
CAPLIN STREAMLINK 4.4
Technical Overview

April 2007

Preface . 6
What this document contains . 6

Who should read this document . 6

Typographical conventions . 6

Feedback . 6

Overview. 7
Documentation . 8

How StreamLink works . 10
Sending messages to Caplin Liberator . 11

About the data . 12
How RTTP data is organised . 13

Symbols and fields . 15

How StreamLink uses RTTP data. 16

About Caplin Liberator . 17
Data sources . 17

Permissioning and security features . 18

Clustering . 18

Reconnecting . 19

Runtime configuration . 20
RTTP Client Library properties . 20

Reconnection properties . 20

RTTP Monitoring properties . 21
ii

Subscribing to data . 22
Requesting an object . 22

Requesting specific fields . 22

Requesting Type 2 and Type 3 records . 22

Batched requests . 23

Discarding an object . 23

Discarding specific fields. 23

Batched discards. 23

Receiving data . 24

Publishing data . 25
Contributing to an existing object . 25

Creating a new object . 25

Deleting an object . 25

Handling events . 26
Advanced event processing . 27

Requesting different fields for the same symbol . 28

Re-requesting symbols . 29

Handling incoming messages using listeners . . . 30

Handling chain data. 31
Chain listeners . 31

Requesting chains. 31
iii

Receiving chain updates . 31

Querying a chain . 32

Errors with chains . 33

Status Messages. 33

Discarding chain objects . 33

Throttling updates—Advanced Flow Control 34
Throttling configuration . 35

Filtering requests and updates 36
Client-side filtering. 36

Server-side filtering . 36

Record filtering . 37

News filtering. 37

Receiving filtered updates. 38

Decoding binary data . 39

Server failover . 40
Z failover algorithm . 40

U failover algorithm . 40

N failover algorithm . 41

Choosing a failover type . 41

Connection interfaces . 43
Connection options . 43

Noop messages . 43

Statistics . 43
iv

Service up and down notifications. 44
Data services . 44

Service status . 44

Object status updates . 45

Example . 46

Using StreamLink for Java in applets 48
Writing an applet . 48

Obfuscation . 48

Compression . 48

Debugging . 50
Setting the debug level . 50

Redirecting debug output . 50

Troubleshooting . 51
v

6

1 Preface

1.1 What this document contains

This document describes Caplin StreamLink and its place in the Caplin real-time data
architecture, as well as RTTP and the Caplin Liberator server. It includes instructions on how to
configure the Liberator server and how to subscribe to and publish data. Ths document also
contains a description of the advanced StreamLink debugging.

1.2 Who should read this document

This document is intended for programmers who need to add RTTP streaming capability to their
applications.

1.3 Typographical conventions

This document uses the following typographical conventions to identify particular elements within
the text.

1.4 Feedback

Customer feedback can only improve the quality of Caplin product documentation, and we would
welcome any comments, criticisms or suggestions you may have regarding this document.

Please email your thoughts to documentation@caplin.com.

Type Use

Arial Bold Function names and methods.
Other sections and chapters within this document.

Arial Italic Parameter names and other variables.

Times Italic File names, folders and directories.

Courier Program output and code examples.

Information bullet point

Instruction

StreamLink 4.4 Overview
Technical Overview

7

2 Overview

StreamLink is an API that provides everything programmers need to add RTTP streaming
capability to their applications. Java, C++ and .NET versions of the StreamLink API are
available.

It enables access to the full range of functionality of the RTTP transport mechanism, including
smart tunnelling, data health checking, advanced flow control and persistent virtual connection.

StreamLink automates the functions that most applications require and provides default
processing of responses from Caplin Liberator which are easy for a developer to extend. You
only need to write code to perform custom processing in specific instances—everything else can
be handled by StreamLink.

StreamLink allows you to send and receive real-time data to or from any application or Java
applet as part of a stand-alone or browser-based trading application. When used to write Java
applets, it allows the widest possible range of browsers to be supported. Java 1.1 support is all
that is required, and it is compatible with Netscape 4.0 and above, and Internet Explorer 4.0 and
above. StreamLink for Java does not require applets to be signed.

When used for stand-alone applications, StreamLink provides RTTP connectivity for
development on any platform.

In order to use StreamLink you need access to a Caplin Liberator, and Java 1.1 or above for the
Java API. StreamLink for C++ is a cross platform library that is supported and tested on the
following platform/environment combinations: Linux: Redhat 9 GCC 3.2.2, Solaris: Solaris 8
Forte 8, Windows: Visual Studio .NET. Other configurations may work but are untested.

StreamLink 4.4 Overview
Technical Overview

8

StreamLink for .NET is a standard .NET managed DLL that can be used within any of the .NET
environment languages.

2.1 Documentation

The StreamLink for Java installation includes Javadoc documentation, which gives in-depth
technical descriptions of all the methods and classes within the rtjl.jar file.

The StreamLink for C++ installation includes Doxygen documentation, which gives in-depth
technical descriptions of all the methods and classes in the library. The Unix targeted release
also includes standard man pages.

The StreamLink for .NET installation includes documentation in the form of HTML pages, which
gives in-depth technical descriptions of all the methods and classes in the library.

All the kits include a release-note specific to the platform. Figure 2-1 shows Caplin's platform
architecture.

Figure 2-1: Caplin’s platform architecture

StreamLink 4.4 Overview
Technical Overview

9

Figure 2-2 shows a simplified view of the Caplin architecture and highlights StreamLink and its
place in the platform.

Figure 2-2: StreamLink’s place in the Caplin architecture

StreamLink 4.4 How StreamLink works
Technical Overview

10
3 How StreamLink works

Figure 3-1 below shows the main steps that make up a request for real-time data.

Figure 3-1: Requesting data using StreamLink

There are three possible outcomes after an initial successful call of the request function:

Caplin Liberator returns the cached value of an object.

Caplin Liberator returns a message indicating the object has been actively requested from
Caplin Liberator's data sources.

StreamLink 4.4 How StreamLink works
Technical Overview

11
Caplin Liberator returns a message indicating a problem exists which means the data cannot
be accessed at the moment.

If there is no problem, StreamLink will start to receive updates or be notified of problems as they
occur.

