key .

9. If your Key Store is protected by a passphrase, then add an entry called encrypting.generator.
hardware.keystore.passphrase where the content of the <param-value> tag matches the

value entered in keyimporter.props for the key.importer.keystore.passphrase property. For
example, if the key.importer.keystore.passphrase property was assigned the value

keystorepassphrase, then this entry should be added to web.xml:

Example:

<init-param>
 <param-name>encrypting.generator.hardware.keystore.passphrase</param-name>
 <param-value>keystorepassphrase</param-value>
</init-param>

If your Key Store is not protected by a passphrase, then you do not need to add anything.

10. If you chose to protect your private encryption key with a passphrase, then add an entry called
encrypting.generator.hardware.key.passphrase where the content of the <param-

value> tag matches the value entered in keyimporter.props for the key.importer.key.
passphrase property. For example, if the key.importer.key.passphrase property was

assigned the value keypassphrase, then this entry should be added to web.xml:

Example:

<init-param>
...<param-name>encrypting.generator.hardware.key.passphrase</param-name>
...<param-value>keypassphrase</param-value>
</init-param>

If key.importer.key.passphrase was not defined in keyimporter.props, then the key is not
protected by a passphrase and no configuration needs to be added.

Tip: For more information on configuring the KeyMaster servlet in the web.xml file, see the web.xml
configuration reference section.

Note: For the configuration changes to take effect, you will need to reload the KeyMaster web
application and possibly restart the application server.

48

60

Integrating KeyMaster with a hardware Key Store

48© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

10.7 Testing KeyMaster works with the Key Store

Before testing that KeyMaster works with the Key Store, make sure you have:

Imported the private encryption key into the hardware Key Store (see Importing the key file and
certificate into the Key Store).

Made the required JCE provider class available to the KeyMaster Signature Generator (see Installing
the required libraries).

Made the appropriate edits to the KeyMaster web.xml configuration file (see Modifying the web.xml
file for Key Store access).

To test KeyMaster, follow the instructions in Testing KeyMaster with the application server .

10.8 Configuring Liberator to use a new public key

You may need to modify the add-sigkey item in the Liberator’s configuration file etc/rttpd.conf:

If the filename and/or path of the public key file has been changed, modify the keyfile parameter to define the
new pathname.

If the digital signature algorithm has been changed (see encrypting.generator.signature.
algorithm in Modifying the web.xml file for Key Store access), add a signing-
algorithm parameter to specify the new algorithm:

Example of edited Liberator configuration item add-sigkey:

AUTH
##
auth-module xmlauth
add-sigkey
key-id testkey
timeout 600
keyfile %r/etc/NewPublicKey.der
signing-algorithm sha256
end-sigkey

Note: The signing-algorithm configuration parameter is only available in Liberator versions 4.5.7 and
above.
The only supported values are md5 and sha256.
Earlier versions of Liberator use the MD5withRSA digital signature algorithm, which is
compatible with KeyMaster's default setting.

40

43

43

22

46 43

Integrating KeyMaster with a hardware Key Store

49© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

10.9 Testing Liberator works with the new public key

Restart the Liberator and test it with KeyMaster
(see Testing KeyMaster with Liberator).

10.10 Tidying up

Securely delete (using a software shredder for example):

– The copies of the private key and certificate that are not secured in the Key Store.

– The old keys and certificates that were generated when you first installed KeyMaster.

30

Customizing KeyMaster

50© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

11 Customizing KeyMaster

 This section does not apply to KeyMaster.NET.

The KeyMaster distribution kit contains a standard Java version of the product (“Standard KeyMaster”).
This can configured by modifying various configuration files (see the sections More about configuring
KeyMaster and Configuration reference). However, in many instances KeyMaster will need to be
integrated into an existing single sign-on system, and this may require some product customization
involving modifications and additions to KeyMaster's Java code.

The KeyMaster Java API Reference contains the specifications of the public KeyMaster Java classes that
can be called and extended to produce customized versions of KeyMaster.

When you customize KeyMaster, you may also need to add or modify certain parameters that are
specifically concerned with specifying Java modules. These parameters are defined in the web.xml and

keygen.props files.

If you have customized KeyMaster to use a different encryption class (the JCE provider's Java class):

Change the value of encrypting.generator.security.provider.class.name in web.xml,
and key.generator.security.provider.class.name in keygen.props, to the fully qualified
name of the new Java class.

Also change the value of encrypting.generator.security.provider.name.in web.xml and

key.generator.security.provider.name in keygen.props.

If you have customized KeyMaster to use a different class to obtain the user name:

Change the value of the user.credential.provider parameter in web.xml.
See Adding the user name to the user credentials token .

If you have added a new response formatter Java class to KeyMaster:

Add a new formatter-type-{formatter_name} parameter in web.xml, to define the name of
the new class.

A response formatter class formats KeyMaster's response to a request for a user credentials token.

If you have implemented a custom version of the KeyMaster Signature Generator:

When you want to test the KeyMaster installation deploying this servlet, you must first edit the
keymaster-config.js file (see Configuring the test files in Testing KeyMaster with Liberator).

Edit the declaration of the l_sKeyMasterUrl variable to point to the URL of the custom KeyMaster
servlet.
The following line must be changed:

var l_sKeyMasterUrl = "/keymaster/servlet/StandardKeyMaster";

Tip: For more information about the configuration parameters mentioned above, see the sections on
 web.xml configuration reference and keygen.props configuration reference .

54 56

54

30 30

60 56

Troubleshooting

51© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

12 Troubleshooting

 This section and its subsections apply to Java-based KeyMaster and to KeyMaster.NET.

This section contains additional information on how to ensure that your KeyMaster installation runs
correctly.

12.1 Synchronizing the servers

Make sure that the clock on the server running the Liberator is synchronized with the clock on the server
where KeyMaster Signature Generator is running. If the clocks on these two servers are set to different
times, the Liberator may falsely decide that a user credentials token has expired and it is likely to reject all
user credentials tokens for this reason.

If the clocks are not correctly synchronized you will see the following message in the Liberator log file:

NOTIFY: Signature expired for key_id [key id] - [timestamp] denying login

Also see Liberator log file messages

12.2 Liberator log file messages

The following table lists and explains the messages relating to KeyMaster authentication that can appear in
the Liberator event log file (var/event-rttpd.log).

Log Message Description

INFO: Token <[token]> is
validated for <[key_id]> testkey

The specified user credentials token called [token] has been
successfully validated.

NOTIFY: Signature expired for
key_id [key id] - [timestamp]
denying login

A user credentials token has expired. A token is valid from the
time it was created plus the number of seconds specified in
the signature-validtime or timeout configuration item in rttpd.
conf (see Modifying the Liberator configuration file).

Make sure that clock on the server running the Liberator
is synchronized with the clock on the server where
KeyMaster Signature Generator is running.

If the clocks on these two servers are set to different
times, the Liberator may falsely decide that a user
credentials token has expired (it is likely to reject all user
credentials tokens for this reason).

ERROR: Cannot load keyfile
<[filename]>

The DER format public key file called [filename], specified
in rttpd.conf, is missing, corrupt or in the wrong format.

Check that the key file configuration is specified

correctly in rttp.conf; look at the key-id configuration

item in the add-sigkey item group (see Modifying the

Liberator configuration file).

51

24

24

Troubleshooting

52© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Log Message Description

ERROR: Could not find key_id
[key id]

When the Auth Module asked for a check on a user
credentials token, the key-id was found to be unknown.

Check that the key-ids match between rttpd.conf and
the Auth Module configuration file (for example the
users.xml file). Look in rttpd.conf at the key-id
configuration item in the add-sigkey item group; in
users.xml look at the sigkey-id attribute for each
<USER> tag.

ERROR: Malformed token
<[KeyMaster token]>
for key_id [key id]

The user credentials token provided to the Liberator is in the
wrong format. In Standard KeyMaster it has the following
format:
<base64 encoded signature>
~<timestamp>~<sequence number>.

ERROR: Token verification failed
for key_id
[key id] <[token]>

The user credentials token failed to verify upon decryption.
Either the key used to decrypt the signature does not match the
key that KeyMaster used to encrypt it, or the token has been
tampered with or corrupted in some way.

ERROR: Malformed timestamp for
key_id [key id] <[token]>

The timestamp in the user credentials token is badly formed.
It should have the format YYYYMMDDHHMMSS (for example,
20050126122011).

ERROR: Token [token] has already
logged in for key_id [key id]

The user credentials token has already been used; a token can
only be used once.

CRITICAL: Could not locate key
file <etc/publickey1.der> for
add-sigkey/key-id < testkey >

The entry in the rttpd.conf file for the public key could not be
mapped to a public DER key file in the specified (or default)
directory. Either the rttpd.conf entry is invalid, or the key file is
missing.

Look in rttpd.conf at the keyfile configuration item in
the
add-sigkey item group. Check that the specified name
and directory of the public DER key file match the name
and location of the actual file.

Check that the key file is actually present in the
specified location.

Note: The Liberator will fail to start if this error occurs (the
Liberator displays the error message on the screen as well as
logging it).

CRITICAL: No keyfile defined for
add-sigkey/key-id < testkey >

The entry in the rttpd.conf file for the public key does not
specify a key file.

Look in rttpd.conf at the add-sigkey configuration item
group; make sure that there is a keyfile configuration
item in this group (see Modifying the Liberator
configuration file).

Note: The Liberator will fail to start if this error occurs (the
Liberator displays the error message on the screen as well as
logging it).

CRITICAL: No key-id for an
add-sigkey configuration group

The entry in the rttpd.conf file for the public key does not
specify a key id.

Look in rttpd.conf at the add-sigkey configuration item
group; make sure that there is a key-id configuration
item in this group (see Modifying the Liberator
configuration file).

Note: The Liberator will fail to start if this error occurs (the
Liberator displays the error message on the screen as well as
logging it).

24

24

Troubleshooting

53© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Log Message Description

ERROR: 4012903328:error:0407006A:
rsa routines:
RSA_padding_check_PKCS1_type_1:
block type is not
01:rsa_pk1.c:100:

ERROR:4012903328:error:04067072:
rsa routines:
RSA_EAY_PUBLIC_DECRYPT:
padding check failed:
rsa_eay.c:699:

ERROR: Token verification failed
for key_id <testkey>
<AAAtokenBBB>

The public / private key token verification has failed.

Verify that the private and public keys used in
KeyMaster and the Liberator Auth Module are valid.

Check that the publickey.der file referenced in the

rttpd.conf add-sigkey configuration item group is not
corrupt. This is a binary file which can be corrupted if it
is transferred via ftp in ASCII mode.

More about configuring Keymaster

54© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

13 More about configuring Keymaster

The following sections contain information about configuring additional features of KeyMaster.

