

Caplin Refiner 5.0.0
Benchmarks

November 2011

C O N F I D E N T I A L

Caplin Refiner 5.0.0
Benchmarks Contents

Contents
1 Preface .. 1

1.1 What this document contains .. 1
About Caplin document formats .. 1

1.2 Who should read this document .. 1
1.3 Related documents .. 2
1.4 Feedback ... 2
1.5 Acknowledgments ... 2

2 Overview ... 3
2.1 About Caplin Refiner ... 3
2.2 About the benchmark tests .. 3
2.3 Headline results ... 4

3 Test scenarios .. 5

4 Product Finder Scenario – Response Time ... 6
4.1 Test parameters .. 6
4.2 Test conditions... 6
4.3 Requests per second ... 7
4.4 Container size .. 10
4.5 Filtered container size ... 12
4.6 Tier size ... 14

5 Product Finder Scenario - Latency ... 16
5.1 Test Parameters .. 16
5.2 Test conditions... 16
5.3 Filter only requests .. 18
5.4 Filter and sort requests .. 20

6 Trade Blotter Scenario – Latency ... 22
6.1 Test Parameter .. 22
6.2 Test conditions... 22
6.3 Blotter latency .. 23

7 How Caplin's benchmark tests were conducted ... 25
7.1 Test method ... 25

Approach .. 25
Test setup .. 25

7.2 Test software ... 26
Versions ... 26

© Caplin Systems Ltd. 2011 CONFIDENTIAL i

Caplin Refiner 5.0.0
Benchmarks Contents

© Caplin Systems Ltd. 2011 CONFIDENTIAL ii

Configuration .. 27
Java DataSource Application ... 28

7.3 Test hardware .. 28

8 Glossary of terms and acronyms ... 30

Caplin Refiner 5.0.0
Benchmarks Preface

1 Preface

1.1 What this document contains
This document details the results of a set of performance benchmark tests carried out on Caplin Refiner
5.0. It is hoped that the information provided in this report will assist customers in production capacity
planning when deploying Refiner.

About Caplin document formats

This document is supplied in Portable document format (.PDF file), which you can read on-line using
a suitable PDF reader such as Adobe Reader®. The document is formatted as a printable manual;
you can print it from the PDF reader.

1.2 Who should read this document
This document is intended for anyone who is evaluating Caplin Refiner’s performance
characteristics, or who is planning to deploy Caplin Refiner. Typical readers would be:
♦ Technical Managers
♦ System Architects
♦ System Administrators

© Caplin Systems Ltd. 2011 CONFIDENTIAL 1

Caplin Refiner 5.0.0
Benchmarks Preface

1.3 Related documents
♦ Caplin Xaqua: Overview

A business and technical overview of Caplin Xaqua.

♦ Caplin Liberator 5.1 Administration Guide

Describes the Caplin Liberator server and its place within Caplin Xaqua.
Explains how to install, configure, and manage the Liberator.
Includes configuration reference information, and a list of Liberator's log and debug messages.

♦ Caplin Xaqua: How To Use Containers

Describes what containers are, and how Caplin Xaqua applications can use them to group and
manage objects such as financial instruments for manipulation in a user interface.

♦ Caplin DataSource Overview

A technical overview of Caplin DataSource, its place within Caplin Xaqua, and how it can
integrate with you own software and network infrastructure.

♦ Caplin Xaqua: Permissioning Overview And Concepts
A technical overview of permissioning concepts and terms that describes subject mappings, and
how they can be applied to provide price tiering to users of a Caplin Xaqua client application.

1.4 Feedback
Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

1.5 Acknowledgments
Adobe Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

AMD and Opteron are trademarks of Advanced Micro Devices, Inc.

Dell and PowerEdge are trademarks of Dell Inc in the United States and other countries.

Intel and Intel Xeon are registered trademarks of Intel Corporation in the U.S. and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.

Java is a registered trademark of Oracle® Corporation in the U.S. and other countries.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 2

https://support.caplin.com/documentfeedback/

Caplin Refiner 5.0.0
Benchmarks Overview

2 Overview

2.1 About Caplin Refiner
Caplin Refiner dynamically filters and sorts containers on the server side of Caplin Xaqua based on
filter requests from client applications. This work is done on the server side to reduce the amount of
data that has to be sent to the client, and also to reduce the load on client applications.

2.2 About the benchmark tests
The benchmark tests detailed in this document are designed to show how Caplin Refiner
performance will change as certain operating parameters are varied. Each test shows the results of
varying a single parameter. As each Caplin Xaqua system will have different sorting and filtering
profiles, the benchmarks will help you to identify the parameters that are relevant in a particular
situation, and therefore what kind of performance can be expected in that situation.

The tests cover:
♦ A product finder scenario, measuring the response time of multiple unique requests to filter a

container.
♦ Another product finder scenario, measuring the latency of changes to the constituent objects in a

container.
♦ A trade blotter scenario, measuring the latency of changes to the content of a trade blotter.