StreamLink uses an abstract class which catches all RTTP-related events. Descendants provide
all the functionality necessary to:

connect to Caplin Liberator.

route messages to the processing functions of the base class.

receive all responses and updates from Caplin Liberator.

provide access to functions that send messages to Caplin Liberator.

monitor the server connection and reconnects if it is lost.

monitor individual symbols or symbols and parameters on Caplin Liberator.

3.1 Sending messages to Caplin Liberator

Most messages ask for data or send data to Caplin Liberator. All access to Caplin Liberator is
controlled by interfaces.

For the majority of applications there is only one method necessary to provide the main request,
discard, create, delete and contribute functions: to request an object simply create a target object
and pass it to the request function. As with all StreamLink functions, if an error occurs while
processing the request, or if the target object doesn't exist, an exception will be thrown.

Note: An active data source is one that will keep track of which objects have been requested
and send updates for those objects only. When using StreamLink to request data from an
active source, the success or failure of the request may not be known immediately. The
relevant method will be notified when this is known.

If the request is successful, the initial returned value and subsequent updates will be received by
a suitable update method.

StreamLink 4.4 About the data
Technical Overview

12
4 About the data

RTTP (Real Time Text Protocol) is a web protocol developed by Caplin Systems Ltd that
implements advanced real time streaming for almost all types of textual information, including
logical records, news and free-format pages, over internet protocol networks. It supports both
client-server and peer-to-peer publish/subscribe models. It can be used as a simple point-to-
point protocol over a LAN, but also supports reliable publishing to thousands of simultaneous
users over the public internet.

RTTP is a very robust protocol that automatically ‘tunnels’ through firewalls and proxy servers.
RTTP ensures high data quality irrespective of most network obstacles using persistent virtual
connections (providing rapid and seamless recovery from transient connection loss) with smart/

StreamLink 4.4 About the data
Technical Overview

13
secure tunnelling and data health checking to monitor the ‘freshness’ of the information being
received.

4.1 How RTTP data is organised

There are several types of RTTP object:

Directory Caplin Liberator uses directories which contain Page, Record, News
headline and story, and Chat objects. Data can be held by an object in
two ways: in one chunk and/or as name-value pairs. Whether a
particular object stores information as a chunk and/or name-value pairs
depends on the type of the object. Users of data streamed on RTTP can
subscribe to a directory and receive updates when objects are created or
deleted within that directory.

Page A page is a free format piece of text made up of rows. RTTP supports
any size of page up to 128 rows of 256 characters (typical sizes are 14
rows of 64 characters and 25 rows of 80 characters).

Record A record is a means of storing and displaying information. Records are
composed of fields which may not be of the same type: for example, a
record containing equity data could have several price fields (e.g. the last
traded prices) together with time and date fields, whereas an index
record would have a price field but no bid or ask values.

News story News stories do not need to be streamed on RTTP since they do not
benefit from being real-time enabled (although a client might want to
stream stories if the content can be changed or appended to as more
news becomes available, and readers want to see updates to the story
immediately).

News headline The news headline, however, must be RTTP-enabled, so that if the user
wants to read the story they can select that particular news item and use
a more standard subscription mechanism to request the story. A request
for a news headline object may contain a filter string which allows a client
to limit the updates it receives based on a simple logical syntax.

Chat RTTP chat objects allow users logged into Caplin Liberator to chat in
real-time. Each chat object represents a virtual chat room for 2 or more
users. To send a message to the channel, users contribute to chat
objects.

StreamLink 4.4 About the data
Technical Overview

14
Container Container objects store references to other objects. A client requesting a
container object will receive changes to the container object (called
structure updates), and will also be automatically subscribed to any
objects that are held in the container.

Auto
Subscription
Directory

This is a specialised directory object that allows the subscriber to the
directory to be automatically subscribed to all of the contents of the
directory, in a manner similar to the container object.

When combined with a filter, all objects within the filtered directory will be
subscribed to. This applies to both record and news filtering.

Auto Subscription Directories also provide the option to monitor filtering.
This allows a client to distinguish easily between an infrequently updating
record and a record for which many updates have been filtered out.
When the field values in a record change from matching to not matching
the filter, or from not matching to matching the filter, a notification is sent.

StreamLink 4.4 About the data
Technical Overview

15
4.2 Symbols and fields

Most real time data handled by RTTP is identified by combinations of symbols and fields. The
symbol is stored as the name of an object on Caplin Liberator.

A symbol is a letter or sequence of letters used to identify a security. Symbols should always
start with a "/". For example, "/DCX" is used for Daimler Chrysler Corporation, "/LO/VOD" for
Vodafone trading on the London Stock Exchange, and "/MSFT" for Microsoft.
The symbol you choose depends on the "symbology" being used by the data source. If you

Permisssions
object

A permissions object can contain structured authorization information
("permissioning" data) that is available to a custom Liberator auth
module, and (if the auth module allows it) to client applications through
StreamLink. Such an object is usually generated by a custom
DataSource application, and the format and meaning of its contents are
determined by this DataSource. Updates to the object are sent to the
custom Liberator auth module, which must be coded to understand the
contents of the object and act on them accordingly, for example by
updating the permissions for a user.

Client applications can also make use of permissions objects. A client
can subscribe to particular permissions objects and receive updates to
them from the Liberator, through the standard update mechanism. The
client can then use the permission information to control the way the
application behaves.

For example, a back-end trading system could generate information that
authorizes users to trade on objects using particular trading models, such
as ESP (Executable Streaming Protocol) or RFS (Request for Stream).
The custom DataSource sends this authorization data to the Liberator as
updates to permissions objects. The custom auth module in Liberator
receives the permissions objects and uses them to manage changes to
the trading permissions for each user. It also passes the changes on to
the subscribing client. The client application alters the appearance and
behaviour of the user’s trading interface according to the changes in the
permission object; for example it might need to disable the button that
allows the user to trade using ESP.

For more information on permissions objects see the Liberator
Administration Guide (version 4.4. or later).

StreamLink 4.4 About the data
Technical Overview

16
are running your own Caplin Liberator, this will by default be the same as the symbology of
the data source to which it is connected. If you are using a third-party RTTP source, you
should obtain a symbol directory from its owner.

