
Overview

February 2013

StreamLink 6.0

i

Overview

© Caplin Systems Ltd. 2008 – 2013

Contents

StreamLink 6.0

Contents

.. 1Preface1

.. 1What this document contains1.1

.. 1About Caplin document formats

.. 2Who should read this document1.2

.. 2Related documents1.3

.. 3Typographical conventions1.4

.. 3Feedback1.5

.. 4Acknowledgments1.6

.. 5What is Caplin StreamLink?2

.. 7Key concepts3

.. 7StreamLink and the Caplin Platform3.1

.. 8RTTP3.2

.. 9RTTP connection types

.. 10StreamLink APIs and SDKs3.3

.. 10Caplin Liberator3.4

.. 11Subscriptions and real-time updating3.5

.. 11Creating, updating, and deleting data3.6

.. 12Caching data3.7

.. 12StreamLink in trading applications3.8

.. 13StreamLink features4

.. 17About the data5

.. 17Subjects, symbols, and fields5.1

.. 18Data types5.2

.. 18Records

.. 23Containers

.. 24Directories

.. 24Pages

.. 24News headlines and news stories

.. 25Chat

.. 25Permissions items

.. 25Trade messages5.3

.. 26StreamLink architecture6

ii

Overview

© Caplin Systems Ltd. 2008 – 2013

Contents

StreamLink 6.0

.. 28How to use StreamLink7

.. 28Asynchronous operation7.1

.. 28Subscribing to data and receiving updates7.2

.. 30Subscribing to more than one data item7.3

.. 30Obtaining data snapshots7.4

.. 31Sending data to the Liberator7.5

.. 32Persistence

.. 33Discarding data7.6

.. 33Making subscriptions more specific using parameters7.7

.. 33Specifying fields

.. 34Filtering data

.. 37Specifying container parameters

.. 38Monitoring the connection7.8

.. 38Reachability on mobile devices7.9

.. 38Throttling7.10

.. 39Authentication and permissioning7.11

.. 40Logging7.12

.. 40Configuration7.13

.. 41Resilience, failover, and load balancing7.14

.. 41Configurable failover strategy

.. 42Load balancing

.. 42Alternative RTTP connection types

.. 43Glossary of terms and acronyms8

Preface

1© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

1 Preface

1.1 What this document contains

This document gives a technical overview of Caplin StreamLink version 6.0.

It aims to provide an understanding of:

What StreamLink is and how it can be used.

Fundamental StreamLink concepts & features.

The relationship between StreamLink and the Caplin Platform.

How StreamLink can integrate with your own client application software to provide streaming data
display and support online trading of financial instruments.

About Caplin document formats

This document is supplied in two formats:

Portable document format (.PDF file), which you can read on-line using a suitable PDF reader such
as Adobe Reader®. This version of the document is formatted as a printable manual; you can print it
from the PDF reader.

Web pages (.HTML files), which you can read on-line using a web browser. To read the web version

of the document, navigate to the HTMLDoc folder and open the file index.html.

For the best reading experience

On the machine where your browser or PDF reader runs, install the following Microsoft Windows® fonts:
Arial, Courier New, Times New Roman, Tahoma. You must have a suitable Microsoft license to use these
fonts.

Preface

2© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

1.2 Who should read this document

This document is intended for anyone who requires an introduction to Caplin StreamLink.

Typical readers include:

Technical Managers

System Architects

System Administrators

Software Developers

1.3 Related documents

Caplin Platform Overview

Provides a technical overview of the Caplin Platform, including an explanation of its architecture.

StreamLink JS API Documentation

The reference documentation for the JavaScript implementation of StreamLink.

StreamLink Java API documentation

The reference documentation for the JavaScript implementation of StreamLink.

StreamLink Android API documentation

The reference documentation for the Android implementation of StreamLink.

StreamLink.NET API Documentation

The reference documentation for the .NET implementation of StreamLink.

StreamLink Silverlight API Documentation

The reference documentation for the Silverlight implementation of StreamLink.

StreamLink iOS API Documentation

The reference documentation for the iOS implementation of StreamLink.

Caplin DataSource Overview

A technical overview of Caplin DataSource.

Caplin Liberator Administration Guide

Describes Caplin Liberator and its place within the Caplin Platform. Explains how to install, configure,
and manage the Liberator. Includes configuration reference information, and a list of Liberator's log
and debug messages.

Preface

3© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

1.4 Typographical conventions

The following typographical conventions are used to identify particular elements within the text.

Type Uses

aMethod Function or method name

aParameter Parameter or variable name

/AFolder/Afile.txt File names, folders and directories

 Some code; Program output and code examples

The value=10 attribute is... Code fragment in line with normal text

Some text in a dialog box Dialog box output

Something typed in User input – things you type at the computer keyboard

Glossary term Items that appear in the “Glossary of terms and acronyms”

XYZ Product Overview Document name

Information bullet point

Action bullet point – an action you should perform

Note: Important Notes are enclosed within a box like this.
Please pay particular attention to these points to ensure proper configuration and operation of
the solution.

Tip: Useful information is enclosed within a box like this.
Use these points to find out where to get more help on a topic.

 Information about the applicability of a section is enclosed in a box like this.
For example: “This section only applies to version 1.3 of the product.”

1.5 Feedback

Customer feedback can only improve the quality of our product documentation, and we would welcome
any comments, criticisms or suggestions you may have regarding this document.

Visit our feedback web page at https://support.caplin.com/documentfeedback/.

https://support.caplin.com/documentfeedback/?product=StreamLink 6.0&doctitle=Overview&date=February 2013&release=2

Preface

4© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

1.6 Acknowledgments

Adobe® Reader is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Silverlight is a trademark of Microsoft Corporation in the United States and other countries.

Java and JavaScript are trademarks or registered trademarks of Oracle® Corporation in the U.S. and
other countries.

Objective-C is a trademark of Apple Inc., registered in the U.S. and other countries.

Android is a trademark of Google Inc.

What is Caplin StreamLink?

5© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

2 What is Caplin StreamLink?

StreamLink is an API and underlying code library that allows client applications to exchange real-time
financial data and trade messages with the Caplin Platform. This is shown in the following diagram.

StreamLink exchanging financial data
and trade messages

The client application can be implemented in a variety of technologies. It can be:

A browser-based (JavaScriptTM) application.

A JavaTM applet, Java application, or Java Web Start application.

A Microsoft Silverlight or .NET application (typically implemented in C# or Visual Basic).

An Objective-C application running under iOS.

An AndroidTM application

What is Caplin StreamLink?

6© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

StreamLink acts as the interface between the client application and a Liberator server. Caplin Liberator is
A financial internet hub that delivers data and messages in real time to and from subscribers over any
network.