The tests were conducted on servers representing typical commercially available machines that can
be used to host Web servers and server applications. A single Caplin Refiner instance was run on
one machine, while test harnesses were run on other machines to provide data and client processes.

For detailed information on the test set up used at Caplin Systems for these benchmarks, see
Section 7 on page 25.

Note: It is hoped that the information provided in this report will assist customers in production
capacity planning. However, while the tests were designed to emulate real-world traffic and
user scenarios, they were conducted using specific hardware running in an isolated
environment, and therefore no guarantees can be made that identical results will be
achieved in other environments.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 3

Caplin Refiner 5.0.0
Benchmarks Overview

2.3 Headline results
Details of the test scenarios, environments, full results and graphs can be seen in later sections, but
here are some headline results for these tests:
♦ Filtering and sorting on rapidly updating field values is not recommended with large underlying

containers.
♦ When filtering rapidly updating fields, performance deteriorates rapidly when Caplin Refiner has to

process more than five million updates per second. The update rate is given by multiplying the
number of unique filter requests by the number of underlying container objects that update per
second.

♦ When Caplin Refiner provides historic trade blotter data, two thousand users with one thousand
blotter entries each produces two million unique objects, and requires about 16 GB of random
access memory. Even although update latency remains low at these levels, available memory is
the limiting factor.

♦ For unique filter request rates of 8.3 per second, average response times on containers
approaching the upper limit of 65,555 constituent objects remained below 100 milliseconds.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 4

Caplin Refiner 5.0.0
Benchmarks Test scenarios

3 Test scenarios
This section introduces the test scenarios used in these benchmarks. These scenarios are designed
to simulate different types of activity typically seen in real time financial applications, and
demonstrate the kind of performance that Caplin Refiner can achieve.

Parameter values can vary significantly between different business scenarios, and therefore Caplin
always advises customers to run benchmarks that reflect their actual requirements for client
subscription and data update profiles. Caplin’s benchmark tools make this easier to do; once the test
environment is set up using these tools, it is easy to configure and test different scenarios.
Benchmarks can either be run against a test back end or against real data supplied by the customer.

Product Finder Scenario - Response Time
This scenario measures the response time of requests to filter the contents of a single container.
Each filter is a unique request to filter the container by static field values of constituent objects
(values that never update, such as the field containing an instrument description).

Parameters that vary in this scenario are the filter request rate, the underlying container size, the
filtered container size, and the number of configured subject mappings.

Product Finder Scenario - Latency
This scenario measures the latency of updates to container objects that have already been filtered
and returned to the client. The filter request in this scenario filters the constituent objects of a single
container by dynamic field values (values that update, such as the field containing the price of an
instrument).

Because the field being filtered is dynamic, the filter can add or remove objects from the filtered
container as field values change. The latency measured is the difference in time between the
DataSource updating an object and the container update being received at the client.

Parameters that vary in this scenario are the number of unique filter requests and the type of filter
request (filter only or filter and sort).

Trade Blotter Scenario - Latency
This scenario measures the latency of updates to a container that represents the content of a user's
trade blotter. Because each user has their own blotter showing the state of trades they submitted,
Caplin Refiner must filter multiple underlying containers as trades change state and as users submit
new trades.

The latency measured is the difference in time between the DataSource updating the state of a trade
object and the update being received at the client.

The parameter that varies in this scenario is the number of unique filter requests, which corresponds
to the number of logged in users, trade blotters, and therefore the number of underlying containers
that Caplin Refiner must filter.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 5

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

4 Product Finder Scenario – Response Time
This scenario simulates an instrument search using a Product Finder. A Product Finder might consist
of a grid with a large number of items in it (possibly tens of thousands) that a user wants to filter
down to a smaller subset, enabling them to more easily find the instruments they are looking for.

The filtered responses for all clients are derived by Caplin Refiner from a single underlying container
that holds the entire product set.

In this benchmark, the time taken to respond to filter requests is the response time minus the request
time.

4.1 Test parameters
The scenario consists of four tests that measure the response times to a number of unique filter
requests. In each test, three of four parameters are held constant and one parameter is varied. The
parameters are:

Requests per second: The number of unique filter requests per second.

The value of this parameter is determined by the number of users that log in to Liberator over a one
minute period, where each user requests a filtered container as soon as they log in. Caplin's
Benchrttp client (see Section 7 on page 25) was used to simulate user logins and filter requests.

Underlying container size: The size of the underlying container (the number of constituent objects
in the container).

Filtered container size: The size of the filtered container that Caplin Refiner returns to Liberator.

The filter applied to the underlying container determines the filtered container size.

Number of tiers: The number of configured subject mappings.