A field is a certain piece of information relating to the symbol. Typical fields are "Bid" (the bid
price), "Ask" (the asking price) or "Cls" (for the previous day's closing price).
As with symbols, the range of fields available for a particular financial instrument depends on
the data source to which you are connected.

4.3 How StreamLink uses RTTP data

StreamLink provides a set of objects which enable you to subscribe to and modify the contents of
Caplin Liberator's directories. These functions perform the following tasks:

requesting allows you to get the current value of an object (i.e. its data and/or name-
value pairs) on Caplin Liberator, and also receive future changes to that
value

discarding allows you to stop receiving future updates to a previously requested
item

creating allows you to create new objects on Caplin Liberator in order to
contribute new values to them

deleting allows you to delete objects from Caplin Liberator

contributing allows you to add or modify the data and/or name-value pairs associated
with an object on Caplin Liberator

throttling allows you to change the throttle level (frequency of updating) for each
object

StreamLink 4.4 About Caplin Liberator
Technical Overview

17
5 About Caplin Liberator

Caplin Liberator is a complete RTTP publishing and subscription management system which
features an advanced push server for streaming real-time data to any RTTP-aware client.

Contributing applications send market data to Caplin Liberator, which then aggregates the data
and publishes it over the internet using RTTP, where it can be integrated into web pages or
custom applications. Systems can be set up with multiple Liberators for load balancing and fault-
tolerance purposes.

The StreamLink library is designed to connect to a single Liberator at a time. It is able to fail over
from one server to another, but cannot hold a connection to more than one server. If your
application requires connections to more than one server, create a new instance of the
connecting class or a subclass for each server using properties that point to Server 1, and
another instance using properties pointing to Server 2. If the updates from all Liberators are to
be displayed in a single place you will need to write an object to collect the updates from the
various different StreamLink instances.

User permissioning and usage monitoring can be carried out in a variety of ways:

using Caplin Liberator's authentication API to write your own authentication module in C or
Java for interfacing to a proprietary database or entitlements system;

using the simple built-in file-based authentication, the quickest way to get started with your
Caplin Liberator;

using Caplin's XML Auth Module, which uses XML to create permissioning structures and
control the entitlement of objects held on Caplin Liberator.

5.1 Data sources

Caplin Liberator is capable of retrieving data from any source connected to the DataSource
Integration Network, an interface that enables most Caplin and RTTP-related products to
communicate with each other. These can be configured to be "active", which means the source
will keep track of which objects have been requested and send updates for those objects only.
This improves performance by reducing network bandwidth requirements.

StreamLink 4.4 About Caplin Liberator
Technical Overview

18
DataSource handles data from the following sources:

Triarch;

RMDS

ComStock ;

TIB/RV;

Caplin Transformer, which can receive large volumes of raw real-time market data and
republish it as value-added data;

Reuters MarketLink feed;

Microsoft Excel via Caplin’s DataSource for Excel software;

Caplin’s PriceMaster;

Any client application written in C or Java which uses the DataSource API toolkit.

Any client application for which an adaptor has been written in C or Java using the
DataSource API toolkit.

5.2 Permissioning and security features

Caplin Liberator supports a modular system for handling authentication and authorisation. Each
"Auth" module allows users to be authenticated, objects to have permissions loaded, a user's
read and write permissions for an object to be checked and object name mappings to be
performed.

Liberator (version 4.4 and higher) also supports the use of permissions objects. A permissions
object allows changes in the user permissions on objects to be sent in real time to both to the
client and the Liberator auth module. For more information see page 15.

5.3 Clustering

Caplin Liberators can be arranged as a cluster and act as one server, in order to monitor licence
use and numbers of users logged on. The cluster can be configured to use a global cache, which

StreamLink 4.4 About Caplin Liberator
Technical Overview

19
means on failover each clustered Liberator can provide data from the same cache without having
to rerequest it from the data source.

5.4 Reconnecting

Caplin Liberator will maintain a session following a disconnection for a configurable period, to
enable the user to reconnect and continue to receive updates for objects they have subscribed to
without having to request them again. Update messages are stored in an output queue which
can be resent when reconnecting, so that the client is less likely to miss messages while
disconnected.

StreamLink 4.4 Runtime configuration
Technical Overview

20
6 Runtime configuration

All configuration for StreamLink is done via name-value pairs passed into a constructor or a
subclass.

6.1 RTTP Client Library properties

These properties configure the RTTP Client Library (the communication layer on top of which
StreamLink is built), including:

How to identify the client application.

The connection types to attempt (RTTP, HTTP or refresh).

The host names and ports of the RTTP servers; the protocol to use to contact a proxy and
the host and port on which the proxy resides.

The XML file containing the failover algorithm and servers information.

The user name and associated password used to login to the server. This will be used for all
servers listed in the XML file.

6.2 Reconnection properties

These properties configure how StreamLink handles reconnections to Liberators, including:

The number of times to attempt reconnection after each disconnection before giving up the
attempt and how long to wait before retrying to connect after a reconnection attempt has
failed.

The size of the batches that will be used to rerequest data after a disconnection.

The filtering to occur on data received from the server. If a field is received from the server
that was not specified in a request, it will be discarded. This only applies to objects which
have been requested with fields.

StreamLink 4.4 Runtime configuration
Technical Overview

21
6.3 RTTP Monitoring properties

Monitoring ensures that objects are receiving regular updates. These properties configure what
items should be monitored:

Any RTTP object name, beginning with "/" or similar. Only this property is required to monitor
an object.

Time after the last update for the object before an error is signalled.

StreamLink 4.4 Subscribing to data
Technical Overview

22
7 Subscribing to data

7.1 Requesting an object

In order for StreamLink to receive data, the client application must subscribe to the objects
whose data it is interested in. This is achieved by requesting the objects from the server.

To make a request, you must create a target using a factory class. When the object has been
successfully created, the object can be requested from the server by passing the object that has
just been created into the request method. This will request the object with the specified object
name from the server, and the client will receive all the updates for that object provided it exists
on the server and is updating. If there is a problem with the request, an exception will be thrown.

7.2 Requesting specific fields

You can request updates for a subset of the record’s fields. For example, the client may want to
request only the Bid and Ask fields for the record. This can be achieved using a method which
includes a list of the fields that should be subscribed to for the specified object.