13.1 Configuration in web.xml

 This section does not apply to KeyMaster.NET.

When deploying Standard Java KeyMaster, you modify the configuration file web.xml to specify the
location of the private encryption key, and to define the KeyMaster error logging environment (see
Modifying the web.xml configuration file). The web.xml file can also contain a number of other
configuration settings that determine the way Standard KeyMaster behaves, and some configuration
settings that you modify when KeyMaster has been customized.

The format of the web.xml file is specified in the section on web.xml configuration reference . The
configuration items that you can specify in this file are defined in web.xml parameters .

13.2 Adding the user name to the user credentials token

 This section does not apply to KeyMaster.NET.

If you deploy Standard Java KeyMaster with the default web.xml settings (plus the adjustments defined in
Modifying the web.xml configuration file) , the generated user credentials tokens will contain just a date-
time stamp and a unique sequence number, plus a digital signature of both these items.

For additional security you can include in the token the user name that was specified when the end user
first signed on to the system.

There are two web.xml parameter settings that control how this is done.

If you set the encrypting.encode.extra.data parameter to enabled, the KeyMaster
Signature Generator will put the user name in the user credentials token and include it in the digital
signature.

The setting of http.remote.user determines where the user name is obtained from. The
default setting of this parameter causes the KeyMaster Signature Generator to obtain the user name
from an HTTP request parameter sent by the application (?username=...). This will not be secure
if the client can access the user name. You can change the setting so that the servlet instead obtains
the user name from the REMOTE_USER attribute of the HTTP header (assuming the single sign-on
system supports transmitting the user name in this way).

Tip: Adding the user name to the user credentials token will guard against the token being hijacked
and reused by someone other than the person who originally requested the token.

You can also implement a custom class that obtains the user name. You do this by replacing (or
extending) the Standard KeyMaster class com.caplin.keymaster.servlet.UserCredentialsProvider . For
example, the custom class could obtain the user name from a cookie passed between the client web page
and the application server. You must change the value of the user.credential.provider

parameter in web.xml to point to the new custom class.

16

60

68

16

69

78

82

More about configuring Keymaster

55© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

For more information on the UserCredentialsProvider class see the Javadoc reference documentation
for the Caplin KeyMaster SDK.

Also see Making KeyMaster production ready

13.3 Protocol and domain compatibility

 This section applies to Java-based KeyMaster and to KeyMaster.NET.

When KeyMaster is in use, the client web browser will access both the Liberator (via a StreamLink
connection) and KeyMaster (via a standard web connection).

Access to KeyMaster must be through the same protocol, HTTP or HTTPS, as the protocol used by the
Liberator.

For example, assume the Liberator is at myliberator.example.com and KeyMaster is at
keymaster.example.com.
If the connection to the Liberator is through http://myliberator.example.com,then KeyMaster at
must be accessed at http://keymaster.example.com. Conversely, if the connection to the Liberator
is through https://myliberator.example.com, then KeyMaster must be accessed at https:
//keymaster.example.com

If the Liberator is on a different machine to the web application server where KeyMaster resides, then the
KeyMaster and Liberator must share a common domain. (More exactly, the StreamLink enabled page that
the client application uses to access the Liberator must share a common domain with the Liberator.) For
example, an application server at myserver.example.com and a Liberator at myliberator.
example.com share the domain, example.com.
In this situation, the common domain must be defined to StreamLink. In StreamLink for Browsers this is
done using the SL4B commondomain property; for more information see the StreamLink for Browsers
API Reference.

36

Configuration reference

56© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

14 Configuration reference

 This section and its subsections do not apply to KeyMaster.NET.

This is the reference information for Java KeyMaster's configuration files.

14.1 keygen.props configuration reference

This section contains the reference information for the keygen.props configuration file. keygen.props is a
properties file defining the characteristics of the KeyMaster Key Generator servlet. There is an example of
this file in $KM_INSTALL_DIR/examples/.

File format:

The file contains property name/value pairs. Each pair is separated with an '=' character, and each
property must be defined on its own line.

Example:

key.generator.private.key.store.filename=privatekey.store

Note: keygen.props must contain an entry for each of the properties defined in the following table.

keygen.props properties

keygen.props property name Example setting Description

key.generator.private.key.
store.filename

privatekey.store The name and location of the file that the
private key will be stored in.

key.generator.public.key.
store.filename

publickey.store The name and location of the file that the
public key will be stored in.

key.generator.public.key.der.
filename

publickey.der The name and location of the DER
formatted public key file.
The file name must end in '.der'

key.generator.key.size 1024 The size of the generated key.
Both the public and private keys will be this
size.

key.generator.security.
provider.class.name

org.bouncycastle.
jce.provider.
BouncyCastleProvider

The fully qualified name of the JCE
provider's Java class that generates the
encryption key pairs.

This class must also be in the Java classpath
of the KeyMaster Key Generator servlet (it is
usually in a JAR file that is included in the
classpath – see Generating the Required
Keys).

The class name must be the same as that
specified in the parameter
encrypting.generator.security.
provider.class.name

in the web.xml configuration file.

Also see Note 1 below .

84

84

9

74

74

57

Configuration reference

57© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

keygen.props property name Example setting Description

key.generator.security.
provider.name

BC The name of the provider of the Java class
used to generate the encryption key pairs.

This name must be the same as that specified
in the parameter
encrypting.generator.security.
provider.name

in the web.xml configuration file.

Also see Note 1 below .

key.generator.Level INFO Defines the Java logging level for the
KeyMaster Key Generator's log file (see the
key.generator.FilenameAttribute

property). In the example keygen.props file
shipped with KeyMaster the logging level is
set to ALL (see the example below), which
provides a very detailed level of logging for
debug purposes.

Also see Note 2 and the Tip below.

key.generator.
FilenameAttribute

keygen.log Defines the name and location of the
KeyMaster Key Generator's log file. The
location of a newly created log file is relative
to the user's current directory at the time the
Key Generator is run.

Note that each time the Key Generator is run
the contents of any existing log file are
overwritten; the new log entries are not
appended to the file.

Note 1: key.generator.security.provider.class.name and
key.generator.security.provider.name
Only change these settings if you have customized KeyMaster to use a different encryption
class.
Make sure the settings correspond to the values of the web.xml parameters
encrypting.generator.security.provider.class.name and
encrypting.generator.security.provider.name , respectively.

Note 2: key.generator.Level
In a production system it is recommend that the logging level normally be set to SEVERE or
WARNING.

Tip: key.generator.Level
The possible logging levels are defined in the standard Java documentation under
java.util.logging.Level.

Example keygen.props file:

key.generator.private.key.store.filename=privatekey.store
key.generator.key.size=1024
key.generator.public.key.store.filename=publickey.store
key.generator.public.key.der.filename=publickey.der
key.generator.security.provider.class.name=
 org.bouncycastle.jce.provider.BouncyCastleProvider
key.generator.security.provider.name=BC
key.generator.Level=ALL
key.generator.FilenameAttribute=keygen.log

75

75

57

57 57

74

75

Configuration reference

58© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

14.2 keyimporter.props configuration reference

This section contains the reference information for the keyimporter.props configuration file. keyimporter.
props is a properties file defining the characteristics of the KeyMaster Key Importer tool for importing key

files into a hardware Key Store. There is an example of this file in $KM_INSTALL_DIR/examples/.

File format:

The file contains property name/value pairs. Each pair is separated with an '=' character, and each
property must be defined on its own line.

Example:

key.importer.keystore.type=ncipher.sworld

Note: keyimporter.props must contain an entry for each of the properties defined in the following
table.

keyimporter.props properties

keyimporter.props property
name

Example setting Description

key.importer.certificate.
alias

certificate The identifier to use as a reference to the certificate in
the Java KeyStore class of the JCE.

key.importer.certificate.
location

/opt/cert.crt The name and location of the certificate to use when
adding the key to the Java KeyStore class of the
JCE.

key.importer.key.
passphrase

mykeypassphrase Optional parameter defining a passphrase to access
the private key stored in the Key Store.

key.importer.keystore.
location

/opt/keystore.
dat

Key Importer generates a file that defines how
KeyMaster can access the Key Store. This property
defines the name and directory path of this file.

key.importer.keystore.
provider.name

nCipherKM The name of the Key Store to which the private key
and certificate are to be loaded. This information is
required for the Java KeyStore class of the JCE – it
is the second argument of the getInstance() method.
The value required is normally specified by the
supplier of the Key Store hardware.

key.importer.keystore.
passphrase

mykeystorepass
phrase

Optional parameter defining a passphrase to access
the Key Store.

key.importer.keystore.
type

ncipher.sworld The type of Key Store to which the private key and
certificate are to be loaded. This information is
required for the Java KeyStore class of the JCE – it
is the first argument of the getInstance() method.
The value required is normally specified by the
supplier of the Key Store hardware.

key.importer.private.
key.alias

privatekey The identifier to use as a reference to the key in the
Java KeyStore class of the JCE.

key.importer.private. /opt/privatekey The name and location of the private key to import

Configuration reference

59© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

keyimporter.props property
name

Example setting Description

key.location .der into the Key Store.

key.importer.security.
provider.class.name

com.ncipher.
provider.km.
nCipherKM

The fully qualified name of the JCE provider’s Java
class that generates the encryption key pairs. This is
normally specified by the supplier of the Key Store
hardware.

Example keyimporter.props file:

key.importer.security.provider.class.name=com.ncipher.provider.km.nCipherKM
key.importer.keystore.type=ncipher.sworld
key.importer.keystore.provider.name=nCipherKM
key.importer.keystore.location=/opt/keystore.dat
key.importer.private.key.location=/opt/privatekey.der
key.importer.private.key.alias=privatekey
key.importer.certificate.location=/opt/cert.crt
key.importer.certificate.alias=certificate
key.importer.keystore.passphrase=keystorepassphrase
key.importer.key.passphrase=keypassphrase

Configuration reference

60© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

14.3 web.xml configuration reference

 This section and its subsections do not apply to KeyMaster.NET.

This section contains the reference information for the web.xml configuration file. This
configuration file defines the characteristics of the KeyMaster Signature Generator (the servlet
that generates user credentials tokens). KeyMaster is shipped with a default web.xml file. You
can edit this file and add to it, as required, to change certain aspects of the servlet's behaviour.