Subject mappings can be used to apply different pricing tiers for different users. This means that
different users could get different prices for the same instrument. When a subject mapping applies to
a user, the subject requested from the DataSource is not the same as the subject requested by the
client. In each test, the configured subject mappings are spread across all users, such that each user
has one subject mapping and some users have the same subject mapping. Caplin Refiner must
apply the mappings to the subjects of the constituent container objects before it requests these
objects from the providing DataSource.

4.2 Test conditions
The following conditions apply to each of the four tests:

• The underlying container is cached by Caplin Refiner before each test is started, which
removes the caching time from the test results. Caplin Refiner normally requests the
underlying container from the providing DataSource when it receives the first filter request for
that container, but not when it receives subsequent requests to filter the same container.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 6

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

• The window size of each filtered container is 50. This means that Liberator will never return a
container with more than 50 constituent objects to the client no matter how many objects are
in the filtered container that Caplin Refiner returns to Liberator. In this way the client is not
sent a container with objects that it cannot display (such as a grid that can only display a
maximum of 50 instruments).

• Each unique filter is on a static number field and a static text field (the DataSource never
updates static field values). Other tests (not shown in this document) demonstrate that the
kind and complexity of the applied filter does not have a significant effect on response times.

• Caplin Refiner is requested to sort each filtered container by the natural order of the
underlying container, which in this scenario sorts on a text field. Other tests (not shown in
this document) demonstrate that the field used to sort the container does not have a
significant effect on the sort time.

• The constituent objects of the container are updated at the rate of one every second. Filtered
fields are never updated, but Caplin Refiner must process all updates to determine this.

• The results of each test are plotted on two graphs. The first graph plots the average response
time for all requests together with the 95 percentile for these requests (the value that 95
percent of requests fall within). The second graph plots the spread of response times for the
other 5 percent, showing the peak response times and the 99 percentile values.

4.3 Requests per second
Response times were measured for each of the following rates of unique filter requests per second.

Requests per second: 0.2, 1.7, 8.3, 16.7, 33.3, 66.7. 83.3, 133.3, and 166.7

The request rate was increased by increasing the number of users that log in to Liberator over a one
minute period, each requesting a unique filtered container as soon as they log in. Logins were
equally spaced over this one minute period.

The following constant parameter values were used in each of the test runs.

Underlying container size Filtered container size Number of tiers

10,000 1,000 (1% of underlying container) 5

When interpreting the results of this test, the following should be taken into account. The request rate
is a parameter that relates to the number of users requesting a unique filtter, but this is not a direct
relationship. For example:

• If five users each request a unique filter on the same container, Caplin Refiner will have to
process five unique filter requests.

• If five users each request the same filter on the same container, Caplin Refiner will have to
process one unique filter request.

• If five users each make five unique filter requests on the same container, Caplin Refiner will
have to process 25 unique filter requests.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 7

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

Peak request rates are often caused by fail-over scenarios, such as when Liberator sends all filter
requests it is serving to a secondary (backup) Caplin Refiner.

Test results (varying the request rate)
The following graph shows that the average response time increases linearly as the request rate
increases from 0.2 to 166.7 unique reqests per second, but even at this higher request rate the
response times are still in the region of 70 milliseconds.

The 95 percentile values closely follow the average response times, showing little spread until the
request rate is 83.3 unique requests per second. At this point the spread increases, and the peak 95
percentile response time is 255 milliseconds at 133.3 unique requests per second. This spread is not
considered to be significant and would not adversely affect user experience, as the user would
probably not notice a delay of less than 200 milliseconds.

Figure 4.1 – Increasing the request rate

© Caplin Systems Ltd. 2011 CONFIDENTIAL 8

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

The next graph plots the worst case response times and 99 percentile values for the same test runs,
and shows that only one percent of response times were greater than 500 milliseconds at requests
rates above 66.7 requests per second. High response times like this can be caused by several
factors, including Java garbage collection, and are not necessarily due to limitations in Caplin Refiner
performance.

Figure 4.2 – Increasing the request rate (worst case)

© Caplin Systems Ltd. 2011 CONFIDENTIAL 9

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

4.4 Container size
Response times were measured for each of the following underlying container sizes.

Container size: 100, 1,000, 10,000, 30,000, 50,000, and 64,000

The following constant parameters values were used in each of the test runs.

Requests per second Result size Number of tiers

8.3 1% of underlying container 5

The request rate of 8.3 requests per second was set by logging in 458 users to Liberator at equal
intervals over a one minute period, each requesting a unique filtered container as soon as they log in.

Test results (varying the underlying container size)
The following graph shows that the average response time increases linearly from 13 milliseconds for
a container size of 100, up to 48 milliseconds for a container size of 50,000. At this point the average
response time increases more rapidly, but is still in the region of 70 milliseconds with an underlying
container size of 64,000.

The 95 percentile values closely follow the average response times, showing little spread with a
container size of 64,000 objects. Note that a container cannot contain more than 65,555 constituent
objects.