7.3 Requesting Type 2 and Type 3 records

There are also several factory methods which create specialised types of target in order to
request more specific object types such as Type 2 and Type 3 record data.

Note: although the client can request a Type 2 or Type 3 object using the factory methods
which create the targets, the Type 2 or Type 3 callback methods will only be called if the
object is a record, and has fields that are of Type 2/Type 3. For instance, if the object
requested is actually a page, StreamLink will handle updates as pages rather than Type
2 or 3 updates.

StreamLink 4.4 Subscribing to data
Technical Overview

23
7.4 Batched requests

If the client application needs to request many objects from the server, it can do so by using a
method that batches requests together. This method has the advantage of using only one
message to request several objects instead of many messages requesting individual objects.

7.5 Discarding an object

After an object has been requested, the server will continue to send updates for that object to
StreamLink until the client application is closed. If the client wants to stop receiving the updates,
it can do so by discarding the object.

7.6 Discarding specific fields

If an object has been requested with specific fields, you can discard some of these fields and
keep receiving updates for others. For example, if an object has been requested with the Bid
and Ask fields, the client can discard the Ask field for that object, in which case it would still
receive updates for the Bid field, but would stop receiving updates for the Ask field.

7.7 Batched discards

As with requests, it is also possible to discard many objects from the server with one message.

StreamLink 4.4 Receiving data
Technical Overview

24
8 Receiving data

Once an object has been requested from the server, the client receive an initial image for that
object and then subsequent updates for it until the object is discarded. The object’s image is its
current state when the client first requests it, which will come from the server’s cache.

When StreamLink receives an update, it determines the object’s type (e.g. record, directory or
chat) and then calls the associated update method. The client is able to override these methods
to process the updates in the way required by the application.

StreamLink 4.4 Publishing data
Technical Overview

25
9 Publishing data

9.1 Contributing to an existing object

A client can contribute to any object it has write access to, regardless of whether it created the
object itself, or whether the object was created by another of the server’s data sources. If
created by another source, the contributed values will be passed on to that data source for
processing.

(At present, Liberator only accepts StreamLink contributions to record and chat objects.)

Note: If the client contributes values for fields that are not configured on the server, the
contribution will appear to succeed; however values for any fields that do not exist will be
ignored. For example, if the client contributes values for the fields Bid and BidSize to a
server that does not have the BidSize field configured, only the Bidvalue will be
contributed to the object.

9.2 Creating a new object

To create an object, the client must have write access to the directory in which the object is to be
created, and that directory must already exist. For example, the client may have write access to
the /DEMO directory, but it can only create the object /DEMO/EQUITY/TEST if the /DEMO/
EQUITY folder exists. If the client attempts to create an object in a directory that does not exist,
an exception will be thrown.

When an object is created, the client must specify the data type (i.e. whether it is a record, page,
news headline etc).

9.3 Deleting an object

To delete an object, the client must have write access for that object. If the client attempts to
delete an object that does not exist, an exception will be thrown.

StreamLink 4.4 Handling events
Technical Overview

26
10 Handling events

RTTP is based on responses and events.

Due to the design of StreamLink the client only has to process the events types that they are
interested in. All events that can be received are represented by callback methods. Amongst
the events that StreamLink handles are:

when a response or event containing data has been received. Most clients will want to
override more specific methods based on the type of data they expect to receive (i.e. when a
response or event containing data relating to a directory object or a Type 2 record object has
been received).

when a subscription to an object either failed or became invalid. If this was a new
subscription it may be necessary to inform the user.

when a query has been made to the source as a result of a subscription request. Further
events will be generated when the result of the subscription is known.

when the server has disconnected this client because another client has logged in with the
same username. As there is no automatic reconnection in this circumstance, the login
method must be called to reconnect the session.

when an error has been detected with the connection to the server and the client has been
disconnected. If configured, reconnection attempts will be automatic.

when an attempt is being made to connect to a server.

when a connection to the server has been established.

when the status (i.e. validity/freshness) of a subscribed-to object has changed.

Responses sent to the client by Liberator after a message is sent to the server.

Events received at any time; they may be produced as a side-effect of a previous
message sent to the server (such as an update). Most events are
generated by the server and delivered to the client but some connection
events are generated by the client directly.

StreamLink 4.4 Handling events
Technical Overview

27
when a source attached to Liberator has gone down or back up. If a source goes down then
data for all symbols supplied by that source may be stale. When the source comes back up
again, the data may not be stale.

when the status of a source attached to the server has changed.

10.1 Advanced event processing

All messages received by the client (both responses and events) have an RTTP code which
indicates how the message should be interpreted. There is a large number of RTTP codes, but
StreamLink removes the need for a developer to be familiar with them. However it is sometimes
necessary to access these codes when coding advanced functionality.

StreamLink automatically processes responses—failure responses are converted to exceptions
and thrown. Failure responses contain a reference to the original response from which the client
can access the code. All other responses are silently discarded (with the exception of responses
to subscription requests which contain data) as in these cases the data is passed to a callback
function; there is no way for the client to access the RTTP code for these responses.

The RTTP codes can be retrieved from a class, but this class is part of the RTTP Client Library
and does not have public documentation. The RTTP Client Library also provides methods which
allow comparisons to be made with the value returned.

StreamLink 4.4 Requesting different fields for the same symbol
Technical Overview

28
11 Requesting different fields for the same symbol

When a subscription is first made for a symbol the server allocates a sub-channel within the
RTTP stream and delivers all data associated with the symbol over this channel. If further
subscriptions using the same symbol name are made in the future (e.g. if the symbol VOD.L with
field "Bid" was initially requested, and subsequently VOD.L with fields "Ask" is requested) then
this data will come down the same subchannel which has been allocated for that symbol name.
This behaviour is useful when data is being distributed to a number of consumers as it minimises
the bandwidth required to deliver the data.

There are situations where this behaviour is not desirable, for instance when a request is made
using a filter or when the same symbol is required at two different throttle levels. In these cases,
although the data the server sends out may be for the same symbol name and fields, the actual
data will differ. A new sub-channel can be allocated by the server for each subscription made,
even if other sub-channels currently exist with the same symbol name.