The general format of the file is:

<web-app>

 <display-name>Caplin KeyMaster</display-name>
 <description>Caplin KeyMaster Servlet</description>

 <servlet>
 <servlet-name>StandardKeyMaster</servlet-name>
 <servlet-class>com.caplin.keymaster.servlet.StandardKeyMaster</servlet-class>

 <init-param>
 <param-name>name-of-a-configuration-parameter</param-name>
 <param-value>value-of-configuration-parameter</param-value>
 <description>Description of configuration parameter</description>
 </init-param>
 ...
 <init-param>
 <param-name>name-of-another-configuration-parameter</param-name>
 <param-value>value-of-another-configuration-parameter</param-value>
 <description>Description of another configuration parameter</description>
 </init-param>
 ...
 </servlet>

 <servlet>
 <servlet-name>XHRKeymaster</servlet-name>
 <servlet-class>com.caplin.keymaster.servlet.KeyMasterXHRFrame</servlet-class>

 <init-param>
 <param-name>name-of-a-configuration-parameter</param-name>
 <param-value>value-of-configuration-parameter</param-value>
 <description>Description of configuration parameter</description>
 </init-param>
 ...
 </servlet>

 <servlet>
 <servlet-name>Poll</servlet-name>
 <servlet-class>com.caplin.keymaster.servlet.Poll</servlet-class>
 </servlet>

 <servlet>
 <servlet-name>Dependencies</servlet-name>
 <servlet-class>com.caplin.keymaster.servlet.Dependencies</servlet-class>
 </servlet>

 <servlet>
 ...
 </servlet>

continued...

Configuration reference

61© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

...continued

 <servlet-mapping>
 <servlet-name>StandardKeyMaster</servlet-name>
 <url-pattern>/servlet/StandardKeyMaster</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>XHRKeymaster</servlet-name>
 <url-pattern>/servlet/XHRKeymaster</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>Poll</servlet-name>
 <url-pattern>/servlet/Poll</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>Dependencies</servlet-name>
 <url-pattern>/servlet/dependencies/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 ...
 </servlet-mapping>

</web-app>

The web.xml file shipped with Standard KeyMaster contains definitions for four servlets, as highlighted in
the previous file format example. The servlets are StandardKeyMaster, XHRKeymaster, Poll, and
Dependencies, of which the last three are used to support accessing KeyMaster from StreamLink for
Browsers. The Poll and Dependencies servlets do not require any parameters, so their <servlet>
tags do not have any <init-param> child tags.

The next sections define the XML tags in alphabetical order.

Each section contains the following information:

The tag name.

A brief definition of what the tag does.

A list of the immediate children of the tag, if any.

More explanation of how to use the tag, if required.

A code example showing the tag in use.

Tip: The items that you will most likely to want to change are the parameters defined in the child
tags of
<init-param> . These are defined in the section on web.xml parameters .63 68

Configuration reference

62© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

<description>

Tag: <description>

This tag is used to provide a description of the contents of a <display-name> or <param-name>
tag.

Attributes: None.

The tag has no child tags.

Example 1:

<display-name>Caplin KeyMaster</display-name>
<description>
Caplin KeyMaster Servlet
</description>

Example 2:

<init-param>
 <param-name>encrypting.generator.private.key.store.filename</param-name>
 <param-value>/Caplin/KeyMaster-4.4.0/privatekey.store</param-value>
 <description>File name and location for the private key</description>
</init-param>

<display-name>

Tag: <display-name>

Defines the name of the Java web application.

Note: Do not modify this tag unless you are implementing a customized version of Caplin KeyMaster.

Attributes: None.

This tag has no child tags. It can be followed by a <description> tag.

Example:

<display-name>Caplin KeyMaster</display-name>
<description>
Caplin KeyMaster Servlet
</description>

62 63

62

Configuration reference

63© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

<init-param>

Tag: <init-param>

This tag defines a KeyMaster servlet configuration parameter.

Attributes: None.

The immediate children of the <init-param> tag are a <param-name> tag, followed by a <param-
value> tag and an optional <description> tag.

Example:

<init-param>
 <param-name>encrypting.generator.private.key.store.filename</param-name>
 <param-value>/Caplin/KeyMaster-4.4.0/privatekey.store</param-value>
 <description>File name and location for the private key</description>
</init-param>

<param-name>

Tag: <param-name>

This tag defines the name of a KeyMaster servlet configuration parameter.

Attributes: None.

This tag has no child tags.

Example:

<init-param>
 <param-name>encrypting.generator.private.key.store.filename</param-name>
 <param-value>/Caplin/KeyMaster-4.4.0/privatekey.store</param-value>
 <description>File name and location for the private key</description>
</init-param>

The valid parameter names are defined in the web.xml parameters section.

63

64 62

68

Configuration reference

64© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

<param-value>

Tag: <param-value>

This tag defines the value of the servlet configuration parameter whose name is defined in the associated
<param-name> tag.

Attributes: None.

This tag has no child tags.

Example:

<init-param>
 <param-name>encrypting.generator.private.key.store.filename</param-name>
 <param-value>/Caplin/KeyMaster-4.4.0/privatekey.store</param-value>
 <description>File name and location for the private key</description>
</init-param>

<servlet>

Tag: <servlet>

Defines the configuration of a KeyMaster servlet.

Attributes: None.

The immediate children of the <servlet> tag are a <servlet-name> and <servlet-class >
tag, followed by zero or more <init-param> tags.

Example:

<servlet>
 <servlet-name>StandardKeyMaster</servlet-name>
 <servlet-class>com.caplin.keymaster.servlet.StandardKeyMaster</servlet-class>

 <init-param>
 <param-name>encrypting.generator.key.identifier</param-name>
 <param-value>keyid1</param-value>
 <description>The value that was passed as the second argument to the
 Key Generator when the key was created.
 </description>
 </init-param>

 </init-param>

 <init-param>
 <param-name>encrypting.generator.private.key.store.filename</param-name>
 <param-value>/Caplin/KeyMaster-4.4.0/privatekey.store</param-value>
 <description>File name and location for the private key</description>
 </init-param>

</servlet>

63

66 65

63

Configuration reference

65© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

<servlet-class>

Tag: <servlet-class>

This tag defines the name of the Java class that implements a servlet.

Note: Do not modify this tag unless you are implementing a customized version of Caplin KeyMaster.

Attributes: None.

The tag has no child tags.

Example:

<servlet>
 <servlet-name>StandardKeyMaster</servlet-name>
 <servlet-class>com.caplin.keymaster.servlet.StandardKeyMaster</servlet-class>
...
</servlet>

This tag is used to define the name of the Java class that implements the KeyMaster Signature Generator,
as shown in the example above.

<servlet-mapping>

Tag: <servlet-mapping>

This tag defines the mapping between a servlet and the URL that invokes it.

Attributes: None.

The immediate children of the <servlet-mapping> tag are a <servlet-name> followed by a
<url-pattern> tag.

Example:

<servlet-mapping>
 <servlet-name>StandardKeyMaster</servlet-name>
 <url-pattern>/servlet/StandardKeyMaster</url-pattern>
</servlet-mapping>

66

66

Configuration reference

66© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

<servlet-name>

Tag: <servlet-name>

This tag defines the name of a servlet.

Note: Do not modify this tag unless you are implementing a customized version of Caplin KeyMaster.

Attributes: None.

The tag has no child tags.

Example:

<servlet>
 <servlet-name>StandardKeyMaster</servlet-name>
 <servlet-class>com.caplin.keymaster.servlet.StandardKeyMaster</servlet-class>
...
</servlet>

This tag is used to define the name of the KeyMaster Signature Generator, as shown in the example
above.

It is also used in a <servlet-mapping> tag.

<url-pattern>

Tag: <url-pattern>

This tag defines the URL that invokes the servlet named in the associated <servlet-name> tag.

Note: Do not modify the <url-pattern> tag whose associated <servlet-name> tag has the value
 StandardKeyMaster, unless you are implementing a customized version of Caplin
KeyMaster.

Attributes: None.

The tag has no child tags.

Example:

 <servlet-mapping>
 <servlet-name>StandardKeyMaster</servlet-name>
 <url-pattern>/servlet/StandardKeyMaster</url-pattern>
 </servlet-mapping>

65

66

Configuration reference

67© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

<web-app>

Tag: <web-app>

The root tag for configuring the servlets of a Java web application.

Attributes: None.

The immediate children of the <web-app> tag are:

a <display-name> tag, followed by

an optional <description> tag, followed by

one or more <servlet> tags, followed by

one or more <servlet-mapping > tags.

There must be a separate <servlet-mapping> tag for each <servlet> tag.

For KeyMaster there only needs to be one <servlet> tag, to define the configuration of the Signature
Generator, and a corresponding <servlet-mapping> tag.

Example:

<web-app>

 <display-name>Caplin KeyMaster</display-name>
 <description>Caplin KeyMaster Servlet</description>

 <servlet>
 ...
 </servlet>

 <servlet-mapping>
 ...
 </servlet-mapping>

</web-app>

62

62

64

65

Configuration reference

68© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

web.xml parameters

 This section and its subsections do not apply to KeyMaster.NET.

The following sections define the valid parameters that can appear in the <param-name> tag (within

an <init-param> tag) in the web.xml configuration file. The list of parameters below is in
alphabetical order of parameter name.

encrypting.encode.extra.data

encrypting.generator.hardware.key.passphrase

encrypting.generator.hardware.keystore.keyfile

encrypting.generator.hardware.keystore.passphrase

encrypting.generator.hardware.keystore.type

encrypting.generator.key.identifier

encrypting.generator.keystore.type

encrypting.generator.private.key.store.filename

encrypting.generator.security.provider.class.name

encrypting.generator.security.provider.name

encrypting.generator.signature.algorithm

extra.data.provider.classname

formatter-type-{formatter_name}

formatter-type-javascript

formatter-type-streamlink

http.remote.user

keymaster.url

keymaster.poll.url

key.generator.FilenameAttribute

key.generator.Level

user.credential.provider

63

63

69

70

70

71

71

72

72

73

74

75

76

76

77

77

78

78

79

80

80

81

82

Configuration reference

69© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

encrypting.encode.extra.data

Parameter: encrypting.encode.extra.data

Required? NO

Description:

In the standard (non customized) version of KeyMaster this web.xml parameter controls whether or not the
user credentials token contains the user name in addition to the standard time stamp and sequence
number.

If encrypting.encode.extra.data is set to enabled, and the parameter extra.data.provider.
classname is not defined, the user name is put in the token and is also included in the token's digital
signature. If encrypting.encode.extra.data is not specified, or is set to any value other than
enabled, the user name is not put in the token.

You can customize KeyMaster so that the user credentials token contains other additional data, for
example entitlement information related to the user name. To do this, set encrypting.encode.extra.
data to enabled, and define the parameter extra.data.provider.classname . In this case, the
custom Java class defined by extra.data.provider.classname determines what additional data is
put in the token; it is up to the custom class to include the user name if this is required.

In the example web.xml file shipped with KeyMaster this parameter is set to disabled.