Figure 4.3 – Increasing the underlying container size

© Caplin Systems Ltd. 2011 CONFIDENTIAL 10

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

The next graph plots the worst case response times and 99 percentile values for the same test runs,
and shows that only one percent of response times were above 500 milliseconds. High response
times like this could be caused by several factors, including Java garbage collection, and are not
necessarily due to limitations in Caplin Refiner performance.

Figure 4.4 – Increasing the underlying container size (worst case)

© Caplin Systems Ltd. 2011 CONFIDENTIAL 11

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

4.5 Filtered container size
Response times were measured for each of the following filtered container sizes.

Filtered container size: 10, 100, 1,000, 5,000, 9,000 and 10,000

The filtered container size was varied by requesting different filters on the same underlying container.

The following constant parameters values were used in each of the test runs.

Underlying container size Requests per second Number of tiers

10,000 8.3 5

The request rate of 8.3 requests per second was set by logging in 458 users to Liberator at equal
intervals over a one minute period, each requesting a unique filtered container as soon as they log in.

Test results (varying the filtered container size)
The following graph shows that the average response time increases linearly from 14 milliseconds for
a filtered container size of 10, to 86 milliseconds for a filtered container size of 10,000.

The 95 percentile values closely follow the average response times, showing little spread with filtered
container sizes of up to 10,000 objects.

Note that although the time it takes to sort a container generally grows exponentially with the number
of items in the container, this had no noticable effect on the measured response times of the filtered
containers used in this test.

Figure 4.5 – Increasing the filtered container size

© Caplin Systems Ltd. 2011 CONFIDENTIAL 12

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

The next graph plots the worst case response rates and 99 percentile values for the same test runs,
and shows that response times were always below 600 milliseconds.

Figure 4.6 – Increasing the filtered container size (worst case)

Although not shown here, returning large filtered responses to client applications can impose a heavy
load on Liberator.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 13

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

4.6 Tier size
Response times were measured for each of the following tier sizes.

Tier size: 1, 5, and 10

The tier size was varied by applying different subject mappings to the logged in users.

The following constant parameters values were used in each of the test runs.

Underlying container size Result size Requests per second

10,000 1,000 (1% of underlying container) 8.3

The request rate of 8.3 requests per second was set by logging in 458 users to Liberator at equal
intervals over a one minute period, each requesting a unique filtered container as soon as they log in.

Test results (varying the tier size)
The following graph shows that increasing the number of tiers had little effect on the average
response times.

The 95 percentile values closely follow the average response times, showing little spread at each tier
size.

Figure 4.7 – Increasing the number of tiers

© Caplin Systems Ltd. 2011 CONFIDENTIAL 14

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario – Response Time

The next graph plots the worst case response rates and 99 percentile values for the same test runs,
and shows that response times were always below 70 milliseconds.

Figure 4.8 – Increasing the number of tiers (worst case)

© Caplin Systems Ltd. 2011 CONFIDENTIAL 15

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario - Latency

5 Product Finder Scenario - Latency
This scenario simulates the behaviour of a Product Finder, where the user is able to filter a container
on dynamically changing field values of the constituent container objects.

This benchmark measures the latency of updates from the time each update is sent from the
providing DataSource, until the time the update is received at the client.

Benchmarks like this show the limits of live sorting and filtering on large containers of frequently
updating fields. Caplin do not recommend using Caplin Refiner in such a scenario, as it is extremely
processing intensive and could result in poor overall system performance. It also provides a poor
user experience with grid rows jumping around quickly and randomly on the screen.

5.1 Test Parameters
The scenario consists of two tests that measure the latency of object updates, the first on a filtered
container that is sorted by the natural order of the underlying container, and the second on a filtered
container that is sorted on a dynamically changing field. The variable parameters in this test are:

Unique requests: The number of unique filter requests that Caplin Refiner has to process.

Request type: Whether each request is to filter the underlying container, or to filter and sort the
underlying container.

In each test the request type is held constant as the number of unique filter requests is varied.

5.2 Test conditions
The following conditions apply to each of the two tests:

• The underlying container is cached by Caplin Refiner before each test is started, which
removes the caching time from the test results. Caplin Refiner normally requests the
underlying container from the providing DataSource when it receives the first filter request for
that container, but not when it receives subsequent requests to filter the same container.

• The underlying container has 30,000 constituent objects.

• Filters are applied in such a way that each filtered container always has 300 constituent
objects (one percent of the underlying container).

• The objects in the underlying container are updated every five seconds. Updates are applied
to filtered fields in such a way that every five seconds, one record is added to, and one
record removed from, each filtered container.

• A custom StreamLink for Java (SL4J) client measures the latency of updates to the filtered
container it requests, while a varying number of Benchrttp clients load the system with similar
filter requests.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 16

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario - Latency

• The window size of each Benchrttp client is 50. This means that Liberator will never return a
container with more than 50 constituent objects to the client no matter how many objects are
in the filtered container that Caplin Refiner returns to Liberator. In this way the client is not
sent a container with objects that it cannot display (such as a grid that can only display a
maximum of 50 instruments).