Using StreamLink, the client can connect to the Liberator and receive streaming price data and other
market data that is updated in real time. With a suitably coded client, end users can place trades based on
the displayed data. StreamLink passes the trade messages to the Liberator for onward transmission to a
trading system and receives the response messages via the Liberator, forwarding them to the client
application.

Key concepts

7© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

3 Key concepts

This section introduces some key concepts about StreamLink.

3.1 StreamLink and the Caplin Platform

StreamLink is a component of the Caplin Platform that resides in client applications. The following diagram
shows in a little more detail how it fits in with the rest of the Platform.

StreamLink within the Caplin Platform Architecture

StreamLink communicates with a Liberator server using Caplin's Real Time Text Protocol, RTTP ,
typically across an Internet connection tunneled over HTTP or HTTPS. The StreamLink API conveniently
hides from the client application the details of how to handle the RTTP connection and protocol.

Liberator acts as the gateway for all data flows between the Caplin Platform and the StreamLink API in
clients. The Liberator communicates with other Platform components using an internal messaging
infrastructure called DataSource. Liberator obtains data from and sends data to external systems via
components called Integration Adapters (often just called “DataSources” in older Caplin documents).

8

Key concepts

8© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

In a typical trading application the real-time financial data displayed by clients is obtained from one or more
external data feeds, via dedicated Integration Adapters (“Pricing Adapter” in the diagram). The Liberator
messages about trades pass between clients and external trading system, via the Liberator and other
dedicated Integration Adapters (“Trading Adapter” in the diagram) .

For more information about the Caplin Platform and the components comprising it, see the Caplin
Platform Overview. For more information about DataSource and Integration Adapters, see the
DataSource Overview.

3.2 RTTP

RTTP stands for Real Time Text Protocol. This is Caplin's protocol for streaming real-time financial data
from Liberator servers to client applications, and for transmitting trade messages between clients and
Liberator in both directions.

RTTP is a robust text-based protocol that operates over Intranets, the Web, and over private networks
(directly via TCP/IP). When operating over WANs, Intranets and the Web, RTTP is typically encapsulated
in HTTP, or in HTTPS, to provide the highly secure messaging required by many financial applications.

RTTP has the following features:

Automatically tunnels between clients and Liberator, through firewalls and proxy servers, with no
special TCP/IP port requirements.

Uses persistent virtual connections, providing rapid and seamless recovery from transient connection
loss.

Is designed to ensure that communication between a Liberator and its clients utilizes bandwidth
extremely efficiently.

Can handle information in numerous formats, including:

– Structured records.

– News headlines and news stories.

– Containers.

– Directories.

For more information about RTTP data formats, see Data Types in About the data .18 17

Key concepts

9© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

RTTP connection types

RTTP works (via StreamLink) with various client application technologies: Java, JavaScript, .NET and
Silverlight applications, and Objective-C running on iOS. Accordingly it has several connection types to
support different combinations of application and network technology, as shown in the following table.

RTTP Connection
type

Client type Characteristics

Direct Java,
Android
applications
iOS applications,
.NET applications

This is a direct persistent connection via TCP/IP. The client
connects to the server via a TCP/IP socket, and the server
streams data directly to the client across this connection.

HTTP Streaming Java,
Android
applications,
JavaScript
iOS applications,
.NET applications,
Silverlight
applications

This is a persistent connection that uses tunneling over HTTP
or HTTPS. The client connects to the server by requesting a
URL. The server holds the requested page open and streams
data to the client until the client closes the connection.

In browsers, the entirety of the requested page is buffered in
the browser, which means that the browser must be
periodically closed and reconnected to stop memory
consumption.

HTTP Polling Java,
Android
applications,
JavaScript,
.NET applications,
Silverlight
applications

The client polls the server for data, issuing a fresh HTTP or
HTTPS request each time.

Because the polling mechanism is relatively inefficient and
resource hungry, and can increase message latency, it is
usually only used as a fallback mode when other types of
connection cannot be established.

WebSocket Java,
Android
applications,
JavaScript,
iOS applications

This is an HTML5 connection type that provides a
bidirectional connection between the client and the Liberator.
It is the best type of connection to use in browsers.

StreamLink can be configured to define which connection types should be used by a particular client;
see Configuration .40

Key concepts

10© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

3.3 StreamLink APIs and SDKs

StreamLink provides an object oriented API that allows applications to access RTTP functionality without
needing to understand the details of the protocol itself. It is supplied as an SDK containing the API and an
underlying software library. There is an SDK for each type of client technology that can access the Caplin
Platform.

Using the appropriate StreamLink SDK, you can build applications in JavaScript, Java, Java for Android, .
NET, Silverlight, and Objective-C on iOS. The following table shows which StreamLink SDK is used for
which client technology.

Client application technology StreamLink SDK

JavaScript/Ajax/HTML StreamLink JS

Objective-C on iOS StreamLink iOS

Java StreamLink Java

Java on the Android platform. StreamLink Android

.NET applications StreamLink.NET

Silverlight applications StreamLink Silverlight

Also see the StreamLink Architecture .

3.4 Caplin Liberator

Caplin Liberator is a real-time financial internet hub that delivers trade messages and market data to
clients over any network that supports RTTP. StreamLink connects client applications to a Liberator and
exchanges data with the Caplin Platform (and with other clients) via the Liberator.

Liberator contains a high performance publishing engine capable of delivering millions of updates per
second from a single server to multiple clients. It also provides standard Web server functionality to clients
using HTTP and HTTPS connections.

Liberator supports all the RTTP data formats – structured records, directories, and so on (see RTTP ,
and Data types in About the data).

For more information about Liberator see the Caplin Platform Overview and the Caplin Liberator
Administration Guide.

26

8

18 17

Key concepts

11© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

3.5 Subscriptions and real-time updating

StreamLink uses a publish and subscribe model. A Liberator server manages data which it publishes to
clients. Clients subscribe through StreamLink to selected data. For example, a client may subscribe to a
financial instrument, such as a foreign exchange currency pair – say EURUSD. The Liberator manages the
subscriptions requested by all the clients connected to it.

The StreamLink API has a set of subscription classes that allow a client to name the data it wishes to
subscribe to and to issue subscription requests. When a client sends a subscription request to the
Liberator, if the Liberator does not have the required data item in its cache (see Caching data), it will in
turn issue a subscription request for the item from an Integration Adapter (for example a Pricing Adapter
that supplies indicative price information).

When Liberator has the data available, it sends the client's StreamLink an initial image of the complete
data item. StreamLink then makes the data available to the client application. For example, this could be a
record with containing indicative bid and ask prices for EURUSD.

As the Liberator receives further updates to the data item, it updates its cache and pushes the updates to
all clients that are subscribed to the item. Generally only the parts of the data item that have changed are
sent out. For example if just the bid price of a currency pair changes the Liberator sends only the new bid
price field to the clients that have subscribed to the currency pair.