Note: The encrypting.encode.extra.data parameter only works with Caplin Liberator versions
3.6.7 and 4.0.1 or higher.

Example:

<param-name>encrypting.encode.extra.data</param-name>
<param-value>enabled</param-value>

Also see:

The http.remote.user parameter, which determines where the user name is obtained from.

The extra.data.provider.classname parameter, which defines a custom Java class that
KeyMaster uses to add extra data to the user credentials token.

76

76

78

76

Configuration reference

70© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

encrypting.generator.hardware.key.passphrase

Parameter: encrypting.generator.hardware.key.passphrase

Required? NO

Description:

This web.xml parameter defines the passphrase that KeyMaster must use to retrieve the private

encryption key from the hardware Key Store. This parameter must be included in web.xml if the private
encryption key was protected by a passphrase when imported into the Key Store. It must match the value
of the key.importer.key.passphrase property in keyimporter.props (see the keyimporter.props
configuration reference section and Importing the private key file and certificate into the Key Store .

If this parameter is not present in web.xml then KeyMaster attempts to retrieve the private encryption key
from the Key Store without supplying a passphrase.

Example:

<param-name>encrypting.generator.hardware.key.passphrase</param-name>
<param-value>
 mykeypassphrase
</param-value>

encrypting.generator.hardware.keystore.keyfile

Parameter: encrypting.generator.hardware.keystore.keyfile

Required? YES if using a hardware Key Store, otherwise NO

Description:

The Key Importer tool generates a file that defines how KeyMaster can access the Key Store. This web.
xml parameter defines the name and directory path of this file. It must have the same value as the

keyimporter.props item key.importer.keystore.location (see keyimporter.props configuration
reference).

Example:

<param-name>encrypting.generator.hardware.keystore.keyfile</param-name>
<param-value>
 /opt/keystore.dat
</param-value>

Also see:

Importing the private key file and certificate into the Key Store .

58 40

58

40

Configuration reference

71© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

encrypting.generator.hardware.keystore.passphrase

Parameter: encrypting.generator.hardware.keystore.passphrase

Required? NO

Description:

This web.xml parameter defines the passphrase that KeyMaster must use to access the hardware Key

Store. This parameter must be included in web.xml if the hardware Key Store is protected by a
passphrase. It must match the value of the key.importer.keystore.passphrase property in

keyimporter.props (see the keyimporter.props configuration reference section and Importing the
private key file and certificate into the Key Store).

If this parameter is not present in web.xml, KeyMaster attempts to access the Key Store without supplying
a passphrase.

Example:

<param-name>encrypting.generator.hardware.keystore.passphrase</param-name>
<param-value>
 keystorepassphrase
</param-value>

encrypting.generator.hardware.keystore.type

Parameter: encrypting.generator.hardware.keystore.type

Required? YES if using a hardware Key Store, otherwise NO

Description:

This web.xml parameter defines the 'type' parameter to use when KeyMaster creates a Java KeyStore
class to represent the hardware Key Store. It is the first argument of the KeyStore.getInstance() method.
The value required is normally specified by the supplier of the Key Store hardware.

Example:

<param-name>encrypting.generator.hardware.keystore.type</param-name>
<param-value>
 ncipher.sworld
</param-value>

58

40

Configuration reference

72© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

encrypting.generator.key.identifier

Parameter: encrypting.generator.key.identifier

Required? YES

Description:

This web.xml parameter is the name of the key identifier that was passed as the second argument of the
generator command when the key files were created. See Generating the Required Keys .

Example:

<param-name>encrypting.generator.key.identifier</param-name>
<param-value>keyid1</param-value>

encrypting.generator.keystore.type

Parameter: encrypting.generator.keystore.type

Required? NO

Description:

This web.xml parameter indicates whether KeyMaster should retrieve encryption keys from files held on
normal disk or from a hardware Key Store. The accepted values for this parameter are:

standard

The encryption keys are held on disk.

hardware

The encryption keys are held in a hardware Key Store.

If this parameter is not present then KeyMaster assumes the default value standard.

Example:

<param-name>encrypting.generator.keystore.type</param-name>
<param-value>
 hardware
</param-value>

9

Configuration reference

73© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

encrypting.generator.private.key.store.filename

Parameter: encrypting.generator.private.key.store.filename

Required? NO if using a hardware Key Store, otherwise YES

Description:

This web.xml parameter is the full path to the private key store. Standard KeyMaster uses the private key
store to generate user credentials tokens.

You can specify the path as a file path or as a Java classpath.

If you are using a hardware Key Store, this parameter can be omitted from web.xml, but if it is present then
KeyMaster will just ignore it.

Example file path specification (KeyMaster on Linux or Sun Solaris):

<param-name>encrypting.generator.private.key.store.filename</param-name>
<param-value>
 /usr/local/jakarta-tomcat-5.0.16/webapps/keymaster/privatekey.store
</param-value>

Example classpath specification (KeyMaster on Linux or Sun Solaris):

<param-name>encrypting.generator.private.key.store.filename</param-name>
<param-value>
 classpath:com/caplin/keymaster/encrypted/privatekey.store
</param-value>

Example file path specification (KeyMaster on Windows):

<param-name>encrypting.generator.private.key.store.filename</param-name>
<param-value>C:/myKeyMaster/KeyMaster-4.4.0/privatekey.store</param-value>

If the file path is specified using the Windows backward slash notation, the slash characters must be
paired ('\\'):

<param-name>encrypting.generator.private.key.store.filename</param-name>
<param-value>C:\\myKeyMaster\\KeyMaster-4.4.0\\privatekey.store</param-value>

Configuration reference

74© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

encrypting.generator.security.provider.class.name

Parameter: encrypting.generator.security.provider.class.name

Required? YES

Description:

This web.xml parameter is the fully qualified name of the JCE provider's Java class used to generate
the encryption key pairs.

KeyMaster is shipped with public domain encryption software from The Legion Of The Bouncy Castle, and
so in the example web.xml file shipped with KeyMaster, encrypting.generator.security.
provider.class.name is set to point the Bouncy Castle encryption class (see the example below).

Note: Only change this setting if you have customized KeyMaster to use a different encryption class.
If you do use a different encryption class, make sure that the class name is included in the
classpath for the KeyMaster servlet.

Note: This parameter must specify the same class name as that specified in the
key.generator.security.provider.class.name property of the keygen.props
configuration file.

See the section on keygen.props configuration reference .

Example:

<param-name>encrypting.generator.security.provider.class.name</param-name>
<param-value>org.bouncycastle.jce.provider.BouncyCastleProvider</param-value>

Also see:

The key.generator.security.provider.class.name parameter of keygen.props.

The encrypting.generator.security.provider.name parameter.

84

56

56

56

75

Configuration reference

75© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

encrypting.generator.security.provider.name

Parameter: encrypting.generator.security.provider.name

Required? YES

Description:

This web.xml parameter is the name of the provider of the Java class used to generate the encryption key
pairs.

KeyMaster is shipped with public domain encryption software from The Legion Of The Bouncy Castle, and
so in the example web.xml file shipped with KeyMaster, the encrypting.generator.security.
provider.name parameter defines this provider (see the example below).

Note: Only change this setting if you have customized KeyMaster to use a different encryption
provider.

Note: This parameter must specify the same provider name as that specified in the
key.generator.security.provider.name property of the keygen.props configuration
file.

See the section on keygen.props configuration reference .

Example:

<param-name>encrypting.generator.security.provider.name</param-name>
<param-value>BC</param-value>

Also see:

The encrypting.generator.security.provider.class.name parameter.

57

56

74

Configuration reference

76© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

encrypting.generator.signature.algorithm

Parameter: encrypting.generator.signature.algorithm

Required? NO

Description:

This web.xml parameter is the algorithm used to digitally sign KeyMaster user credentials tokens. The
accepted values for this parameter are:

MD5withRSA

SHA256withRSA

If this parameter is not present then KeyMaster uses MD5withRSA as the default algorithm.

Example:

<param-name>encrypting.generator.signature.algorithm</param-name>
<param-value>
 SHA256withRSA
</param-value>

extra.data.provider.classname

Parameter: extra.data.provider.classname

Required? NO

Description:

This web.xml parameter is the name of a custom Java class that KeyMaster uses to add extra data to the
user credentials token. If you define this parameter then you must also set the parameter encrypting.
encode.extra.data to enabled.

The custom Java class must implement the interface com.caplin.keymaster.servlet.ExtraDataProvider .
The interface ensures that the extra data is also included in the digital signature.

If you require the user name to be included in the user credentials token you must specify this in your
custom class.

Example:

<param-name>extra.data.provider.classname</param-name>
<param-value>com.caplin.ExampleDataProvider</param-value>

Also see:

The http.remote.user parameter, which determines where the user name is obtained from.

The encrypting.encode.extra.data parameter, which determines whether the user name
or other additional data is put in the user credentials token.

69

78

69

Configuration reference

77© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

formatter-type-{formatter_name}

Parameter: formatter-type-{formatter_name}

Required? NO

Description:

This web.xml parameter defines the name of a custom Java class that formats KeyMaster's response to a
request for a user credentials token. {formatter_name} uniquely identifies the formatter to be used; the
name of the corresponding class is defined in the accompanying <param-value> tag (see the example
below).

KeyMaster is shipped with two standard response formatters that are defined in the example web.xml file
(see parameters formatter-type-javascript and formatter-type-streamlink). You
only need to add additional formatter-type-{formatter_name} parameters if you are customizing
KeyMaster with additional response formatter classes.

Example:

<param-name>formatter-type-news</param-name>
<param-value>examples.news.NewsFormatter</param-value>
<description>Name of the class to handle a NewsFormatter response</description>

formatter-type-javascript

Parameter: formatter-type-javascript

Required? YES for Standard KeyMaster

Description:

This web.xml parameter defines the name of the Java class that formats KeyMaster's response to a
request from a JavaScript application for a user credentials token. This class is shipped with KeyMaster
and the corresponding formatter-type-javascript parameter is defined in the example web.xml
file.

Note: Only modify the value of this parameter if KeyMaster is being customized to use a different
formatter class for handling responses to Javascript requests.

Example:

<param-name>formatter-type-javascript</param-name>
<param-value>com.caplin.keymaster.servlet.</param-value>
<description>Name of the class to handle a JavaScript response</description>

77 78

Configuration reference

78© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

formatter-type-streamlink

Parameter: formatter-type-streamlink

Required? YES for Standard KeyMaster

Description:

This web.xml parameter defines the name of the Java class that formats KeyMaster's response to a
request from a Caplin StreamLink application for a user credentials token. This class is shipped with
KeyMaster and the corresponding formatter-type-streamlink parameter is defined in the example

web.xml file.

Note: Only modify the value of this parameter if KeyMaster is being customized to use a different
formatter class for handling responses to StreamLink requests.