• The window size of the SL4J client is 300.

• The results of each test are plotted on two graphs. The first graph plots the average latency
for all object updates, together with the 95 percentile for these updates (the value that 95
percent of results fall within). The second graph plots the spread of response times for the
other 5 percent, showing the peak latency and 99 percentile values.

• The vertical scale of the graphs used to present the latency results are logarithmic and do not
start at zero. This is to allow the wide range of latency results to be displayed on the graphs.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 17

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario - Latency

5.3 Filter only requests
Latency was measured over a ten minute period for each of the following unique filter requests.

Unique requests: 10, 50, 100, 300, 500, 700, 800, 850, 900, 950, 1,000

The number of unique requests was increased by increasing the number of users that log in to
Liberator, each requesting a unique filtered container as soon as they log in. Because each filter is
applied to a dynamic field, the number of filtered container updates that Caplin Refiner has to
process is directly proportional to the number of unique filter requests.

Because a sort is not specified with these filter requests, Caplin Refiner sorts each filtered container
by the natural order of the underlying container.

Test results (filter only requests)
The following graph shows an average latency of 48 milliseconds with 10 unique requests, increasing
steadily to an average of about 506 milliseconds with 900 unique requests. At 950 unique requests
the latency increases dramatically to 10 seconds, and then to 66 seconds at 1,000 unique requests.

Figure 5.1 – Increasing the number of unique filter requests

This rapid increase in latency indicates the limit of filtering dynamically changing fields. In this test the
underling container has an update rate of 6,000 objects per second (30,000 objects updating once
every five seconds). With 900 unique requests, Caplin Refiner is processing 5.4 million updates per
second (900 x 6,000). For this reason it is recommended that Caplin Refiner does not process more
than 5 million updates per second, where the update rate is given by:

unique requests × number of underlying container objects that are updated per second

If a field is updating frequently but is not needed to filter or sort the container, the update should not
be sent to Caplin Refiner. If you want to know how to do this, please contact Caplin support.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 18

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario - Latency

Although not shown here, the latency added by Caplin Refiner when handling a large amount of
updates has little effect on the response time to new filter requests. This is due to the threading
model used by Caplin Refiner.

The 95 percentile values closely follow the average latency times, showing little spread from the
average.

The next graph plots the worst case latency and 99 percentile values for the same test runs, and
shows that one percent of latency times were over 990 milliseconds at all request rates.

Figure 5.2 – Increasing the number of unique filter requests (worst case)

© Caplin Systems Ltd. 2011 CONFIDENTIAL 19

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario - Latency

5.4 Filter and sort requests
Latency was measured over a ten minute period for each of the following unique filter and sort
requests.

Unique requests: 10, 50, 100, 300, 500, 700, 800, 850, 900, 950, 1,000

The number of unique requests was increased by increasing the number of users that log in to
Liberator, each requesting a unique filtered container as soon as they log in. Because each filter is
applied to a dynamic field, the number of filtered container updates that Caplin Refiner has to
process is directly proportional to the number of unique filter requests.

The requested sort field updates randomly once every five seconds, although it is unrealistic to sort
on a field like this in a production environment.

All filter and sort requests are to filter on one dynamic field and to sort on another dynamic field.

Test results (filter and sort request)
The following graph shows an average latency of 95 milliseconds with 10 unique requests, increasing
steadily to an average of about 1038 milliseconds with 700 unique requests. At 900 unique requests
the latency increases dramatically to 50 seconds, and then to 102 seconds at 1,000 unique requests.

Figure 5.3 – Increasing the number of unique filter and sort requests

With 850 unique requests, every five seconds Caplin Refiner is sorting 30,000 randomly updating
fields for 850 containers, each containing 300 objects (approximately 50,000 sorts per second).
Randomly updating fields are the worst case scenario, and this test shows that sorting the filtered
container more than doubles the latency (compared to filter only requests). Other tests (not shown in
this document) indicate that sorting is much faster when updates to objects do not significantly
change the order of the sorted container.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 20

Caplin Refiner 5.0.0
Benchmarks Product Finder Scenario - Latency

Sorting on dynamically changing fields is very CPU intensive and is affected by many factors, and
Caplin recommends that you benchmark your own use cases if you want to use this kind of sorting.
Factors that affect sorting times include the container size (proportional to n log n, where n is the
number of items to sort), the update rate of the sort field, the number of unique filter and sort
requests, and how stable the sort order is.

The next graph plots the worst case latency and 99 percentile values for the same test runs, and
shows that two percent of latency times were over 560 milliseconds at all request rates, rising to a
worst case of 156 seconds at 1,000 unique requests.