The types of data that can be subscribed to are described in Data types . Subscriptions can specify
parameters that restrict how much data is returned (see Making subscriptions more specific using
parameters).

StreamLink clients can also publish data, so that it is available to the Liberator, other Integration Adapters,
and other subscribing clients (see Creating, updating, and deleting data) .

3.6 Creating, updating, and deleting data

Besides receiving data from Liberator, clients can use StreamLink to send data back to the Liberator and/
or its DataSources.

Note: Some Caplin documents use the term “contribution” to describe data that a client sends back to
a Liberator.

A client can create new data items, update existing items, and delete existing items, using the appropriate
StreamLink commands:

Create – to create data items

Publish – to send updates to data items

Delete – to delete data items.

In practice, whether or not a client can do these things, and where resulting data changes are visible,
depends on which Caplin component owns the item. The client must also have write permission granted
on the data items.

Item is owned by Liberator

If a data item is not owned by a data service (see below), it is owned by the Liberator. In this case the
client can create, update, and delete the item (provided it has write access to it). The changes are cached
in the Liberator and are immediately available to other clients.

This type of data modification is used for client-to-client chat, for example.

12

18

33

11

Key concepts

12© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Item is owned by a data service

(For an explanation of data services see the Caplin DataSource Overview.)

When a data service owns a data item*, clients cannot create or delete the item. A client can update the
item, provided it has write access to it. The Liberator does not keep the update in its cache, rather it just
sends it on to the Integration Adapter(s) providing the data service. The owning Adapter may keep the
updated information to itself, to forward it to an external system for example.

This type of data modification is typically used in trade messaging, where the data items are trade
messages exchanged privately between a particular client and a Trading Adapter. Effectively a client
sends a trade message to the Integration Adapter by publishing an update that other clients cannot see.

Alternatively the Integration Adapter could send the update back to the Liberator, whence the Liberator will
cache the new data so that other clients (having read access permission to the data) will be able to see the
new values.

* A data item is owned by a data service if its subject name matches the namespace configured for the
data service, and the Integration Adapter(s) that provide the data service are configured to accept updates.

3.7 Caching data

To ensure optimum performance and reduce network load, data is cached within the Liberator server.
Liberator maintains a cache of all the items that clients have subscribed to. The cache is updated as
updates are received from the Integration Adapters connected to the Liberator, or from StreamLink clients.
Liberator records which clients have subscribed to which items, so as clients subsequently unsubscribe, it
can delete items from its cache when they are no longer subscribed to by any client.

Liberator can also cache multiple levels of data (see Type 2 data), and record history for time-series
replay (see Type 3 data).

3.8 StreamLink in trading applications

StreamLink can be used within trading applications. As well as being the mechanism by which a client
trading application obtains price information, StreamLink can provide the bi-directional transport for the
message flows generated when the end-user executes trades.

For more information see Trade messages .

20

21

25

StreamLink features

13© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

4 StreamLink features

This is the list of StreamLink features. At present the StreamLink SDKs that support the StreamLink 6 API
are StreamLink.NET (SLN), StreamLink Silverlight (SLS), StreamLink JS (SLJS), StreamLink iOS (SLi),
StreamLink Android (SLA), and StreamLink Java (SLJ).

Y = Feature currently available.

L = Limited implementation of this feature

N = Feature not currently available

Many of the features in the list are currently available in version 4.n of other StreamLink SDKs
(StreamLink Java, and StreamLink for Browsers).

Note that the version 4.n SDKs do not have the same API architecture as StreamLink 6 (see StreamLink
architecture). StreamLink JS is an improved implementation of StreamLink for Browsers that conforms
to the version 6 architecture.

Supported data types

Features SLN SLS SLJS SLi SLA SLJ

Records
(see About the data
):

–Type 1: subject +
fields.

Y Y Y Y Y Y

–Type 2: Supports level
2 quote data.

Y Y Y Y Y Y

–Type 3: Holds history
of updates.

Y Y Y Y Y Y

Containers. Y Y Y Y Y Y

Directories Y Y Y N Y Y

Pages. Y Y N N N N

News Headlines. Y Y Y N Y Y

News Stories. Y Y Y N Y Y

Chat. Y Y N N Y Y

Permissions. Y Y Y Y Y Y

Supported connection types (to server)

Features SLN SLS SLJS SLi SLA SLJ

There are several connection types to support different combinations of application
and network technology. See RTTP connection types .

Direct via TCP/IP. Y N N Y Y Y

HTTP/HTTPS tunneled. Y Y Y Y Y Y

26

17

9

StreamLink features

14© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Data transmission

Features SLN SLS SLJS SLi SLA SLJ

Real-time data updates. Y Y Y Y Y Y

Data snapshots (see
Obtaining Data
snapshots).

N N Y Y Y Y

Trade messaging
support.

Y Y Y Y N N

Batching of requests
and discards – one
request message can
subscribe to many data
items or discard many
subscriptions.

Y Y Y Y Y Y

Data manipulation

Features SLN SLS SLJS SLi SLA SLJ

Ability to specify server-
side data filtering from
the client (See Filtering
data):

–Record image filtering. Y Y Y N Y Y

–Record update filtering. Y Y Y Y Y Y

–News filtering. Y Y Y N Y Y

Commands to modify data

Features SLN SLS SLJS SLi SLA SLJ

The client can modify
data on the server, on
Integration Adapters,
and on other clients:

–Create new data items. Y Y Y Y Y Y

–Delete existing data
items.

Y Y Y Y Y Y

–Publish to existing data
items (update
them).

Y Y Y Y Y Y

30

34

StreamLink features

15© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Performance

Features SLN SLS SLJS SLi SLA SLJ

Efficient data
transmission through
the RTTP protocol.

Y Y Y Y Y Y

Dynamically
configurable throttling
levels: global and per
subject (see Throttling

).

Y Y Y Y Y Y

Resilience

Features SLN SLS SLJS SLi SLA SLJ

Rapid and seamless
recovery from transient
connection loss.

Y Y Y Y Y Y

NOOP connection
monitoring: RTTP
detects connection loss
even when TCP/IP
sockets are not closed
properly.

Y Y Y Y Y Y

Failover modes of
arbitrary complexity
through configuration
(see Resilience,
failover, and load
balancing) .

Y Y Y Y Y Y

Security

Features SLN SLS SLJS SLi SLA SLJ

Single sign-on support
through Caplin
KeyMaster integration.

Y Y Y Y Y Y

Status reporting

Features SLN SLS SLJS SLi SLA SLJ

Liberator Data Service
notifications and object
status updates.

Y Y Y Y Y Y

Access to connection
statistics.