StreamLink 4.4 Re-requesting symbols
Technical Overview

29
12 Re-requesting symbols

Streamlink does not maintain a cache of current values or images. As described above, the
server allocates a sub-channel for each distinct symbols request. If a symbol is requested once
then subsequent requests will not result in an image being retrieved from the server (with the
exception of additional fields as previously discussed). Therefore the application using
StreamLink must cache existing values if they are required later by a subsequent request. A
unique sub-channel can be created using a UniqueRTTPTarget, this will result in a new complete
image being retrieved but also a corresponding increase in required bandwidth as each update
will be sent down both sub-channels.

StreamLink 4.4 Handling incoming messages using listeners
Technical Overview

30
13 Handling incoming messages using listeners

Listeners provide the client with callbacks which enable you to keep tab on events regarding
failed requests, connection status and miscellaneous messages such as source status. All
RTTP messages delivered to the client application by StreamLink arrive through callback
methods, except for some messages relating to chains.

For non-RTTP events (i.e. events generated on the client side not related to the server
connection) StreamLink allows listeners to be added by a client application:

as part of the shutdown sequence, to allow clients to release any resources they may be
holding and terminate internal threads.

after an object has been passed to the request method, the request has been sent to the
server, a positive response received and a "requested" method called. (Currently this is used
internally by the chain functionality, but is available for client applications to use if
appropriate.)

when an object has been successfully discarded as a result of being passed to the discard
method. Note: if a subscription to an object ends for a reason other than a discard (e.g. loss
of connection, delayed failure message from a data source) no call will be made to the
discard listener.

StreamLink 4.4 Handling chain data
Technical Overview

31
14 Handling chain data

StreamLink provides support for requesting objects as chains, maintaining chains and accessing
the values of elements within a chain.

Chains are used to group together records to form meaningful sequences: chains are often used
to represent indices and "most active" lists, for example. They provide a sequential list of record
names that may grow, shrink and update in real-time. An application may request these record
names to access data within the records that form the chain.

Chains are often represented on Liberator by multiple linked symbols, but StreamLink hides this
implementation and provides the entire chain in one list associated with a single symbol name.

14.1 Chain listeners

Listeners can be added to a chain object to listen for the following:

core chain update events such as additions or changes to chain elements;

any errors that occur either during chain loading or subsequently;

any change to the status of the chain such as a part becoming stale.

14.2 Requesting chains

A chain object, created using the factory class, is requested using the usual StreamLink request
mechanism.

14.3 Receiving chain updates

Updates to the chain, such as it growing, shrinking or the value of a chain element changing are
notified to the client. An event is fired as each chain element is received from the server, which
allows any required processing to occur whilst the chain is loading. (This can prove more efficient

StreamLink 4.4 Handling chain data
Technical Overview

32
than waiting for the complete chain to be received.) Once the chain is complete, an event is fired
to the registered listener.

After the chain is loaded, it may grow, shrink or an element in the chain may change value—in
each case an event may be fired to the registered listener.

Typically an application will use these events to request and discard the records named by the
methods which retrieve the update value of a chain element and compare them to the previous
value.

14.4 Querying a chain

At any time, the chain can be inspected to check its state, namely:

the current size of the chain.

whether the chain is complete.

whether the chain is known to be invalid.

StreamLink 4.4 Handling chain data
Technical Overview

33
Also a specific element, all elements or an enumeration of all the current elements can be
retrieved.

14.5 Errors with chains

When an error occurs whilst retrieving a chain an event is fired to the registered listener.

Two types of errors can occur when requesting a chain: when the object is not available as a
chain, or the chain is invalid. Both events contain a string description detailing the error.

When one or more parts of the chain are unavailable for some reason, an event is fired. In
addition to a string description, an object is available detailing the specifics of the error.

14.6 Status Messages

When any part of the chain goes stale or has another status change (such as not being stale
anymore as a new update has occurred), an event is fired to the registered listener. The event
contains an object that indicates the new state of all or part of the chain.

It is possible for only part of the chain to become invalid in some implementations.

14.7 Discarding chain objects

When a chain is no longer required, the standard StreamLink discard mechanism is used to
discard the chain.

This causes the underlying implementation to perform the appropriate discard action to the
chain, which might involve sending multiple messages to the server.

StreamLink 4.4 Throttling updates—Advanced Flow Control
Technical Overview

34
15 Throttling updates—Advanced Flow Control

Throttling (also known as conflation) is the process of capping the rate at which updates are sent
to a client. This is done by sending out one update every throttle period at most, an update that
contains only the most recent value received from the data source.

"Advanced Flow Control" allows dynamic throttling to be performed where the throttle level for a
particular symbol can be changed by the client at any time.

Throttling can be used for a number of reasons:

to reduce network usage levels, both leaving Caplin Liberator and entering the client;

to reduce load on the client, for instance when displaying updates on screen at a high rate is
overloading the client machine;

to reduce load on Caplin Liberator, by reducing the number of updates it sends out.

Throttling examples:

1) If a symbol updates twice every second, but has a throttle time of one second, the client will
only receive an update once per second. Note that because Caplin Liberator must wait until the
end of the throttle period before sending the update(in case further values arrive), throttled
values will be sent to the client with a delay of up to one throttle period.

2) If a symbol receives an update once every three seconds and the throttle time is one second,
the client will receive one update every three seconds. When Caplin Liberator identifies that a
symbol is updating less frequently than the throttle time it does not activate throttling and sends

Seconds 0 1 2 3 4 5 6 7

Incoming
Updates A B C

Throttled
Updates A B C

StreamLink 4.4 Throttling updates—Advanced Flow Control
Technical Overview

35
values out immediately. Updates would be sent out as soon as they were received and not at the

end of the throttle period.

15.1 Throttling configuration

Throttling is set up by specifying a number of global and per-symbol throttle times in Caplin
Liberator's configuration.

When a client logs in and requests symbols they will be throttled according to these configuration
settings. A client may then alter the throttle levels for any symbols it is subscribed to or
subscribes to in the future, within the throttle levels specified in the Liberator configuration.

These throttle levels are controlled using the commands shown below. The client is not aware of
the actual throttle times as these are configured in Liberator, but is able to switch from one
throttle level to another. Within StreamLink a class provides access to the valid throttle levels.