Figure 5.4 – Increasing the number of unique filter and sort requests
(worst case)

© Caplin Systems Ltd. 2011 CONFIDENTIAL 21

Caplin Refiner 5.0.0
Benchmarks Trade Blotter Scenario – Latency

6 Trade Blotter Scenario – Latency
This scenario is intended to reproduce the behaviour of a Trade Blotter consisting of a grid showing
the details of submitted trades. New trades would be added to the top of this grid, and filtering could
be requested on the fields of blotter entries to show or hide certain trades.

In this scenario, instead of all responses being unique filters on a single underlying container (as in
the other benchmarks shown in this document), each user has their own underlying container holding
only the trades they are permitted to see.

The benchmark measures the latency of updates from the time each update is sent by the providing
DataSource, until the time it is received at the client.

6.1 Test Parameter
There is one variable parameter in this scenario:

Unique requests: The number of unique filter requests that Caplin Refiner has to process.

6.2 Test conditions
The following conditions apply to this test:

• Each underlying container is cached by Caplin Refiner before the test is started, which
removes the caching time from the test results. Caplin Refiner normally requests the
underlying container from the providing DataSource when it receives the first filter request for
that container, but not when it receives subsequent requests to filter the same container.

• Each underlying container starts with 100 constituent objects that have a Status field set to
10.

• One object is added every 10 seconds (to simulate new trades), until each container has
1,000 constituent objects. The Status field of each of these objects is set to one.

• Every three seconds the DataSource updates the numeric Status field of all objects in the
underlying containers. The Status field increments from one up to 10, simulating the trade
moving through various trading states, with 10 meaning that the trade is complete. The filter
removes all objects with a Status less than 10, simulating a filter on all trades currently in
progress. Because only two or three trades are ever in progress, the filtered result size
varies between two and three objects.

• A custom StreamLink for Java (SL4J) client measures the latency of updates to the filtered
container it requests, while a varying number of Benchrttp clients load the system with similar
filter requests.

• The window size of each client is 20. This means that Liberator will never return a container
with more than 20 constituent objects to the client no matter how many objects are in the
filtered container that Caplin Refiner returns to Liberator. In this way the client is not sent a
container with objects that it cannot display (such as a grid that can only display a maximum
of 20 instruments).

© Caplin Systems Ltd. 2011 CONFIDENTIAL 22

Caplin Refiner 5.0.0
Benchmarks Trade Blotter Scenario – Latency

• The results of this test are plotted on two graphs. The first graph plots the average latency for
all object updates, together with the 95 percentile for these updates (the value that 95
percent of results fall within). The second graph plots the spread of response times for the
other 5 percent, showing the peak latency and 99 percentile values.

6.3 Blotter latency
Latency was measured as the content of the underlying container increased from 100 to 1,000
constituent objects (to simulate new trades being added to the blotter). The test was run for each of
the following unique filter requests.

Unique requests: 100, 500, 1,000, and 2,000

The number of unique requests was increased by increasing the number of users that log in to
Liberator, each requesting a unique filtered container as soon as they log in.

Test results (blotter latency)
The following graph shows an average latency of nine milliseconds with 100 unique requests,
increasing steadily to an average of 44 milliseconds with 2,000 unique requests. The 95 percentile
values have a maximum spread of about 80 milliseconds with 2,000 unique requests.

With 2,000 unique requests at the end of this test there will be two million records in the underlying
containers. This requires 16 GB of memory and imposes a memory constraint on Caplin Refiner.

Figure 6.1 – Increasing the number of unique filter requests

© Caplin Systems Ltd. 2011 CONFIDENTIAL 23

Caplin Refiner 5.0.0
Benchmarks Trade Blotter Scenario – Latency

The next graph plots the worst case latency and 99 percentile values for the same test runs, and
shows that one percent of latency times were 400 milliseconds at 500 unique requests, rising to 1033
milliseconds at 2,000 unique requests.

Figure 6.2 – Increasing the number of unique filter requests (worst case)

© Caplin Systems Ltd. 2011 CONFIDENTIAL 24

Caplin Refiner 5.0.0
Benchmarks How Caplin's benchmark tests were conducted

7 How Caplin's benchmark tests were conducted
The following sections describe the test method used, give information about the test configurations,
and detail the test software, test hardware, and the network used.

7.1 Test method

Approach

Each benchmark test followed a similar approach, which was to simulate users logging in to Liberator
and requesting filtered and sorted containers. Custom DataSources provided the data to Caplin
Refiner, which processed the data before passing the filtered and sorted containers back to the
requesting users.

The DataSource applications supplying the data to Caplin Refiner were custom Java DataSources.

Multiple RTTP client connections were simulated using a Caplin benchmarking tool called Benchrttp.
Benchrttp is Caplin’s scalable client simulator that uses the RTTP protocol to establish concurrent
streaming connections to Liberator’s HTTP port.

For the benchmark tests described in Section 4, the response times for each Benchrttp user were
calculated by subtracting the time the user received the filtered container from the time the user
made the filter request.