Y Y L Y L L

38

41 41

StreamLink features

16© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Configuration

Features SLN SLS SLJS SLi SLA SLJ

Configuration through
JSON, Configuration
Objects, or XML
(see Configuration).

Y Y Y N Y Y

Logging

Features SLN SLS SLJS SLi SLA SLJ

Set log level and
categories of
information to log.

Y Y Y Y Y Y

Set up custom logger
class.

Y Y Y Y Y Y

Instrumentation

Features SLN SLS SLJS SLi SLA SLJ

Message latency
measurement.

Y Y Y N Y Y

40

About the data

17© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

5 About the data

StreamLink and Liberator have a common view of the messages they pass between each other, based
upon a set of standard data formats used by RTTP. These formats are designed to support efficient
transmission of information for financial applications. The same formats are used internally to the Caplin
Platform within DataSource messages (see DataSource Overview).

Note: Within Liberator and other Caplin Platform components, such as Integration Adapters, the
RTTP and DataSource data items are often described as “objects”.

5.1 Subjects, symbols, and fields

An RTTP message is identified by its subject. Where the message is about a financial instrument, the
subject often contains a symbol – a letter or sequence of letters used to identify the financial instrument. A
message can be a record , consisting of a subject and a number of fields.

Simple record message:

Subject Fields

/FX/EURUSD price=1.334

In this example the record sent by Liberator to StreamLink contains foreign exchange (FX) price
information. The subject /FX/EURUSD contains the symbol EURUSD, which defines the currency pair
Euros and US Dollars. The price field contains the indicative exchange rate in US dollars per Euro.

Where did the price information in this example come from?
The prices would typically originate from a Foreign Exchange price feed. An Integration Adapter in the
Caplin Platform converts the prices information into DataSource messages, which are passed to a
Liberator. The Liberator caches the records and pushes them out to subscribing clients via RTTP and
StreamLink.

Subjects can have an arbitrary format, but they must start with a “/” as shown in the example above, and
are usually organized in a “/” separated directory structure (see Directories in the Data types
section).

The actual symbol structure and naming conventions used depend on the type of system that the Caplin
Platform forms a part of (for example a foreign exchange trading system, or a securities market data
system), and the naming conventions used by the external systems connected to the Integration Adapters.
Integration Adapters may map the symbols of records received from external systems into formats used
internally to the Caplin Platform, and for presentation to end users via StreamLink.

A field is a specific piece of information relating to the subject. For example, the fields for a record
containing a foreign exchange quote might include “Bid” (the bid price), “Ask” (the asking price), and
“Amount” (the maximum amount of the base currency that can be traded at the quoted price).

When the Liberator sends an update message to a client, it normally* only includes in the message the
fields that have changed.
For example, when a client first subscribes to Liberator to obtain a quote for /FX/EURUSD, the record
returned will contain all the relevant fields:

/FX/EURUSD Bid=1.3442 Ask=1.3448 Amount=10000

18

24 18

About the data

18© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

If the Ask price subsequently changes, the Liberator will send the client an update containing just the new
value of the Ask field:

/FX/EURUSD Ask=1.3450

The range of fields available for a particular financial instrument depends on the Integration Adapter from
which the data about that instrument has been obtained.

* Alternatively Liberator can be configured to always send all the subscribed fields of a data item to the
client whenever the item is updated.

Also see Directories in Data types .

5.2 Data types

StreamLink and RTTP can handle the following types of data:

Records

Containers

Directories

Pages

News headlines and news stories

Chat

Permissions

Note: Other Caplin components, such as Liberator often refer to these data types as “object types”.

Records

A record is a means of storing and displaying information. Records are composed of one or more fields
which may be of different types. For example, a record containing foreign exchange data could have
several price fields (such as the last bid and ask prices) together with time and date fields, whereas an
index record would have a price field but no bid or ask values.

The data in a record can be structured in one of three different ways, known as Type 1 data, Type 2 data,
or Type 3 data.

Records can be used to hold trade messages as well as financial market data.

24 18

25

About the data

19© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Type 1 data

The majority of record based data is structured as Type 1 data. This means there is only one level of fields
under the subject that identifies the record.

The following diagram shows an example field structure for a quotation in a foreign exchange trading
system.

Record containing Type 1 data

Here the record /EURUSD contains quote data for conversion between Euros and US Dollars. It has one
level consisting of five fields: Desc (description), Bid (bid price), Ask (ask price), Amt (maximum amount of
dollars that can be traded at the quoted bid and ask prices), and Time (the date and time of the quote).

When a client first subscribes to /EURUSD, StreamLink receives a type 1 record containing all the fields
with their latest values (assuming the client didn't exclude any of the fields from the subscription).
Subsequently whenever StreamLink receives an update to /EURUSD, the record contains just the fields
whose values have changed.

About the data

20© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Type 2 data

Type 2 data is often referred to as “level 2” data, as it is used for level 2 quotes. Level 2 quote data
enables several price quotes per subject (coming from different market makers or traders) to be available
at all times.

The field structure shown in the following diagram might be applicable for a simple level 2 display for equity
data (in this case IBM stock), where there are several active market makers.

Record containing Type 2 data

In this case the /IBM subject (primary key) has a secondary key of Market Maker (MM). The record
contains quote data for each of the market makers providing quotes (MM1, MM2, and so on). This allows a
subscriber to see the full set of quotes in the market. An update to the record will always have a market
maker associated with it, so only the fields with that market maker as a secondary key will be overwritten.

A typical use for Type 2 data is to feed the display of a market order book that is in a tabular format:

/IBM:

MM (Market Maker) BidSize BidPrice AskPrice AskSize

MM1 1000 1.9814 1.9823 1000

MM2 2000 1.9926 1.9999 2000

MM3 1000 1.9602 1.9613 1000

A single field in the table can be easily updated from the record: for example, Key="MM1" AskSize="2500".

About the data

21© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Type 3 data

Type 3 data stores the history of updates to the record. A common use for data of this type is holding and
viewing daily trade activity, where typically this mechanism will only be used for a day at a time before the
Liberator's cache is deleted and the update list starts again.

The following diagram shows a record containing Type 3 data that records the history of quotations in a
foreign exchange trading system.

Record containing Type 3 data

This particular record holds the history of quotes for conversion between Euros and US Dollars. The boxes
running from left to right are the fields of the record; these are Desc (description), Bid (bid price), Ask (ask
price), Amt (maximum amount of dollars that can be traded at the quoted bid and ask prices), and Time
(the date and time of the quote).

Each new record update is inserted at the end of the list. So the topmost line of fields contains the oldest
known value of the record, and the bottom line of fields contains the most recent value of the record.

Caplin Liberator can maintain type 3 data structures, and it allows you to configure the amount of update
history to be retained in the structure. When subscribing to a record containing type 3 data, the StreamLink
client will immediately receive from Liberator all cached updates, followed by any new updates as they
occur.