The methods on the throttling interface send commands to Liberator to perform the following:

adjust the throttle level on all existing subscriptions currently at the 'default' level and all
future subscriptions.

adjust the throttle level on a specific object.

adjust the throttle level for one or more objects identified by the targets array. All objects will
be set to the same throttle level.

Seconds 0 1 2 3

Incoming
Updates A B C D E F G

Throttled
Updates B D F

StreamLink 4.4 Filtering requests and updates
Technical Overview

36
16 Filtering requests and updates

16.1 Client-side filtering

In certain situations Caplin Liberator sends unrequested fields to reduce server-side processing.

Because StreamLink maintains a list of requested symbols and fields for reconnection purposes,
it is possible to filter out any fields a Caplin Liberator sends which the client has not requested.
For example, if the client requests LO/VOD Bid Caplin Liberator may send an update containing
LO/VOD Bid, Ask and Time. If client-side filtering is enabled, the additional fields will be removed
from the update before it reaches the client application.

16.2 Server-side filtering

Liberator can accept requests for objects with a user-defined filter—only updates matching the
expression given by the user will be sent to that user. The expression is based around the
values of the fields in the update and can contain most standard logical operators.

For example:

a user might only request news headlines which are sport headlines or contain the word
"golf", or updates to a stock where the value of the Volume is greater than 10000.

two requests could be made, both for /VOD.L;Bid. The first has a filter "Bid>100" and the
second "Bid>200". Liberator will see these as entirely separate requests and send separate
sets of updates for each. If an update of Bid = 250 occurs, two updates will be sent to the
client. Because both subscriptions have the same object and field names it is necessary to
add a differentiator to identify which update is for which subscription.

StreamLink 4.4 Filtering requests and updates
Technical Overview

37
Every time a subscription is made a new object number is allocated on Liberator. This means
that a client can receive a field value several times when multiple subscriptions were made with
the same symbol name.

Currently there are two types of filtered subscription supported: record filtering and news filtering.

16.3 Record filtering

Records are filtered by specifying a filter when creating an object. The filter string consists of
checks for the presence of fields and/or their values. Record filters are specified using a filter
string with the operators shown below.

It is not possible to perform queries where these characters form part of the field name or the
value to be compared.

16.4 News filtering

News is filtered by specifying a news filter when creating an object. The filter string consists of
news codes and whole words to search for. To create a news filter specify a filter string using the

Character Meaning

¦ or

& and

= equals

! not

< less than

> greater than

~ contains

() perform these filters first

StreamLink 4.4 Filtering requests and updates
Technical Overview

38
operators shown below.

It is not possible to perform queries where these characters form part of the value to be
compared.

As well as serving up cached headlines previously broadcast to Liberator, Liberator can actively
collect historic news using a suitably-configured DataSource such as DataSource for HNAS.
This enables clients to request news from a certain date without being limited by Liberator's
cache size.

16.5 Receiving filtered updates

The objects used in a request are passed back into overloaded callback methods when updates
are received. These methods include the object used in the original request to allow the
application to identify which requested object the update belongs to.

Character Meaning

[space] | or

+ & - and

= equals

! ~ not

' start or end of
free text search
string

" start or end of
free text search
string

() perform these
filters first

StreamLink 4.4 Decoding binary data
Technical Overview

39
17 Decoding binary data

DataSource provides the ability to pass binary data into Caplin Liberators, encoded and stored
as a string. Various types of binary data are predefined in DataSource— please refer to the
DataSource documentation for more information.

Binary data is received by the client as a normal value in a name-value pair. StreamLink provides
a helper class which decodes these binary types. When expecting binary-encoded values in a
particular field you can simply call a class and an object representing the type will be returned.
You can override the method to perform your own processing of the data.

StreamLink 4.4 Server failover
Technical Overview

40
18 Server failover

Caplin has designed a number of algorithms to select a backup server from a list when a
connection to a server fails. These algorithms balance the load across the servers and minimise
use of the backups. There are three algorithms, named after the pattern of selection they
produce.

The examples below use two primary servers with two backup servers. A1 is paired with backup
server B1 and A2 is paired with B2. The client is assumed to attempt to A1 first.

18.1 Z failover algorithm

Always tries to failover to a primary server. Backup
servers will only be attempted if StreamLink has
failed to connect to all of the primary servers.

Example sequence: A1 > A2 > B1 > B2

18.2 U failover algorithm

If the client cannot connect to a primary server, it
attempts to connect to the backup server. If there
is no backup server for the primary server, then a
server is selected from the list of other backup
servers.

If the client cannot connect to the backup server,
then it will attempt to connect to another backup

A1

B1 B2

A2

A1

B1 B2

A2

StreamLink 4.4 Server failover
Technical Overview

41
server. It should only attempt to connect back to a primary server once the list of backup servers
has been exhausted.

Example sequence: A1 > B1 > B2 > A2

18.3 N failover algorithm

If the client cannot connect to a primary server, it
attempts to connect to the backup server. If there is
no backup server for the primary server the client is
connected to, then a server is selected from the list
of primary servers.

If the client cannot connect to the backup server,
then it should attempt to connect to a primary
server.

Example sequence: A1 > B1 > A2 > B2

User-defined algorithms A user-defined algorithm can decide whether StreamLink should
connect to a paired backup server (if there is one) or to a random primary or backup server.

18.4 Choosing a failover type

Client applications must download an XML file (rttp.service.url) and associated DTD file in order
to use algorithm-based failover.

The XML file must contain a list of servers available for the RTTP Service (a set of Caplin
Liberators which all accept the same clients and provide the same set of data), and the preferred

B1 B2

A2A1

StreamLink 4.4 Server failover
Technical Overview

42
failover algorithm. If no XML file is specified, the application will repeatedly try to connect to the
servers identified by its configuration properties.

If the XML file URL is invalid, the XML does not conform to the DTD or a value within the XML is
invalid, an exception will be thrown.

The required failover type can be selected by using a property which identifies the location of the
XML file containing the list of servers. If an algorithm is included in the XML file it cannot be
overridden.

If no algorithm is set in the XML file, it can be set in the client application using a different
property, which must contain the fully qualified class name of the algorithm.