For the benchmark tests described in Sections 5 and 6, latency in container updates was calculated
by measuring the delay between a DataSource updating container objects and the updates being
received by a custom StreamLink for Java (SL4J) client.

In all benchmark tests, Caplin Refiner loaded the unfiltered container into its cache before each test
started. This removed the time to cache the unfiltered container from the test results. In practice, this
time is independent of the number of filter requests because Caplin Refiner caches the container
when it receives the initial filter request.

Test setup

The components used in each benchmark scenario included:

• A number of Java DataSources supplying data for the container and constituent record
objects.

• One Transformer running the Caplin Refiner module.

• One Liberator distributing the filtered responses.

• A number of Benchrttp clients simulating multiple user requests for filtered containers.

• For the benchmarks tests in Sections 5 and 6, a custom StreamLink for Java client
measuring the latency of updates to container objects, while Benchrttp clients simply load the
system with filter requests.

© Caplin Systems Ltd. 2011 CONFIDENTIAL 25

Caplin Refiner 5.0.0
Benchmarks How Caplin's benchmark tests were conducted

The following diagram shows the hardware configuration used for the tests.

Each single Benchrttp instance can simulate a maximum of 500 client connections, and the group of
instances was spread evenly across 3 host machines. The number of Benchrttp instances required
for each test was determined by the maximum number of simulated clients needed to run the test;
enough Benchrttp resource was required to ensure that Caplin Refiner limits could be reached before
any limits imposed by Benchrttp.

The Liberator and Transformer were each hosted on their own dedicated machine.

Another machine was used to host the SL4J Client and the Java DataSources feeding the Caplin
Refiner.

For more detailed information about the hardware and software used to run the tests, see the
following sections.

7.2 Test software

Versions

The following table shows the software versions used in these benchmarks.

Name Version

Caplin Refiner 5.0.1

Transformer 5.1.1

Liberator 5.1.0

Benchrttp 1 Benchrttp 2 Benchrttp n …

Liberator

Transformer Caplin Refiner

DataSource DataSource DataSource n

SL4J Client

…

© Caplin Systems Ltd. 2011 CONFIDENTIAL 26

Caplin Refiner 5.0.0
Benchmarks How Caplin's benchmark tests were conducted

© Caplin Systems Ltd. 2011 CONFIDENTIAL 27

Name Version

Benchrttp 5.1.0

SL4J Client Custom

Java DataSource Custom

The operating system used on all the server hardware was Linux – CentOS 5.5. This was a standard
configuration with only one significant change; the number of open file descriptors was increased to
allow Liberator to support high numbers of client connections. This is detailed in the Caplin
Liberator Administration Guide.

Configuration

The following table shows the configuration options that were changed from their default values.

Name File Configuration

Caplin Refiner refiner.properties Default

Transformer transformer.conf Default

java.conf JDK 1.7.0 64-bit Server VM

-Xms14g -Xmx14g

-XX:NewSize=4g -XX:MaxNewSize=4g

-XX:+UseConcMarkSweepGC

Liberator rttpd.conf object-throttle-off

burst-max 0.1

burst-min 0.05

threads-num 4

java.conf JDK 1.7.0 64-bit Server VM

Benchrttp benchrttp.conf The following options were all varied during testing:

• clients (number of clients)

• connect-time (time to wait before connecting)

• object sets (control what is being requested)

Note: JDK 1.7.0 was used to benchmark Caplin Refiner. If your Caplin Refiner uses JDK 1.6.0,
you could get worse latency and response times than those shown in this document.

Caplin Refiner 5.0.0
Benchmarks How Caplin's benchmark tests were conducted

Java DataSource Application

For the latency benchmarks in Sections 5 and 6, the custom Java DataSource produced updates to
container objects at known rates. This allowed the StreamLink for Java client to calculate the latency
of updates to the filtered container.

7.3 Test hardware
testlinux1

Components SL4J Client, Java DataSources

Vendor Dell

Model PowerEdge R415

Processors Dual P4 4 cores

Memory 2GB

Operating System CentOS 5.5 (Kernel 2.6.18-194.el5 64bit)

benchlinux2

Components Transformer, Caplin Refiner

Vendor Dell

Model PowerEdge R415

Processors 2 x Six-Core AMD Opteron™ Processor 4180 2.6GHz

Memory 16GB

Operating System CentOS 5.5 (Kernel 2.6.18-194.el5 64bit)

benchlinux3

Components Liberator

Vendor Dell

Model PowerEdge R415

Processors 8 cores (Dual Intel Xeon X3460 2.8GHz Processors (8 cores total))

Memory 4GB

Operating System CentOS 5.5 (Kernel 2.6.18-194.el5 64bit)