About the data

22© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Type 1 and Type 2 data combined

A single record can contain both Type 1 and Type 2 data.

The following record is for equity data (in this case IBM stock), containing Type 1 data consisting of a
description (Desc) and the time of the quote (Time), followed by Type 2 data listing price quotes from
several different market makers (MM1, MM2, and so on).

Record containing Type 1 and Type 2 data

About the data

23© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Containers

A container holds a set of references to other data items in the Liberator:

Structure of a container

When a client requests a container item from StreamLink, it is automatically subscribed to the linked items
as well. Any parameters on the container subscription (such as fields or filters) are passed on to the linked
item subscriptions.

Containers are managed on the server side (that is, by the Liberator) on behalf of all the subscribing
clients, so there is less work for the clients to do. For example, the Liberator handles the addition and
deletion of items in the container; it automatically adjusts client subscriptions accordingly and
communicates the changes to the clients via StreamLink. In contrast, when a client subscribes to a
directory (see Directories), it is not automatically subscribed to the items in the directory; the client
must explicitly subscribe to them as required.

A client can request the Liberator to provide a windowed view of the items in the container, which can help
reduce the processor load and memory usage on the client – for more information see Specifying
container parameters .

24

37

About the data

24© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Directories

StreamLink, RTTP, and Liberator understand and utilize the concept of a directory based hierarchical
name space for data items. This is realized in the use of the “/” delimiter within the subject of the record.

For example the subject /FX/EURUSD comprises

the root directory “/” (the first “/” in /FX/EURUSD)

the directory “FX” (Foreign Exchange) underneath “/”

the symbol “EURUSD” (Euros and US Dollars) underneath “/FX/”

A client can subscribe to a directory and StreamLink will then inform the client when items are created or
deleted within that directory. Subscribing to a directory does not automatically subscribe to the items in the
directory; the client must explicitly subscribe to them as required.

Pages

A page is a free format piece of text made up of rows. This data type is normally used to display
information that was originally formatted for terminals that only display text. Typical sizes are 14 rows of 64
characters (“Reuters small page”) and 25 rows of 80 characters (“Reuters large page”).

News headlines and news stories

A news headline is a relatively short message containing free text, with a link to the more detailed news
story behind the headline, and a date. The story link can be in any format; for example, it could be a link to
an RTTP news story, or a URL pointing to an external web page. A headline can also have tags (or codes)
associated with it, for use in searches.

A request for a news headline may contain a filter string using a simple logical syntax. The filter allows a
client application to limit the headline updates it receives.

A news story is an arbitrary length text item, referred to by one or more news headlines.

About the data

25© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Chat

RTTP chat items allow users logged into a Liberator to chat in real-time. Each chat item represents a
virtual chat room for 2 or more users. A client sends a message on a chat “channel” by updating
(publishing to) the associated chat item.

Permissions items

Clients can receive updates from Liberator about changes to access permissions. These updates are sent
in permissions items, which have the same structure as Type 2 data . A client can use the updated
permission information to modify the way the application behaves.

For more information see Permissions objects in the Authentication and permissioning section.

5.3 Trade messages

When the Caplin Platform is deployed as a trading platform, a client can use StreamLink to pass
messages relating to trade transactions between the client and the trading system behind the Liberator.
The client uses the StreamLink Publish command to send update messages to the trading system, and the
trading system responds by sending updates back to the client. (In practice, the Publish command is
hidden under a richer Trading API that the client actually uses.)

Typically the client issues an “open trade” request, which automatically subscribes the client to a subject
dedicated to trade messaging (for example /TRADE/FX). The trading system sends the client (via a
Trading Integration Adapter and the Liberator) an update to /TRADE/FX containing the request
acknowledgement. The client and the trading system then exchange further messages as updates to
/TRADE/FX, according to the particular trade model being executed, until the trade is complete.

20

40 39

StreamLink architecture

26© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

6 StreamLink architecture

The StreamLink 6 APIs are provided as a set of classes and interfaces in the implementation language of
the client application (see StreamLink APIs and SDKs). The StreamLink code is divided into four
layers:

The API User layer

The API Classes

Subscription Management and Command Management

The Protocol layer

These are shown in the following architecture diagram

StreamLink architecture

10

StreamLink architecture

27© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

API User Layer

The API User Layer defines interfaces that developers using StreamLink must implement as concrete
classes in the client code.

The most important of these interfaces are the Listeners which define callback methods to handle events
returned by StreamLink. For example, SubscriptionListeners handle the data (images and updates)
received from Liberator when the client has subscribed to a particular item. The actual implementations of
such callbacks depend upon what the client code needs to do with the received data.

There is also a Logger interface, whose implementation enables the client to record StreamLink activity in
an appropriate manner.

The CredentialsProvider interface is for supplying login information to the Liberator. The implementation
of a CredentialsProvider could obtain this information from a database, a web site, or from a single sign-
on system.

API Classes

The API Classes layer contains the public classes and methods that client code uses to initiate and control
interactions with StreamLink.

The main class is called StreamLink; every client must create an instance of this class to use the
functionality provided by StreamLink. There are also Subscription classes for setting up subscriptions to
data, and Command classes used to send commands to Liberator. Commands include, Create (to create
data items), Publish (to send updates to data items), and Delete (to delete data items).

The Status classes allow a client to obtain information about the status of RTTP connections and
Liberator's data services. (For an explanation of data services see the Caplin DataSource Overview.)

Subscription Management and Command Management layer

This layer is internal to StreamLink. It implements the functionality of the StreamLink API; managing
subscriptions, implementing the commands issued from the API User Layer, making calls on the RTTP
protocol layer, and handling data and status information received from RTTP for onward transmission to
the callback methods defined in the API User Layer.

Protocol Layer

This layer is also internal to StreamLink. It manages the connections to the Liberator server, and
implements the RTTP protocol that handles bi-directional communication with Liberator.

How to use StreamLink

28© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

7 How to use StreamLink

This section contains some simple examples of how client applications can use the StreamLink 6.n API.
The examples contain some simple code fragments, illustrating how the API classes and methods are
used. Since the StreamLink API is written in a number of different object oriented languages (see
StreamLink APIs and SDKs), the code fragments are in pseudo object oriented code – the actual
implementation details will vary from one StreamLink SDK to another.

The rest of the section contains more detailed information about using StreamLink's features.

7.1 Asynchronous operation

The StreamLink API operates asynchronously. This means that when the client code issues a subscription
request or a command to StreamLink, the response is not returned immediately through the method used
to issue the request or command. Instead, you must set up a listener object containing one or more
callback methods, and then supply this listener to StreamLink.

StreamLink calls the appropriate callback method(s) on the listener object, to communicate data and
command responses back to the client code.