Example:

<param-name>formatter-type-streamlink</param-name>
<param-value>com.caplin.keymaster.servlet.StreamLinkFormatter</param-value>
<description>Name of the class to handle a StreamLink response</description>

http.remote.user

Parameter: http.remote.user

Required? NO

Description:

When an end user's client application requests a user credentials token, KeyMaster's Signature Generator
will by default obtain the end user's user name from an HTTP request parameter sent by the application
(?username=...). However, if the end user has logged on to the application using a single sign-on
system, the single sign-on system may be able to transmit the user name in the REMOTE_USER attribute
of the HTTP header.

Setting the web.xml parameter http.remote.user to enabled causes KeyMaster to obtain the user
name from the HTTP header, instead of from the HTTP request parameter. However, if http.remote.
user is enabled but the REMOTE_USER is null, then KeyMaster reverts to obtaining the user name
from the username parameter in the HTTP request.

If the http.remote.user parameter is not specified, or is set to any value other than enabled,
KeyMaster obtains the user name from the from the HTTP request parameter username.

In the example web.xml file shipped with KeyMaster, http.remote.user is set to disabled.

Note: Only set http.remote.user to enabled if your single sign-on system supports transmitting
the user name in the REMOTE_USER attribute of the HTTP header.

Example:

<param-name>http.remote.user</param-name>
<param-value>enabled</param-value>

Configuration reference

79© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Also see:

The user.credential.provider parameter, which defines the Java class that determines
how the user name is retrieved.

The encrypting.encode.extra.data parameter, which determines whether the user name
or other additional data is put in the user credentials token.

The extra.data.provider.classname parameter, which defines a custom Java class that
KeyMaster uses to add extra data to the user credentials token.

keymaster.url

Parameter: keymaster.url

Required? NO

Description:

If you are deploying a customized version of KeyMaster that uses a different <servlet-mapping> for
the StandardKeyMaster servlet, then you also need to specify the url of the StandardKeyMaster
servlet here, so that the XHRKeymaster servlet can access it.

Note: This parameter should only be specified in the <servlet> definition for XHRKeymaster, and
must not be used in the definitions for any of the other KeyMaster servlets.

Example:

<servlet>
 <servlet-name>XHRKeymaster</servlet-name>
 <init-param>
 <param-name>keymaster.url</param-name>
 <param-value>/servlet/CustomizedKeyMasterName</param-value>
 </init-param>
 ...
</servlet>

where the <servlet-mapping> for the StandardKeyMaster servlet has been changed to:

<servlet-mapping>
 <servlet-name>StandardKeyMaster</servlet-name>
 <url-pattern>/servlet/CustomizedKeyMasterName</url-pattern>
</servlet-mapping>

Also see:

Changing KeyMaster's URL

82

69

76

19

Configuration reference

80© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

keymaster.poll.url

Parameter: keymaster.poll.url

Required? NO

Description:

If you are deploying a customized version of KeyMaster that uses a different <servlet-mapping> for
the Poll servlet, then you also need to specify the url of the Poll servlet here, so that the
XHRKeymaster servlet can access it.

Note: This parameter should only be specified in the <servlet> definition for XHRKeymaster, and
must not be used in the definitions for any of the other KeyMaster servlets.

Example:

<servlet>
 <servlet-name>XHRKeymaster</servlet-name>
 <init-param>
 <param-name>keymaster.poll.url</param-name>
 <param-value>/servlet/newPollLocation</param-value>
 </init-param>
 ...
</servlet>

where the <servlet-mapping> for the Poll servlet has been changed to:

<servlet-mapping>
 <servlet-name>Poll</servlet-name>
 <url-pattern>/servlet/newPollLocation</url-pattern>
</servlet-mapping>

Also see:

Changing the KeyMaster Poll servlet's URL

key.generator.FilenameAttribute

Parameter: key.generator.FilenameAttribute

Required? NO

Description:

This web.xml parameter defines the name and location of the KeyMaster Signature Generator's log file.
This can be a full path name or a relative path. If a relative path name is used, then it will normally be
relative to the application server’s root directory, though this may not be the case for some application
servers.

If this parameter is not specified, KeyMaster will by default create a log file called keymaster.log in the
application server's root directory, though once again, this may not be the case for some application
servers. In the example web.xml file shipped with KeyMaster, the log file name is set to servlet.log (see
the example below).

20

Configuration reference

81© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Example:

<param-name>key.generator.FilenameAttribute</param-name>
<param-value>servlet.log</param-value>

Also see:

The key.generator.Level parameter.

key.generator.Level

Parameter: key.generator.Level

Required? NO

Description:

This web.xml parameter defines the Java logging level used to output information to the KeyMaster log file
about what is happening within KeyMaster. If this parameter is not specified, KeyMaster will by default set
the logging level to SEVERE, so that only the most serious problems will be logged.

In the example web.xml file shipped with KeyMaster, the logging level is set to set to ALL (see the example
below), which provides a very detailed level of logging for debug purposes.

Note: In a production system it is recommended that the logging level normally be set to SEVERE or
WARNING.

Tip: The possible logging levels are defined in the standard Java documentation under
java.util.logging.Level.

Example:

<param-name>key.generator.Level</param-name>
<param-value>ALL</param-value>

Also see:

The key.generator.FilenameAttribute parameter.

81

80

Configuration reference

82© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

user.credential.provider

Parameter: user.credential.provider

Required? NO

Description:

This web.xml parameter specifies the KeyMaster class that obtains the user name to be inserted in the
user credentials token.

If this parameter is not specified, KeyMaster uses the class
com.caplin.keymaster.servlet.UserCredentialsProvider , which obtains the user name according to the
setting of the parameter http.remote.user .

In the example web.xml file shipped with KeyMaster, user.credential.provider is set to the default
class
com.caplin.keymaster.servlet.UserCredentialsProvider .

Note: Only change this setting if you have customized KeyMaster to use a different class for obtaining
the user name.

Example:

<param-name>user.credential.provider</param-name>
<param-value>com.caplin.keymaster.servlet.UserCredentialsProvider</param-value>

Also see:

The http.remote.user parameter, which determines where the user name is obtained from.

78

78

Glossary of Terms and Acronyms

83© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

15 Glossary of Terms and Acronyms

This section contains a glossary of terms, abbreviations, and acronyms relating to the KeyMaster product.

Term Definition

Ajax Asynchronous JavaScript and XML
A combination of Web technologies used to implement interactive
Web clients

ASP Active Server Pages.

A technology from Microsoft that dynamically generates web pages
using server-side scripts. Also known as “Classic ASP”.

Also see ASP.NET.

ASP.NET A newer version of Microsoft's Active Server Pages (ASP) that
dynamically generates web pages using .NET technology.

Authentication In the context of KeyMaster, authentication is the process of
identifying a user, for example by checking a user name and
password that the user supplied when attempting to log in.

Authentication must proceed authorization.

Auth Module A Caplin Xaqua software module that performs authentication and
authorization functions.

Caplin Liberator uses Auth Modules to authenticate users who log
in to the Liberator, and to determine the users' access permissions
to Liberator objects.

See also javaauth and XMLauth.

Authorization In the context of KeyMaster, authorization is the process of
determining the access rights that a user has to resources, such as
data and functionality provided by computer software.

Users cannot be authorized until they have been successfully
authenticated – see authentication.

Caplin Liberator Caplin Liberator is a real-time financial internet hub that delivers
trade messages and market data to and from subscribers over any
network.

Caplin Trader A Caplin Xaqua client application written in Ajax that provides a
framework and comprehensive set of components for constructing
browser-based trading applications.

Caplin Trader was formerly called "Caplin Trader Client".

Caplin Xaqua A single-dealer platform that enables banks to deliver multi-product
trading direct to client desktops.

Caplin Xaqua client A client desktop application that interfaces with Caplin Xaqua to
deliver multi-product trading to end users. The application can be
implemented in any technology that is supported by Caplin Xaqua;

for example Ajax, Microsoft .NET, Microsoft SilverlightTM, Adobe

FlexTM, and JavaTM.

Also see Caplin Trader.

Glossary of Terms and Acronyms

84© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Term Definition

DER Distinguished Encoding Rules.
Rules for encoding ASN.1 objects in binary format which define just
one way to represent any ASN.1 value. DER encoding is typically
used when the same object is encoded in ASN.1 format multiple
times for digital signature verification.

DER public key file In KeyMaster this is a file containing a KeyMaster public key in DER
format. This file is used by Caplin Liberator to authenticate the
user credentials token sent by a user application that wishes to
log in to the Liberator.

Digital signature An electronic signature that is used to authenticate the sender of a
message or author of a document. The signature is usually
encrypted in some manner (see public key encryption).

KeyMaster inserts a digital signature in the user credentials
tokens that it generates.

javaauth An Auth Module in which the authentication and authorization
rules are specified using Java code.

JCE Java Cryptography Extension

A Java package that provides a framework for and implementations
of encryption, key generation and key agreement, and Message
Authentication Code (MAC) algorithms.

For more information see Sun's Java Cryptography Extension
Reference Guide.

Key Store A hardware repository that holds encryption keys and X.509
certificates.

MD5withRSA A digital signature algorithm. See the section “Digital signature
algorithms” in the KeyMaster Overview.

.NET A Microsoft framework for developing distributed applications that
run under Microsoft Windows® operating systems and can easily
intercommunicate with applications and systems running on
different operating systems.

OpenSSL An open source implementation of the SSL (Secure Sockets Layer)
and TLS (Transport Layer Security) protocols. In KeyMaster, the
basic OpenSSL cryptographic functions are used generate to RSA
keys and certificates for storage in a hardware Key Store.

See www.openssl.org.

Public key encryption A method of sending encrypted information between two parties
without the need for them to exchange a key for encrypting and
decrypting the information. Rather than using a single key it uses
two related keys – a public key and a private key. (See the note on
public key cryptography and digital signatures in the KeyMaster
Overview.)

RTTP Real Time Text Protocol

Caplin's protocol for streaming real-time financial data from Caplin
Liberator servers to client applications, and for transmitting trade
messages between clients and Liberator in both directions.

RTSL Real Time Scripting Layer

A functional interface that can be used from any JavaScript-type
language within a browser to create and manage RTTP
connections and access streaming data.

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
http://www.openssl.org

Glossary of Terms and Acronyms

85© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Term Definition

SDK Software Development Kit

SHA256withRSA A digital signature algorithm. See the section “Digital signature
algorithms” in the KeyMaster Overview.

Single sign-on A user authentication process in which a user supplies just one set
of user credentials (such as a user name and password). The user
can then access multiple applications and systems without being
prompted for credentials again.