© Caplin Systems Ltd. 2011 CONFIDENTIAL 28

Caplin Refiner 5.0.0
Benchmarks How Caplin's benchmark tests were conducted

benchlinux4

Components Benchrttp

Vendor Dell

Model PowerEdge R415

Processors 8 cores

Memory 4GB

Operating System CentOS 5.5 (Kernel 2.6.18-194.el5 64bit)

benchlinux5

Components Benchrttp

Vendor Dell

Model PowerEdge R415

Processors 8 cores

Memory 4GB

Operating System CentOS 5.5 (Kernel 2.6.18-194.el5 64bit)

benchlinux6

Components Benchrttp

Vendor Dell

Model PowerEdge R415

Processors 8 cores

Memory 4GB

Operating System CentOS 5.5 (Kernel 2.6.18-194.el5 64bit)

© Caplin Systems Ltd. 2011 CONFIDENTIAL 29

Caplin Refiner 5.0.0
Benchmarks Glossary of terms and acronyms

© Caplin Systems Ltd. 2011 CONFIDENTIAL 30

8 Glossary of terms and acronyms
This section contains a glossary of terms and acronyms relating to the Caplin Refiner benchmark.

Term Definition

Benchrttp A Caplin benchmark test tool that connects to a Liberator server and
simulates a configurable number of clients and contributors of streamed
RTTP data. It is used in conjunction with control scripts from the Caplin
Benchmarking kit.

Caplin Liberator Caplin Liberator is a real-time financial internet hub that delivers trade
messages and market data to and from subscribers over any network.

Caplin Refiner A high performance server-side filtering and sorting module for financial
records.

Caplin Transformer An event-driven real-time business rules engine that hosts Caplin
Refiner.

Caplin Xaqua A framework for building single-dealer platforms that enables banks to
deliver multi-product trading direct to client desktops.

Caplin Xaqua was formerly called "the Caplin Platform".

DataSource DataSource is the internal communications infrastructure used by Caplin
Xaqua's server components such as Caplin Liberator, Caplin
Transformer.

RTTP Real Time Text Protocol.

Caplin's protocol for streaming real-time financial data from Caplin
Liberator servers to client applications, and for transmitting trade
messages between clients and Liberator in both directions.

StreamLink The StreamLink libraries connect client applications to Caplin Liberator
via the RTTP protocol. They provide an object oriented API that gives
access to RTTP functionality.

Subject mapping Subject mapping allows Caplin Liberator and Caplin Refiner to modify
the subject of the RTTP message it receives when an end user attempts
to view or trade a product, and can be used to provide tiered prices to
selected users.

Unique request A request that has a subject that is not currently being processed.

Underling container

A container that has not been filtered or sorted by Caplin Refiner.
Underling containers are shared between unique requests.

Requested container A container that has been filtered or sorted by Caplin Refiner. Each
unique request creates a requested container.

Caplin Refiner 5.0.0: Benchmarks, November 2011, Release 1

© Caplin Systems Ltd. 2011 CONFIDENTIAL

Contact Us
Caplin Systems Ltd

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

www.caplin.com

 The information contained in this publication is
subject to UK, US and international copyright laws
and treaties and all rights are reserved. No part of this
publication may be reproduced or transmitted in any
form or by any means without the written
authorization of an Officer of Caplin Systems Limited.

Various Caplin technologies described in this
document are the subject of patent applications. All
trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not permitted
to use any Mark without the prior written consent of
Caplin or the owner of that Mark.

This publication is provided "as is" without warranty of
any kind, either express or implied, including, but not
limited to, warranties of merchantability, fitness for a
particular purpose, or non-infringement.

This publication could include technical inaccuracies
or typographical errors and is subject to change
without notice. Changes are periodically added to the
information herein; these changes will be
incorporated in new editions of this publication. Caplin
Systems Limited may make improvements and/or
changes in the product(s) and/or the program(s)
described in this publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for
the content of such sites.

	1 Preface
	1.1 What this document contains
	About Caplin document formats

	1.2 Who should read this document
	1.3 Related documents
	1.4 Feedback
	1.5 Acknowledgments

	2 Overview
	2.1 About Caplin Refiner
	2.2 About the benchmark tests
	2.3 Headline results

	3 Test scenarios
	4 Product Finder Scenario – Response Time
	4.1 Test parameters
	4.2 Test conditions
	4.3 Requests per second
	4.4 Container size
	4.5 Filtered container size
	4.6 Tier size

	5 Product Finder Scenario - Latency
	5.1 Test Parameters
	5.2 Test conditions
	5.3 Filter only requests
	5.4 Filter and sort requests

	6 Trade Blotter Scenario – Latency
	6.1 Test Parameter
	6.2 Test conditions
	6.3 Blotter latency

	7 How Caplin's benchmark tests were conducted
	7.1 Test method
	Approach
	Test setup

	7.2 Test software
	Versions
	Configuration
	Java DataSource Application

	7.3 Test hardware

	8 Glossary of terms and acronyms