This method of operation is shown in the following examples.

7.2 Subscribing to data and receiving updates

To subscribe to data and receive updates to the data you need to

implement (code) some interfaces from the API User Layer,

call various methods from the API classes layer to connect to a Liberator and set up the subscription.

Implementing the interfaces

Before using StreamLink you need to implement as concrete classes an appropriate set of listener and
other interfaces defined in the API User Layer. These implementations integrate StreamLink with your
client application.

As a minimum, you must implement a SubscriptionListener.

StreamLink calls the SubscriptionListener to handle subscription events. For example, to deal with
events concerning subscriptions to record-structured data, you need to implement on the
SubscriptionListener the methods relating to record data. Your class should contain implementations of
the methods onRecordUpdate(), onRecordType2Update(), onRecordType3Update(), to handle
updates to type1, type2, and type 3 records respectively in a manner suitable for the client application. You
can also implement methods for receiving permissions, containers, and directories. At run time,
StreamLink passes in to each method both the subscription to which the event relates, and an event
containing the updated fields as name-value pairs.

The SubscriptionListener may also implement an onSubscriptionError() method to deal with errors in
subscriptions, and an onSubscriptionStatus() method to handle changes to the status of the
subscription. (A status message relates to the state of the Liberator data services that handle the
subscription, such as “Stale”, “Limited”, “OK”. For more information about data services see the Caplin
DataSource Overview.)

Depending on how Liberator is configured, you may need to prove that you have the right to connect to it.
The typical way of doing this is with a username and password, which you can provide to the
StreamLinkFactory.create method. In a production implementation the credentials would normally be
provided by an implementation of a CredentialsProvider which could be much more sophisticated. For

How to use StreamLink

29© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

example, it could obtain login credentials from a database, a web site, or a single sign-on system. The
credentials could take the form of a digitally signed secure token.

Calling StreamLink

The following simple example shows how to use the StreamLink API to subscribe to a simple record
containing a share price. The subject is /MSFT. This pattern is used for subscribing to all types of data.

The application will issue a subscription request to StreamLink, so the first thing to do is implement a
SubscriptionListener that receives the updates resulting from the subscription. In the pseudo code
fragments below the record subscription listener implementation is called MySubscriptionListener.

Get an instance of the StreamLink class:

StreamLink streamLink = StreamLinkFactory.create({
 liberator_urls: "rttp://liberator1:8080",
 username: "demouser",
 password: "demopass"
 });

In StreamLink Java, there are variants of the constructor that enable you to obtain configuration from
a properties file. The create() method also lets you set less common configuration options by passing
in an optional StreamLinkConfiguration object. For more information, see Configuration .

Set up the record subscription listener:

// Create an instance of a class that implements SubscriptionListener.
mySubsListener = new MyRecordSubscriptionListener();

Create a subscription to /MSFT via the streamLink that you acquired earlier, supplying the
subscription listener that will receive updates, events, and errors relating to the subscribed data item:

recordSubscription = streamLink.subscribe("/MSFT", mySubsListener);

Connect to the Liberator:

streamLink.connect();

StreamLink connects to the Liberator defined in its configuration and logs in to the Liberator using the
details previously set up in credentialsProvider.

Some time later Liberator returns an image of the /MSFT record through a call to the
onRecordUpdate() method of mySubsListener (instantiation of MyRecordSubscriptionListener).
Subsequently, each time StreamLink receives an update to /MSFT, it calls onRecordUpdate(),
passing the updated fields and their new values.

You only need to connect to the Liberator once; subsequent subscription requests are passed to the
Liberator immediately. You can make subscription requests before connecting to the Liberator;
StreamLink queues them until a connection is established.

40

How to use StreamLink

30© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

7.3 Subscribing to more than one data item

The StreamLink API supports subscriptions to multiple data items using a single connection to the server.
So there is no need to create multiple instances of the StreamLink class in order to make multiple
requests.

For example, you can subscribe to multiple records and receive updates into a single instance of
RecordSubscriptionListener. However, StreamLink also allows you to register a different listener for
each subscribed item.

The following example shows how to subscribe to both /MSFT and /YHOO and receive updates for
both of these subjects into the same RecordSubscriptionListener.

msftRecordSubscription = streamLink.subscribe("/MSFT", mySubsListener);
yhooRecordSubscription = streamLink.subscribe("/YHOO", mySubsListener);

Note: StreamLink automatically batches multiple subscription requests into a single request call to
maximize efficiency “over the wire”.

7.4 Obtaining data snapshots

StreamLink JS, StreamLink Java, StreamLink iOS, and StreamLink Android clients can also request all the
data for a subject as at a single moment; this is called a snapshot. Snapshots return only the data currently
in the Liberator’s cache, so the subject needs to be subscribed to first (if it is from an active DataSource).
The snapshot API, StreamLink.Snapshot(), is similar to the subscription API, StreamLink.Subscribe(),
except that it does not return a Subscription object.

The following example shows how to obtain a snapshot of the data for the subject /MSFT. This example
assumes that, as described in Subscribing to data and receiving updates , you have connected to
Liberator, set up the record subscription listener (mySubsListener), and created a subscription to /MSFT

Request the snapshot:

streamLink.snapshot("/MSFT", mySubsListener);

Some time later Liberator returns an image of the /MSFT record through a call to the
onRecordUpdate() method of mySubsListener (instantiation of MyRecordSubscriptionListener).

If you wish to obtain another snapshot of /MFST, you must request it again.

28

How to use StreamLink

31© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

7.5 Sending data to the Liberator

This example shows how a client application can use StreamLink to modify data on a Liberator server. In
this case the application creates a new record data item. This pattern is used for issuing all StreamLink
commands.

The application will need to issue a command to StreamLink, so the first thing to do is implement a
CommandListener to receive the results of the command. In the pseudo code fragments below the
command listener implementation is called MyCommandListener.

Get an instance of the StreamLink class, as in Subscribing to data and receiving updates :

StreamLink streamLink = StreamLinkFactory.create({
 liberator_urls: "rttp://liberator1:8080",
 username: "demouser",
 password: "demopass"
 });

Set up the command listener:

// Create an instance of a class that implements CommandListener.
myCommandListener = new MyCommandListener();

Create the fields that you want to publish. In JavaScript, you can represent these in object literal
notation:

fields = {"dBestBid": "1.2345", "dBestAsk": "1.2466"};

Issue a “Publish To Subject” command to streamLink to send the fields. Assuming the application is
already connected to the Liberator, StreamLink sends the command immediately.

streamLink.publishToSubject("/MyRecord", fields, myCommandListener);

When the command has executed successfully, StreamLink calls the onCommandOk() method of
myCommandListener (instantiation of MyCommandListener). If the command fails, for example
because the user does not have permission to create record subjects on Liberator, StreamLink calls
onCommandError() instead.