If no algorithm is set by these means, the application will use the Z method of failover by default.

StreamLink 4.4 Connection interfaces
Technical Overview

43
19 Connection interfaces

19.1 Connection options

When an initial connection to the server is created, it can continue to exist until the application is
shutdown, the server is shutdown, or network problems cause a break in the connection.
Alternatively this connection will continue to be maintained, even if the server is restarted or
network problems cause a break in the connection.

It is important that the functions to perform this should only be called at the appropriate time, for
instance if a message has been received indicating the connection has been lost. In addition if
using the reconnecting class neither a connect or login method should be called if a disconnect
or logout method have not been called previously.

An interface is provided to notify a client when the StreamLink library shuts down. A notification
is made after the logout message has been sent to the server.

19.2 Noop messages

The noop interface has a method which sends a message to the server to ensure that the
connection is functioning correctly. This method can also be used to give an indication of the
round trip time of sending a message to the server and receiving the response. The client can
call this method on a regular basis or at any time while connected in order to test the connection.

19.3 Statistics

The statistics interface provides various methods which return given statistics about the
connection to the server, such as bytes sent and received, connection type and latency
measured as half their round-trip no-op time.

One method returns the size of the update queue, i.e. the number of events that have been
received from the server but have yet to be passed on to the client application. Normally this
queue will be very small or empty; if this is not the case it indicates that the client application is
not processing updates quickly enough and the data being processed by the client is not up-to-
date. This situation can be improved by adjusting the throttling to the data or by reducing the
amount of processing that is done per update.

StreamLink 4.4 Service up and down notifications
Technical Overview

44
20 Service up and down notifications

20.1 Data services

Caplin Liberator requests objects from other DataSource peers through data services. A data
service defines which data sources a particular object will be requested from, based on its
subject name.

Note: Data services replace the old Source Mapping feature of Caplin Liberator.

Each DataSource that makes up the service must either be defined as being required or non-
required. A required source is one that provides critical data and so must be up for the service as
a whole to be considered OK (for example, a source providing the current market prices for an
object). A non-required source is one that provides non-critical data (for example, a source
providing fundamental data relating to an object).

20.2 Service status

The state of the service is dependent on the states of its constituent sources. The possible
states are:

OK - All of the data sources for the service are up.

DOWN - One or more of the required data sources are down.

LIMITED - One or more of the non-required data sources are down, but all of the required
data sources are up.

StreamLink 4.4 Service up and down notifications
Technical Overview

45
StreamLink passes on notifications about the change of a data service’s state using the
serviceStatusUpdated method.

20.3 Object status updates

The state of an object is dependent on the state of the data service that provides it. It is also
possible for a data source to send out individual object status messages. The possible states
are:

OK - All of the data sources for the service that is providing the object are up.

STALE - One or more of the required data sources providing the object are down, or have
sent a specific stale message for that object.

LIMITED - One or more of the non-required data sources providing the object are down, or
have sent a specific stale message for that object.

INFO - A informational message about the status of the object.

REMOVED - The client's subscription for the object had been cancelled on the Liberator.
The client will not receive any more updates for that object.

Object status updates are passed on using the objectStatusUpdated method.

Note: These object states replace the states that were used prior to StreamLink 4.0. The
REMOVED state replaces the old BAD state, whilst OK replaces NOTSTALE. The only
state that does not have a corresponding value in 4.0 is NOTSTALEWAIT. This state no
longer exists - when the OK state is received the Liberator guarantees that the data the
client currently has for the object is up-to-date.

StreamLink 4.4 Service up and down notifications
Technical Overview

46
20.4 Example

The following diagram demonstrates how two data services might be set up. The first, Service A,
is used for all objects that match the pattern /LO/*. This service is dependent on one source,
Source 1, which has been defined as being required. The second service, Service B, is used for
objects that match the pattern /NA/*. It uses two sources, Source 1 which is required, and
Source 2 which is non-required
.

Figure 20-1: Data services example

In this example, the client requests two objects: /LO/VOD and /NA/MSFT. /LO/VOD matches the
pattern for Service A, and is requested from Source 1. /NA/MSFT matches the pattern for
Service B, and is requested from both Source 1 and Source 2.

StreamLink 4.4 Service up and down notifications
Technical Overview

47
If Source 2 goes down, a LIMITED status message will be sent for /NA/MSFT (and for Service
B). /LO/VOD and Service A are not affected.

If Source 1 then goes down, a STALE status message will be sent for /NA/MSFT and /LO/VOD,
and a DOWN status message will be sent for both Service A and Service B.

If Source 1 now comes back up, an OK status message will be sent for /LO/VOD and Service A,
whilst a LIMITED status message will be sent for both /NA/MSFT and Service B (since the non-
required source Source 2 is still down).

When Source 2 comes up, an OK status message will be sent for /NA/MSFT and Service B. /LO/
VOD and Service A are not affected.

StreamLink 4.4 Using StreamLink for Java in applets
Technical Overview

48
21 Using StreamLink for Java in applets

21.1 Writing an applet

StreamLink for Java can be used within any applet running in a browser which supports JDK 1.1
or above.

It must also abide by the standard applet security rules, such as connecting to the server from
which it was downloaded, and not attempting to connect to multiple servers. It is possible to work
around these rules if the applet is signed.

21.2 Obfuscation

Obfuscation has two advantages—it prevents end-users from being able to decompile and reuse
any parts of an application easily, and reduces the size of the code that has to be downloaded to
the end user.

Caplin Systems Ltd suggests the use of yguard (http://www.yworks.com/en/
products_yguard_about.htm), a reliable bytecode obfuscator which Caplin uses to obfuscate
other Java products. It is open source, free for commercial or non-commercial use and written in
Java.

Note: When obfuscating, avoid the use of string-based reflection within the code, as this will
cause a runtime failure unless classes referenced in this way are excluded from
obfuscation.

In StreamLink for Java the following classes are loaded by reflection and so should not be
obfuscated:

21.3 Compression

The size of download for Java code can be significantly reduced by compressing code. In
general files are compressed by adding them to a single archive file and compressing them in the
process. The Microsoft version of Java supports archives in the JAR (Java Archive) format as
specified by Sun, which is the same format as a .zip file and Microsoft's proprietary CAB format.