StreamLink The StreamLink libraries connect client applications to Caplin
Liberator via the RTTP protocol. They provide an object oriented
API, on top of RTTP, that provides access to RTTP functionality.

StreamLink for Browsers StreamLink for Browsers is a JavaScript implementation of
StreamLink that runs in Web browsers. It allows Ajax applications
to communicate with Caplin Liberator.

StreamLink for Java StreamLink for Java is a Java implementation of StreamLink.
It allows Java applications to communicate with Caplin Liberator.

User credentials Information used to authenticate a user; for example a user name
and password.

User credentials token A data structure, containing user credentials, that is passed from
one application to another in order to authenticate the user.

XMLauth An Auth Module in which the authentication and authorization
rules are specified in XML format.

Index

86© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Index

- $ -

$KM_INSTALL_DIR

definition 7

$SERVER_HOME

JBoss home directory 13

Tomcat home directory 12

- % -

%r

in key file pathname configuration 24

- < -

<description> tag in web.xml 62

<display-name> tag in web.xml 62

<init-param> tag in web.xml 63

<param-name> tag in web.xml 63

<param-value> tag in web.xml 64

<servlet> tag in web.xml 64

<servlet-class> tag in web.xml 65

<servlet-mapping> tag in web.xml 65

<servlet-name>

Dependencies 21, 60

Poll 20, 60

StandardKeyMaster 19, 60

XHRKeymaster 19, 60

<servlet-name> tag in web.xml 66

<url-pattern> tag in web.xml 66

<web-app> tag in web.xml 67

- A -

Acronyms

definitions 83

add-sigkey

changing keyfile parameter 48

changing signing-algorithm parameter
48

add-sigkey config item

example of 24

Liberator configuration 24

Algorithm

signature generation 43

Apache Tomcat application server

minimum version 6

Application server module 5

Application servers

deploying KeyMaster on 12

versions 6

Architecture

of KeyMaster 2

ASP.NET 5

Assumptions, technical 6

Auth module

cfgauth 28

custom for Liberator 2

definition 83

javaauth 2, 29

XML auth admin guide 2

XMLAuth 27

Authentication

custom for Liberator server 2

definition 83

modifying cfgauth.conf file 28

modifying users.xml file 27

using single sign-on 5

via javaauth 29

Authorization

definition 83

- B -

BEA WebLogic application server

deploying KeyMaster on 14

minimum version 6

Bouncy Castle

location of encryption JAR 9

The Legion Of The 4

- C -

Caplin Platform

definition 83

Caplin Trader

definition 83

Caplin Trader Client 23

definition 83

Certificate

Index

87© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Certificate

generating via OpenSSL 38

in Java KeyStore class 58

self-signing using open SSL 39

shredding unwanted file 39

submitting to Cetificate Authority 39

Certificate Authority 39

Certificate request

generating using OpenSSL 39

Certificate signing services 37

cfgauth

user authentication module 28

cfgauth.conf file

example of 28

identifying public key in 28

location 28

modifying 28

sigcheck option 28

siguser option 28

classpath

of JCE provider's class 56, 74

when running Key Generator 9

Clock

synchronizing across servers 51

com.caplin.keymaster.servlet.StandardKeyMast
er 60, 65

com.caplin.keymaster.servlet.UserCredentialsPr
ovider 54, 82

Comments on document 4

commondomain

SL4B configuration option 55

Configuration reference 56

Configuring KeyMaster

Adding user name to the token 54

keygen.props properties reference 56

keyimporter gen.props properties
reference 58

modifying additional configuration settings
 54

web.xml parameters reference 68

web.xml reference 60

CSR file

generating using OpenSSL 39

Custom authentication

for Liberator server 2

Customizing KeyMaster 50

- D -

Default

directory for Signature Generator error log
 16

port number for WebLogic Admin Console
 14, 16

Signature Generator error log 80

Signature Generator logging level 81

signature-hashsize in Liberator
configuration 24

signature-validtime in Liberator
configuration 24

user credentials token 54

web.xml file 60

Dependencies

<servlet-name> 21, 60

servlet 21

Deploying KeyMaster 12

on BEA WebLogic application server 14

on JBoss application server 13

on Tomcat application server 12

on WebLogic 8.1 application server 16

on WebLogic 9.1 application server 14

DER

definition 83

DER format private key file

generating using OpenSSL 40

DER format public key file

generating using OpenSSL 39

DER public key file

authentication using 27

configuring name and location 56

definition 83

in KeyMaster 9

in Liberator file path 24

Liberator log file messages 51

making available to Liberator 24

Digital signature

definition 83

in user credentials token 5, 54

MD5withRSA algorithm 6

specifying public key for signing 24

Distribution kit

files in 9

Domain, internet

compatibility between Keymaster and
Liberator 55

Index

88© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

- E -

encrypting.encode.extra.data

definition 69

user credentials token 54

encrypting.generator.hardware.key.passphrase

adding to web.xml 43

definition 70

encrypting.generator.hardware.keystore.keyfile

adding to web.xml 43

definition 70

encrypting.generator.hardware.keystore.passph
rase

adding to web.xml 43

definition 71

encrypting.generator.hardware.keystore.type

adding to web.xml 43

definition 71

encrypting.generator.key.identifier

definition 72

modifying in web.xml 16, 43

encrypting.generator.keystore.type

definition 72

modifying in web.xml 43

encrypting.generator.private.key.store.filename

definition 73

ensuring trusted access to private key file
 36

modifying in web.xml 16

removing from web.xml 43

encrypting.generator.security.provider.class.na
me

definition 74

for customizing KeyMaster 50

modifying in web.xml 43

encrypting.generator.security.provider.name

definition 75

for customizing KeyMaster 50

modifying in web.xml 43

encrypting.generator.signature.algorithm

adding to, or modifiying in, web.xml 43

definition 76

Encryption class 50

defining JCE provider name in web.xml
75

defining name in keygen.props 56

defining name in web.xml 74

Encryption JAR

location of 9

Encryption key

check on existing files 9

defining size 56

file names 9

generating 9

use of in Keymaster 5

Encryption software

The Legion Of The Bouncy Castle 4

end-sigkey config item

Liberator configuration 24

Error log

Signature Generator 16

Errors

determining cause of on test page 32

typical on test page 32

extra.data.provider.classname

definition 76

Extracting files from keymaster.war

using jar command 13, 14

- F -

Feedback on document 4

Files

in the distribution kit 9

formatter-type-{formatter_name}

configuring new response formatter class
 50

definition 77

formatter-type-javascript

definition 77

formatter-type-streamlink

definition 78

- G -

Glossary 83

- H -

Hardware security module

suppliers 37

Hash table

size of for storing signature keys 24

Index

89© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Hijack

of user credentials token 54

HTTP 55

HTTP request parameter 78

user name not secure in 36, 54

http.remote.user

changing defaull setting for more secure
operation 36

definition 78

obtaining user name 54

HTTPS 55

- I -

IIS web server 35

Installation

Microsoft JVM restriction 7

prerequisites 7

security of 7

Installed files 9

Installing KeyMaster

on Linux 7

on Sun Solaris 7

on Windows 8

Internet domain

compatibility between Keymaster and
Liberator 55

- J -

jar command

for extracting files from keymaster.war
13, 14

JARs

location of 9

Java

authentication SDK for Liberator server
2

classpath 9, 56, 74

Java classes

com.caplin.keymaster.keygenerator 9

com.caplin.keymaster.servlet.StandardKe
yMaster 60, 65

com.caplin.keymaster.servlet.UserCredent
ialsProvider 54, 82

java.util.logging.Level 16, 56, 81

org.bouncycastle.jce.provider.BouncyCastl
eProvider 74

response formatter class 77

response formatter class for JavaScript
77

response formatter class for StreamLink
78

UserCredentialsProvider 54

Java classpath

of encryption class 56, 74

when running Key Generator 9

Java Cryptography Extension

see JCE 83

Java Development Kit version 6

Java Runtime Environment version 6

Java web application

defining name of 62

java.util.logging.Level 56, 81

java.util.logging.Level in web.xml 16

javaauth user authentication module

configuring Liberator that uses 29

definition 83

SDK documentation 2

Java-based KeyMaster

sections to read 1

testing with Liberator 30

JBoss application server

deploying KeyMaster on 13

minumum version 6

starting and stopping 13

JCE

definition 83

to retrieve keys from a Key Store 37

JCE provider's class 50

defining in keyimporter.props 58

defining name in keygen.props 56

defining name in web.xml 74

in classpath of KeyMaster servlet 43

location of class file 43

JCE provider's name

defining in keygen.props 56

defining in keyimporter.props 58

defining in web.xml 75

JDK version 6

JRE version 6

Index

90© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

- K -

Key files

check on existing 9

configure on disk or in Key Store? 72

generating using KeyMaster key generator
 9

generating using OpenSSL 38

names of 9

Key Generator

command line arguments 9

DER key name and location, defining
56

instructions for running 9

java logging level, defining 56

JCE provider name, defining 56

key identifier argument 9

key size, defining 56

log file name and location, defining 56

overview 5

private key name and location, defining
56

public key name and location, defining
56

RSA algorithm 6

Tip 9

Key identifier

argument of Key Generator command 9

encrypting.generator.key.identifier 72

id unknown - log message 51

Note on 24

parameter in Liberator configuration 24

troubleshooting - checking for match 51

Key Import Verifier tool 42

Key Importer tool 40

encrypting.generator.hardware.keystore.k
eyfile 70

keyimporter.props configuration reference
 58

Key pair generation algorithm

RSA 6

Key size

defining 56

Key Store 7

definition 83

integrating KeyMaster with 37

key.importer.keystore.location 58

keyimporter.props configuration reference
 58

see also KeyStore 48

suppliers 37

testing KeyMaster works with 48

key.generator.FilenameAttribute 56

keygen.props property 56

modifying in web.xml 16

web.xml parameter 80

key.generator.key.size

definition 56

key.generator.Level

definition 56, 81

modifying in web.xml 16

key.generator.private.key.store.filename

definition 56

key.generator.public.key.der.filename

definition 56

key.generator.public.key.store.filename

definition 56

key.generator.security.provider.class.name

definition 56

for customizing KeyMaster 50

key.generator.security.provider.name

definition 56

for customizing KeyMaster 50

key.importer.certificate.alias

definition 58

key.importer.certificate.location

definition 58

key.importer.key.passphrase

definition 58

example in keyimporter.props 40

key.importer.keystore.location

definition 58

example in keyimporter.props 40

key.importer.keystore.passphrase

definition 58

example in keyimporter.props 40

key.importer.keystore.provider.name

definition 58

key.importer.keystore.type

definition 58

key.importer.private.key.alias

definition 58

key.importer.private.key.location

definition 58

key.importer.security.provider.class.name

Index

91© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

key.importer.security.provider.class.name

definition 58

keyfile

parameter of Liberator config item
add-sigkey 48

keyfile parameter

Liberator configuration 24

keygen.props configuration file

argument of KeyGenerator command 9

configuration reference 56

example 56

file format 56

key.generator.FilenameAttribute 56

key.generator.key.size 56

key.generator.Level 56

key.generator.private.key.store.filename
56