Also see Creating, updating, and deleting data .

28

11

How to use StreamLink

32© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Persistence

When a StreamLink application publishes data to Liberator, the data does not normally persist within
Liberator if the connection to the Liberator is lost. You can use the persistent configuration attribute to
ensure that the data does persist across reconnections. When persistent is set to true, if the application
reconnects to the Liberator (or to a different Liberator, depending on the failover configuration), StreamLink
automatically resends the data.

For example, consider that Liberator has an object /MyMode representing a mode that the end-user is in,
and the default mode of this object is "A". When StreamLink logs an end-user in to Liberator, the mode
starts off as "A". To change the end-user to mode "B" you would simply send the following publish
command:

myCommandListener = new MyCommandListener();
fields = {"mode": "B"};
streamLink.publishToSubject("/MyMode", fields, myCommandListener);

If the end-user is disconnected from the Liberator, the user session is lost. With this coding, when
StreamLink reconnects, the end-user's mode will have defaulted back to mode "A". If you want the mode
to be automatically set to "B" again when StreamLink reconnects, specify the persistent configuration
attribute as true:

myCommandListener = new MyCommandListener();
fields = {"mode": "B"};
myCommandParameters = {"persistent": true}
streamLink.publishToSubject("/MyMode",
 fields,
 myCommandListener,
 myCommandParameters);

This code ensures that the object /MyMode with field "mode=B" is reliably sent to the Liberator whenever
a reconnect occurs.

If you subsequently no longer want the /MyMode state to persist in mode "B", simply remove the
persistence, as follows:

myCommandListener = new MyCommandListener();
fields = {"mode": "B"};
myCommandParameters = {"persistent": true}

myCommandSubscription = streamLink.publishToSubject("/MyMode",
 fields,
 myCommandListener,
 myCommandParameters);
...
/* Some time later, myMode no longer needs to be persisted...*/

myCommandSubscription.unPersist();

Note that after the call to unPersist(), /MyMode remains in mode "B" until such time as StreamLink
reconnects to the Liberator.

How to use StreamLink

33© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

7.6 Discarding data

When a client no longer wishes to receive updates to a subscribed data item it can unsubscribe from the
item. This effectively discards it as far as the client is concerned. However, the item is still present on the
Liberator, so the client can subsequently subscribe to it again if required.

A client can also permanently delete an item from Liberator by executing the StreamLink Delete command.
For this to succeed the client must have write access permission to that item on the Liberator .

7.7 Making subscriptions more specific using parameters

The client can supply various types of parameter to a subscription request, to ensure that only specifically
required data is returned. For example, you can specify which fields of a record are to be returned (see
Specifying fields), you can further restrict the date using filters (see Filtering data), and you can
control which data is returned within a container (see Specifying container parameters).

Specifying fields

When the client subscribes to a record it can specify which fields of the record are to be returned, so the
fields that are irrelevant to the application are ignored (Liberator does not send them across to the client).

33 34

37

How to use StreamLink

34© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Filtering data

When a client subscribes to data it can specify a filter that restricts the information returned, so the client
only receives values that it is interested in. The filtering is done on the Liberator, rather than in the client,
so that network traffic and client side processing are reduced.

The filter is defined as an expression based on the fields in the data item.

For example:

An FX trading client application subscribes to the currency pair /EURUSD, requesting updates for the
Bid field. The subscription request includes a filter "Bid > 1.3440", meaning that the client (and hence
the end-user) is only interested in receiving updates for /EURUSD where the Bid price is greater than
1.3440

A subscription to news headlines includes a filter that selects only headlines containing the word
“industrials”.

Record filtering

Data structured as records (see Records) can be filtered using filter expressions containing the
following operators:

Character Meaning

| or

& and

= equal to

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

~

Provides matching for items in comma-
separated string lists. For example, ~abc
matches a field in "xyz,abc,def" but not in
"xyzabcdef"

() Parenthesis – perform these filters first

For example, the filter expression

(BidSize > 1000) & (AskSize > 1000)

selects only those records where both the BidSize and AskSize fields each contain
a value greater than 1,000.

18

How to use StreamLink

35© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

There are two sorts of record filter: update filters and record filters.

An update filter is applied to the data within a particular update of the data item. An update record does
not necessarily contain all the fields that the client originally subscribed to within the item. If the filter is
dependent on a field that is not present within an update, the filter operation will result in “no match”, and
the Liberator will not send the update to the client.

An image filter is applied after the data within a particular update has been applied to the image of the
data item. The filter may specify a field that is not present within the update. When this happens, the
Liberator uses its cached value of the field to determine whether the update matches the filter.

The following table shows an example of the difference in behavior between update filters and image
filters. In both cases the filter used is
(BidSize > 1000) & (AskSize > 1000).

Each row of the table represents the result of an update, where the updates have been applied to the
same record item in the order 1, 2, 3, 4, 5.
{none} means the field in question was not updated.

Updated record fields:

Update
no

Bid BidSize Ask AskSize Matches
Update
Filter?

Matches
Image Filter?

1. 54.25 1500 55.00 2000 Yes Yes

2. 54.00 2000 {none} {none} No Yes

3. 54.50 500 {none} {none} No No

4. 54.25 1500 54.75 500 No No

5. 54.00 2000 54.75 1500 Yes Yes

How to use StreamLink

36© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

News filtering

News headlines can be filtered by specifying a news filter when creating an object. The filter expression
consists of news codes and/or whole words to search for. A news filter expression can contain the
following operators:

Character Meaning

[space] or

| or

+ and

& and

- and

= equal to

! not

~ not

' start or end of free text search string

" start or end of free text search string

() parenthesis – perform these filters first

For example, the filter expression

UKX | ('stock rises' & (!'preference'))

selects only those news headlines with code UKX, or where the headline contains the phrase “stock rises”
and does not contain the phrase “preference”.

News codes can only contain capitals and numbers, and have a maximum length defined in the Liberator
configuration. Capitalized items in the headline that are longer than the maximum news code length are
treated as text for the purposes of searching, as are items in mixed case and lower case. Use ' or " to
force a text search. For example 'UKX' selects news headlines containing the text “UKX”.

How to use StreamLink

37© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Specifying container parameters

When a client subscribes to a container it can specify a window into the container, that is, the start and end
rows of the container data that are to be returned. The Liberator only sends the client updates for the items
currently in the window.

The client can ask StreamLink to move the window on the container (for example because the end-user
has scrolled down through the displayed view of the container window). StreamLink will then ask Liberator
to supply the data for the items that are currently in the scope of the window.