Caplin has found that the compression used in CAB files produced by Microsoft's Cabarc tool
(available in the MS SDK for Java) is significantly more efficient than that used in JAR/zip files;

StreamLink 4.4 Using StreamLink for Java in applets
Technical Overview

49
however non-Microsoft JVMs — including Sun's Java plugin — only support JAR format
archives. Therefore Caplin recommends that if both Microsoft and non-Microsoft JVMs are to be
used, both JAR and CAB files should be made available to the applet. CABs are specified in the
Microsoft specific cabbase parameter of an <APPLET> tag.

StreamLink 4.4 Debugging
Technical Overview

50
22 Debugging

22.1 Setting the debug level

StreamLink initialises the DebugLevel it uses to the value of the streamlink.debug.level property.
This determines which debug messages are output by the system and which are ignored. If this
property is not set, or has an invalid value, StreamLink will default to using
DebugLevel.DEBUG_LEVEL.

After StreamLink has been initialised the debug level can be modified using the
setCurrentDebugLevel(DebugLevel) method.

22.2 Redirecting debug output

The location to which debug messages are output is determined by the DebugMessageListener
that has been registered with StreamLink. All debug messages generated by StreamLink and
the RTTP client library will be passed onto this listener. If a listener is not explicitly set, a default
one (StandardDebugMessageListener) will be used that outputs the messages to standard out.

The DebugMessageListener used by StreamLink for Java can be configured using the
streamlink.debug.message.listener property. This must specify the fully qualified name of a
class that implements the DebugMessageListener interface.

Note: This functionality differs significantly from versions prior to StreamLink 4.0. In these
earlier versions the outputMessage(String) and outputMessage(String,Object[])
methods were meant to be overridden to redirect debug messages. Unfortunately this
was incompatible with changes in 4.0 where the RTTP client library and StreamLink
debug message outputs were unified. Any application that overrides either of these
methods should be modified to use a DebugMessageListener instead. The
outputMessage(String,Object[]) and outputMessage(DebugLevel,String,Object[])
methods should still be used to log debug messages however.

StreamLink 4.4 Troubleshooting
Technical Overview

51
23 Troubleshooting

If your program does not work as expected it is often useful to use the debug version of
StreamLink. This can output various types of debugging information, including:

size of response and update queues:
[DebugLevel.RTTP_FINE_LEVEL];

RTTP messages sent by client and received from Caplin Liberator:
[DebugLevel.RTTP_FINER_LEVEL];

HTTP headers on HTTP communication with Caplin Liberator:
[DebugLevel.RTTP_FINEST_LEVEL].

The information contained in this publication is subject to UK, US
and international copyright laws and treaties and all rights are
reserved. No part of this publication may be reproduced or
transmitted in any form or by any means without the written
authorisation of an Officer of Caplin Systems Limited.

Various Caplin technologies described in this document are the
subject of patent applications. All trademarks, company names,
logos and service marks/names ("Marks") displayed in this
publication are the property of Caplin or other third parties and may
be registered trademarks. You are not permitted to use any Mark
without the prior written consent of Caplin or the owner of that Mark.

This publication is provided "as is" without warranty of any kind,
either express or implied, including, but not limited to, warranties of
merchantability, fitness for a particular purpose, or non-
infringement.

This publication could include technical inaccuracies or
typographical errors and is subject to change without notice.
Changes are periodically added to the information herein; these
changes will be incorporated in new editions of this publication.
Caplin Systems Limited may make improvements and/or changes in
the product(s) and/or the program(s) described in this publication at
any time.

Contact Us
Triton Court
14 Finsbury Square
London EC2A 1BR
UK
Telephone: +44 20 7826 9600
Fax: +44 20 7826 9610

www.caplin.com

info@caplin.com

	1 Preface
	1.1 What this document contains
	1.2 Who should read this document
	1.3 Typographical conventions
	1.4 Feedback

	2 Overview
	2.1 Documentation

	3 How StreamLink works
	3.1 Sending messages to Caplin Liberator

	4 About the data
	4.1 How RTTP data is organised
	4.2 Symbols and fields
	4.3 How StreamLink uses RTTP data

	5 About Caplin Liberator
	5.1 Data sources
	5.2 Permissioning and security features
	5.3 Clustering
	5.4 Reconnecting

	6 Runtime configuration
	6.1 RTTP Client Library properties
	6.2 Reconnection properties
	6.3 RTTP Monitoring properties

	7 Subscribing to data
	7.1 Requesting an object
	7.2 Requesting specific fields
	7.3 Requesting Type 2 and Type 3 records
	7.4 Batched requests
	7.5 Discarding an object
	7.6 Discarding specific fields
	7.7 Batched discards

	8 Receiving data
	9 Publishing data
	9.1 Contributing to an existing object
	9.2 Creating a new object
	9.3 Deleting an object

	10 Handling events
	10.1 Advanced event processing

	11 Requesting different fields for the same symbol
	12 Re-requesting symbols
	13 Handling incoming messages using listeners
	14 Handling chain data
	14.1 Chain listeners
	14.2 Requesting chains
	14.3 Receiving chain updates
	14.4 Querying a chain
	14.5 Errors with chains
	14.6 Status Messages
	14.7 Discarding chain objects

	15 Throttling updates-Advanced Flow Control
	15.1 Throttling configuration

	16 Filtering requests and updates
	16.1 Client-side filtering
	16.2 Server-side filtering
	16.3 Record filtering
	16.4 News filtering
	16.5 Receiving filtered updates

	17 Decoding binary data
	18 Server failover
	18.1 Z failover algorithm
	18.2 U failover algorithm
	18.3 N failover algorithm
	18.4 Choosing a failover type

	19 Connection interfaces
	19.1 Connection options
	19.2 Noop messages
	19.3 Statistics

	20 Service up and down notifications
	20.1 Data services
	20.2 Service status
	20.3 Object status updates
	20.4 Example

	21 Using StreamLink for Java in applets
	21.1 Writing an applet
	21.2 Obfuscation
	21.3 Compression

	22 Debugging
	22.1 Setting the debug level
	22.2 Redirecting debug output

	23 Troubleshooting