key.generator.public.key.der.filename
56

key.generator.public.key.store.filename
56

key.generator.security.provider.class.nam
e 56

key.generator.security.provider.name
56

location of example file 56

overview 9

key-id parameter

Liberator configuration 24

keyimporter.props configuration file

example in keyimporter.props 40

key.importer.certificate.alias 58

key.importer.certificate.location 58

key.importer.key.passphrase 58

key.importer.keystore.location 58

key.importer.keystore.passphrase 58

key.importer.keystore.provider.name 58

key.importer.keystore.type 58

key.importer.private.key.alias 58

key.importer.private.key.location 58

key.importer.security.provider.class.name
 58

KeyMaster JAR

location of 9

KeyMaster Overview

recommendation 5

KeyMaster SDK

javadoc reference documentation 2

keymaster.jar 9

KeyMaster.NET

key generation using OpenSSL 5

sections to read 1

Signature Generator 5

testing with Liberator 35

keymaster.poll.url

changing 20

definition 80

keymaster.url

changing 19

definition 79

keymaster.war file

deploying on JBoss server 13

deploying on Tomcat server 12

deploying on WebLogic 8.1server 16

deploying on WebLogic 9.1server 14

keymaster-config.js file

configuring for custom user credentials
tokens 50

configuring for test environment 30

Keys

generating using KeyMaster key generator
 9

generating using OpenSSL 38

KeyStore

certificate name 58

identifier of certificate 58

identifier of key 58

Java class 38

JCE provider name 58

name of Key Store 58

name of private key 58

passphrase for Key Store 58

passphrase for private key 58

see also Key Store 38

type of Key Store 58

- L -

Liberator

configuring to use a new public key 48

signing algorithm limitations 48

testing when new public key 49

testing with Java-based KeyMaster 30

testing with KeyMaster.NET 35

Liberator configuration file

adding signature generation algorithm
43

Index

92© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Liberator configuration file

add-sigkey parameter 24

end-sigkey parameter 24

keyfile parameter 24

key-id parameter 24

modifying 24

parameters for KeyMaster operation 24

signature-hashsize parameter 24

signature-validtime parameter 24

timeout parameter 24

Liberator root directory 24

Liberator server

access from test page 32

administration guide 2

authentication SDK 2

configuring cfgauth authentication module
 28

configuring users.xml file 27

custom authentication modules 2

java Authentication SDK 2

log file messages 51

logins exceeded 32

making public key available to 24

setting up 24

use of with KeyMaster 5

using javaauth authentication module with
 29

using XMLauth with 27

Linux 6

installing KeyMaster on 7

running Key Generator command on 9

Log file

default name and location for Signature
Generator 80

for Key Generator 56

Liberator log messages 51

setting name and location of for Signature
Generator 16, 80

Logging level

configuring for Signature Generator 16,
81

key.generator.Level parameter in web.xml
 81

- M -

Making KeyMaster production ready 36

MD5withRSA

signature generation algorithm 6, 43, 76

- N -

nCipher

disclaimer 37

hardware security modules 37

Note:

$KM_INSTALL_DIR 7

Adding
encrypting.generator.signature.algorithm
to web.xml 43

Changing JCE provider class name in
encrypting.generator.security.provider.clas
s.name 74

Changing JCE provider name in
encrypting.generator.security.provider.na
me 75

Changing Liberator URL in test.html 30

Default KeyMaster installation not secure
 7

Disclaimer: nCipher 37

Disclaimer: Thawte 37

Distinction between key ids 24

Enabling http.remote.user parameter in
web.xml 78

Encryption key file names 9

Generation of keystore location file 40

JBoss application server version 13

key file format for use in KeyStore 37

keygen.props format 56

keygen.props settings for customized
encryption class 56

KeyMaster overview 5

Liberator URL format 30, 32

Liberator version for
encrypting.encode.extra.data 69

Microsoft JVM restriction 7

Modifying <display-name> tag in web.xml
 62

Modifying <servlet-class> tag in web.xml
 65

Modifying <servlet-name> tag in web.xml
 66

Modifying <url-pattern> tag in web.xml
66

Modifying formatter-type-javascript
parameter in web.xml 77

Modifying formatter-type-streamlink
parameter in web.xml 78

Modifying user.credential.provider
parameter in web.xml 82

Index

93© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Note:

Recommended logging level for Key
Generator 56, 81

Restriction on use of keymaster.poll.url
parameter in web.xml 80

Restriction on use of keymaster.url
parameter in web.xml 79

Setting up web.xxml values from
keyimporter.props 43

Signing algorithm limitations in Liberator
48

Synchronizing parameters for name of
JCE provider 75

Synchronizing parameters for name of
JCE provider class 74

Tomcat application server version 12

User password in cfgauth.conf 28

User password in users.xml 27

- O -

Open source software 4

OpenSSL

definition 83

to convert private key to DER 40

to generate certificate request 39

to generate certificates 38

to generate keys 38

to generate private key 39

to generate public key 39

to produce self-signed certificate 39

use in KeyMaster 4

Operating system

Java Development Kit 6

Java Runtime Environment 6

KeyMaster supported on 6

Linux 6

Microsoft Windows 2000 6

Microsoft Windows 2003 Server 6

Microsoft Windows XP 6

Sun Solaris 6

org.bouncycastle.jce.provider.BouncyCastlePro
vider 74

Overview

of KeyMaster 2

- P -

Passphrase

in
encrypting.generator.hardware.key.passph
rase 70, 71

in
encrypting.generator.hardware.keystore.p
assphrase 71

in key.importer.key.passphrase 58

in key.importer.keystore.passphrase 58

Password 5

in cfgauth.conf file 28

in users.xml file 27

role in authentication 83

role in single sign-on 83

role in user credentials 83

PEM format private key file

generating using OpenSSL 39

shredding unwanted file 40

Permissioning structures

in XML Auth administration guide 2

Poll

<servlet-name> 20, 60

servlet 20

Port number

default for WebLogic Admin Console
14, 16

Prerequisites

for KeyMaster installation 7

Private key

configuring name and location 16, 56

encrypting.generator.private.key.store.filen
ame 73

ensuring trusted access to key file 36

importing into a Key Store 40

name and location for Key Store import
58

passphrase for accessing Key Store 71

passphrase for retreving from Key Store
70, 71

setting identifier of 16

use of in Keymaster 5

web.xml parameter 73

Private key in DER format

generating using OpenSSL 40

Private key in PEM format

generating using OpenSSL 39

shredding 40

privatekey.store file 9

configuring name and location 16, 56

Index

94© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

privatekey.store file 9

encrypting.generator.private.key.store.filen
ame 73

ensuring trusted access 36

setting identifier of 16

web.xml parameter 73

Properties file

argument of KeyGenerator command 9

Protocol

compatibility between Keymaster and
Liberator 55

Public key

authentication using 27

configuring name and location 56

filename defined in Liberator configuration
 24

identifying in cfgauth.conf 28

identifying in users.xml 27

key file not found - log message 51

key file not specified - log message 51

key id not specified - log message 51

Liberator log file messages 51

making available to Liberator 24

new – configuring Liberator to use 48

use of in Keymaster 5

Public key encryption

definition 83

to sign user credentials token 5

public key in DER format

generating using OpenSSL 39

publickey.der

Liberator log file messages 51

publickey.der file 9, 24

authentication using 27

filename defined in Liberator configuration
 24

publickey.store file 9

configuring name and location 56

- R -

Random number generator

SHA1PRNG 6

Readership 2

Release Note 7

REMOTE_USER

attribute in HTTP header, use of 78

attribute of HTTP header 36, 54

Response formatter class

customizing 77

formatter-type-{formatter_name}
parameter in web.xml 77

formatter-type-javascript in web.xml 77,
78

Root directory

of Liberator 24

RSA

key pair generation algorithm 6

RSA keys

generating using KeyMaster key generator
 9

generating using OpenSSL 38

RTSL

definition 83

test page 30

RTTP

definition 83

rttpd.conf

add-sigkey config item 24

end-sigkey config item 24

keyfile parameter 24

key-id parameter 24

modifying 24

settings for KeyMaster operation 24

signature-hashsize parameter 24

signature-validtime parameter 24

signing-algorithm parameter 24

timeout parameter 24

- S -

SDK

definition 83

javaauth 2

KeyMaster 2

Liberator authentication 2

Secure hardware module 7

integrating KeyMaster with 37

Secure random number generator

SHA1PRNG 6

Security

of KeyMaster installation 7

Sequence number

in user credentials token 54

Servers

synchronizing clocks 51

Index

95© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Servlet

<servlet> tag 64

<servlet-class> tag 65

<servlet-mapping> tag 65

<servlet-name> tag 66

changing the KeyMaster Dependencies
servlet's URL 21

changing the KeyMaster Poll servlet's URL
 20

editing StandardKeyMaster servlet
parameters 43

installing the required libraries 43

making KeyMaster production ready 36

secure deployment 7

Signature Generator 5

Signature Generator access from different
URL 19

Signature Generator web.xml
configuration 16

XHRKeymaster servlet testing 23

SHA1PRNG

secure random number generator 6

SHA256withRSA

signature generation algorithm 43, 76

Shredding unwanted certificate file 39

Shredding unwanted files 49

Shredding unwanted key file 40

sigcheck attribute

of users.xml file 27

sigcheck option

of cfgauth.conf file 28

sigkey-id attribute

of users.xml file 27

Signature generation algorithm

MD5withRSA 43, 76

SHA256withRSA 43, 76

Signature Generator

configuration parameters reference
(web.xml) 68

configuration reference (web.xml) 60

configuring location of error log 16

configuring private key location 16

customizing 5

overview 5

signature key

hash table size 24

signature key definition group

Liberator configuration 24

signature-hashsize parameter

Liberator configuration 24

signature-validtime parameter

Liberator configuration 24

Signing a certificate 39

signing-algorithm

parameter of Liberator config item
add-sigkey 48

signing-algorithm parameter

Liberator configuration 24

siguser option

of cfgauth.conf file 28

Single sign-on

definition 83

in javaauth 29

integrating KeyMaster with 50

support for REMOTE_USER 78

transmitting user name 54

transmitting user name in HTTP header
78

Single sign-on system 5

Standard KeyMaster 50

<servlet-name> 19

StandardKeyMaster

<servlet-name> 60

StreamLink

definition 83

StreamLink for Browsers

access to XHRKeyMaster servlet 19

definition 83

use of Dependencies servlet 21

use of Poll servlet 20

XHRKeymaster servlet testing 23

Sun Solaris 6

installing KeyMaster on 7

running Key Generator command on 9

Synchronizing the servers 51

- T -

Technical assumptions 6

Terms

glossary of 83

Test page

launching 32

pictures of 32

test.html file

configuring 30

Testing Java-based KeyMaster

configuring the test files 30

Index

96© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

Testing Java-based KeyMaster

errors, determining cause of 32

errors, typical 32

launching the test page 32

with a Key Store 48

with the application server 22

with the Liberator server 30

Testing KeyMaster.NET

with the Liberator server 35

Testing Liberator

when .NET-based KeyMaster installed
35

when Java-based KeyMaster installed
30

when new public key 49

Thawte 39

certificate signing services 37

disclaimer 37

The Legion Of The Bouncy Castle 6

location of encryption JAR 9

Time

synchronizing across servers 51

timeout

Liberator configuration 24

Timestamp

error in 51

in user credentials token 54

Tip:

Adding signature generation algorithm to
Liberator configuration 43

Configuring the KeyMaster servlet 16,
43

Copying the publickey.der file using FTP
 24

Deletion of keyimporter.props 40

Ensuring secure access to the the
KeyMaster servlets 36

Guarding against token hijack 54

How to make web.xml changes take effect
 16, 43

Making note of key identifier 9

More information about customization
parameters 50

Release Note 7

Source code of Key Import Verifier tool
42

Source code of Key Importer tool 40

Standard Java logging levels 56, 81

Using Internet Explorer 7 when testing
KeyMaster 32

Tomcat application server

deploying KeyMaster on 12

location of JCE provider class file 43

minimum version 6

starting and stopping 12

Troubleshooting 51

Liberator log file messages 51

- U -

Unwanted files

shredding 39, 40, 49

URL of Dependencies servlet

changing in web.xml configuration file
21

URL of KeyMaster

access by XHRKeyMaster servlet 19

changing in web.xml configuration file
19

keymaster.poll.url parameter in web.xml
80

keymaster.url parameter in web.xml 79

URL of Poll servlet

access by XHRKeyMaster servlet 20

changing in web.xml configuration file
20

User authentication module

cfgauth 28

javaauth 29

XMLauth 24, 27

User credentials

definition 83

User credentials token

adding user name to 54

authentication via cfgauth.conf 28

authentication via users.xml 27

custom KeyMaster servlet 50

customizing 69, 76

customizing response formatter 77

definition 83

encrypting.encode.extra.data web.xml
parameter 69

expiry - log message 51

expiry when clocks not synchronized 51

extra.data.provider.classname web.xml
parameter 76

format error - log message 51

formatter-type-{formatter_name} web.xml
parameter 77

formatter-type-javascript web.xml
parameter 77

Index

97© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

User credentials token

formatter-type-streamlink web.xml
parameter 78

http.remote.user web.xml parameter 78

Liberator log file messages 51

obtained by test page 32

obtaining user name for 82

overview 5

response formatter class 50

response formatter for JavaScript 77

response formatter for StreamLink 78

reuse error - log message 51

role of web.xml configuration file 16

timeout config in Liberator configuration
24

timestamp error - log message 51

token validated - log message 51

user.credential.provider web.xml
parameter 82

verification failure - log message 51

User name 5

adding to user credentials token 54

encrypting.encode.extra.data 69

for testing KeyMaster 22

http.remote.user parameter in web.xml
78

in KeyMaster-config.js 30

obtaining by setting
user.credential.provider 82

obtaining via customized class 50

passing in cookie 54

passing in HTTP header 54

passing in HTTP request parameter 54

user.credential.provider

configuring custom user name class 54

definition 82

for customizing KeyMaster 50

UserCredentialsProvider generic class 54

Users

configuring in cfgauth.conf 28

configuring in users.xml 27

example configuration in cfgauth.conf
28

example configuration in users.xml 27

users.xml file

example of 27

identifying public key in 27

location 27

modifying 27

sigcheck attribute 27

sigkey-id attribute 27

- W -

WAR file

deploying on JBoss server 13

deploying on Tomcat server 12

deploying on WebLogic 8.1 server 16

deploying on WebLogic 9.1 server 14

Web application servers

ensuring security of access to KeyMaster
 36

versions 6

web.xml

<description> tag 62

<display-name> tag 62

<init-param> tag 63

<param-name> tag 63

<param-value> tag 64

<servlet> tag 64

<servlet-class> tag 65

<servlet-mapping> tag 65

<servlet-name> tag 66

<url-pattern> tag 66

<web-app> tag 67

changing Dependencies servlet URL 21

changing KeyMaster URL 19

changing Poll servlet URL 20

configuring user name parameters 54

default 60

encrypting.encode.extra.data 69

encrypting.generator.hardware.key.passph
rase 70

encrypting.generator.hardware.keystore.k
eyfile 70

encrypting.generator.hardware.keystore.p
assphrase 71

encrypting.generator.hardware.keystore.ty
pe 71, 72

encrypting.generator.key.identifier 72

encrypting.generator.private.key.store.filen
ame 73

encrypting.generator.security.provider.clas
s.name 74

Index

98© Caplin Systems Ltd. 2007 – 2009

Administration Guide

CONFIDENTIAL

KeyMaster 5.0

web.xml

encrypting.generator.security.provider.na
me 75

encrypting.generator.signature.algorithm
 76

extra.data.provider.classname 76

file format 60

formatter-type-{formatter_name} 77

formatter-type-javascript 77

formatter-type-streamlink 78

http.remote.user 78

in WEB-INF directory 12, 13, 14, 16

key.generator.FilenameAttribute 80

key.generator.Level 81

keymaster.poll.url 80

keymaster.url 79

modifying additional configuration settings
 54

modifying for Key Store access 43

modifying standard configuration settings
 16

parameters for customizing KeyMaster
50

parameters reference 68

refering to key identifier 9

syntax reference 60

user.credential.provider 82

WEB-INF directory 12, 13, 14, 16

WebLogic 8.1 application server

deploying KeyMaster on 16

WebLogic 9.1 application server

deploying KeyMaster on 14

WebLogic application server

minimum version 6

Windows

installing KeyMaster on 8

running Key Generator command on 9

Windows 2000 6

Windows 2003 Server 6

Windows XP 6

- X -

X.509 Certificate

generating using OpenSSL 38

self-signing using open SSL 39

submitting to Cetificate Authority 39

X.509 Certificate request

generating using OpenSSL 39

XHRKeyMaster servlet

<servlet-name> 19, 60

declaring access by XHRKeyMaster
servlet 20

effect of changing KeyMaster URL 19

keymaster.poll.url parameter in web.xml
20

matching URL of Dependencies servlet.
21

testing 23

XMLAuth

administration guide 2

definition 83

modifying users.xml file 27

sigcheck attribute 27

sigkey-id attribute 27

© Caplin Systems Ltd. 2007 – 2009

Contact Us

Caplin Systems Ltd

www.caplin.com

CONFIDENTIAL

Triton Court

14 Finsbury Square

London EC2A 1BR

Telephone: +44 20 7826 9600

Fax: +44 20 7826 9610

The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of
this publication may be reproduced or transmitted in
any form or by any means without the written
authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not
permitted to use any Mark without the prior written
consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty
of any kind, either express or implied, including, but
not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to
the information herein; these changes will be
incorporated in new editions of this publication.
 Caplin Systems Limited may make improvements
and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

KeyMaster 5.0: Administration Guide, December 2009, Release 1

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments
	Open Source Software

	Overview
	Technical assumptions and restrictions
	Installing KeyMaster
	Important note on security of installation
	Prerequisites
	Installing on Linux or Sun Solaris
	Installing on a Windows platform
	Installed Files
	Generating the required keys

	Deploying KeyMaster
	Deployment on a Tomcat server
	Deployment on a JBoss server
	Deployment on a BEA WebLogic server
	Deployment on WebLogic 9.1
	Deployment on WebLogic 8.1

	Modifying the web.xml configuration file
	Changing KeyMaster's URL
	Changing the KeyMaster Poll servlet's URL
	Changing the KeyMaster Dependencies servlet's URL

	Testing KeyMaster with the application server
	Testing the XHRKeymaster servlet

	Setting up Liberator to work with KeyMaster
	Making the public key file available to Liberator
	Modifying the Liberator configuration file
	Modifying the users.xml authorization file for XMLauth
	Modifying the cfgauth.conf authorization file
	Configuring a Liberator that uses javaauth authentication

	Testing Java-based KeyMaster with Liberator
	Configuring the test files
	Launching the test page

	Testing KeyMaster.NET with Liberator
	Making KeyMaster production ready
	Integrating KeyMaster with a hardware Key Store
	Key Store prerequisites and assumptions
	Generating keys using OpenSSL
	Generating a private key
	Generating the public key
	Generating the certificate request
	Obtaining a signed certificate
	Converting the private key to DER format

	Importing the private key file and certificate into the Key Store
	Verifying the key import operation
	Installing the required libraries
	Modifying the web.xml file for Key Store access
	Testing KeyMaster works with the Key Store
	Configuring Liberator to use a new public key
	Testing Liberator works with the new public key
	Tidying up

	Customizing KeyMaster
	Troubleshooting
	Synchronizing the servers
	Liberator log file messages

	More about configuring Keymaster
	Configuration in web.xml
	Adding the user name to the user credentials token
	Protocol and domain compatibility

	Configuration reference
	keygen.props configuration reference
	keyimporter.props configuration reference
	web.xml configuration reference
	<description>
	<display-name>
	<init-param>
	<param-name>
	<param-value>
	<servlet>
	<servlet-class>
	<servlet-mapping>
	<servlet-name>
	<url-pattern>
	<web-app>
	web.xml parameters
	encrypting.encode.extra.data
	encrypting.generator.hardware.key.passphrase
	encrypting.generator.hardware.keystore.keyfile
	encrypting.generator.hardware.keystore.passphrase
	encrypting.generator.hardware.keystore.type
	encrypting.generator.key.identifier
	encrypting.generator.keystore.type
	encrypting.generator.private.key.store.filename
	encrypting.generator.security.provider.class.name
	encrypting.generator.security.provider.name
	encrypting.generator.signature.algorithm
	extra.data.provider.classname
	formatter-type-{formatter_name}
	formatter-type-javascript
	formatter-type-streamlink
	http.remote.user
	keymaster.url
	keymaster.poll.url
	key.generator.FilenameAttribute
	key.generator.Level
	user.credential.provider

	Glossary of Terms and Acronyms