This server-side paging capability helps reduce the processor and memory requirements on the client in
situations where the container refers to a large number of items, but the end-user views just a few of them
at a time through a small scrollable window. Rather than handling updates for the entire list, even though
only a small part of it is on view, the client merely has to manage updates for the few items in the container
window (which maps onto the display window).

How to use StreamLink

38© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

7.8 Monitoring the connection

StreamLink can notify the client application of life cycle events relating to the connection between the client
and the Liberator. This is done through an implementation of the ConnectionListener interface.

7.9 Reachability on mobile devices

On mobile devices the network may not always be available, and therefore a StreamLink app running on
the device may not be able to reach the Liberator. If the app cannot connect because the network is not
available, or loses its connection to the Liberator for the same reason, it should not try to reconnect but
should effectively stop.

StreamLink for iOS automatically detects and handles changes to network availability. In both StreamLink
Java and StreamLink Android, the StreamLink object has the networkAvailable() and
networkUnavailable() methods that the app can call to inform StreamLink about changes to network
availability.

For more information about how to handle changes to network availability in StreamLink Android apps,

see the StreamLink Android API Documentation.

7.10 Throttling

Using StreamLink you can limit the rate at which updates are sent to a client; this is called throttling.
There are a number of reasons for doing this:

To reduce network usage levels, both on leaving the Liberator and entering the client.

To reduce the load on the client, for instance when too high a screen update rate would overload the
client machine.

To reduce the load on the Liberator, by reducing the rate at which it needs to send updates to its
clients.

The amount of throttling is defined as a time interval. For example, if the throttle time for a data item is 1
second then Liberator will send an update for that item to subscribed clients at most every second. So if
there are three updates to the item within a second, only the third one will be sent to the clients, at the end
of the one second interval.

Decreasing the throttle time increases the maximum frequency of updates received by the client, whereas
increasing the throttle time decreases the maximum frequency of received updates.

When Liberator identifies that a data item is updating less frequently than the throttle time, it does not
activate throttling and sends the updates to the subscribed clients immediately.

Throttle times are set up in the Liberator's configuration; these are global settings which apply to all data
items unless overridden for specific items. The configuration is defined as a set of throttle levels. For
example, an item could have five throttle levels:

1 No throttling.

2 Throttling at 0.5 seconds.

3 Throttling at 1 second.

4 Throttling at 2 seconds.

5 The stopped state (no updates are forwarded to clients).

How to use StreamLink

39© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

The Liberator can have a default throttle level applying to all data items when the client initially subscribes.
This is typically the lowest level, but it could be set to one of the other levels. A client will start at the
default throttling level when the user logs in and the client subscribes to data via StreamLink.

The client can then change the throttle level by sending a command to StreamLink. A client cannot set a
custom throttle time, as the times are configured in the Liberator, but the client can move up or down a
throttle level, go to the minimum or maximum level, or stop receiving updates altogether and subsequently
resume them. A client can also alter the throttle level for a particular data item it has subscribed to, so the
level is different to that applying to other items.

You can make throttle levels persistent, so that they are maintained when StreamLink reconnects to
Liberator (by default throttle settings do not persist across connection failures); see Persistence .

Note: Liberator's throttling behavior is also known as “conflation” because several update values
spread across time are effectively combined into one value (the latest one).
StreamLink also “conflates” messages it sends to Liberator, but this is a different sort of
optimization, where multiple requests/discards are batched up into one message for
transmission.

7.11 Authentication and permissioning

StreamLink provides a public interface called CredentialsProvider that is responsible for providing the
credentials that Liberator requires to be sure that the user is allowed to log in. These credentials are often
a username and password. StreamLink developers can implement this interface themselves to perform
custom logic, such as integrating with a single sign on system, or retrieving a password from an external
system.

The StreamLink library includes several sample implementations of CredentialsProvider depending on
the technology in use:

PasswordCredentialsProvider

A basic implementation that provides user credentials consisting of a set username and password.

StandardKeyMasterCredentialsProvider

An implementation that attempts to retrieve a password token from Caplin KeyMaster. It can also
optionally poll a specified URI on the KeyMaster server in order to keep the HTTP session alive.

AuthenticatingKeyMasterCredentialsProvider

An implementation that attempts to retrieve a password token from Caplin KeyMaster server that
requires basic HTTP authentication. This implementation has the same behavior as
StandardKeyMasterCredentialsProvider except that it attaches the user credentials to each web
request that it makes.

Note: StreamLink Silverlight
AuthenticatingKeyMasterCredentialsProvider is not available in StreamLink Silverlight,
because (at the time of publication) Silverlight does not allow web requests to include user
credentials.

32

How to use StreamLink

40© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Permissions objects

A permissions object allows changes in user permissions on objects to be sent in real time between
Permissioning Adapters, and between Liberator and client applications.

In StreamLink, subscribing to a permissions change is just like subscribing to a normal record update (see
Subscribing to data and receiving updates), but the callback method to implement from
SubscriptionListener is onPermissionUpdate().

The client application will then receive the permission object, and any subsequent updates to it, and can
use this information as appropriate. For example, the client could modify the way the application behaves
according to changes in the permission object, such as enabling or denying trading on particular
instruments.

For more information about permissions objects, see the Caplin DataSource Overview.

7.12 Logging

StreamLink includes a console logger class to aid application development. You can programmatically set
the logging level and categories of items to be logged. At run time StreamLink will then display on the
screen diagnostic information about its operation. Developers can implement custom logger classes, by
implementing the Logger interface.

In StreamLink implementations other than StreamLink JS and StreamLink Silverlight, there is also a file
logger that captures the diagnostic information in a file. This is primarily intended to help Caplin Support
staff diagnose and fix StreamLink related problems encountered by customers.

7.13 Configuration

StreamLink is configured using a variety of definition formats, depending on the specific technology of
each StreamLink SDK. The formats include JSON and Configuration Objects. The configuration allows you
to define in detail the Liberators you wish to connect to, the connection types you would like to use, and
other settings relevant to each particular technology.

For more information about configuring a particular StreamLink implementation, refer to the API
documentation for the StreamLink SDK you are using.

28

How to use StreamLink

41© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

7.14 Resilience, failover, and load balancing

StreamLink supports highly resilient operation by providing the ability to connect to alternative Liberator
servers (failover) and by trying alternative types of RTTP connection. These capabilities are defined
through configuration (see Configuration).

Configurable failover strategy

When a client's connection to a Liberator server fails (either because there is a persistent network failure
or because the Liberator has failed), the client can connect to an alternative server according to a
configurable failover scheme. StreamLink also uses this scheme when it first connects the client to a
server.

The configuration technique is flexible and allows you to define sophisticated failover schemes. Liberator
servers can be collected into 'ordered' groups which are nested within a 'balance' group.

'ordered' group

On first connection or during failover, StreamLink tries each of the servers or groups in an 'ordered' group
in turn, in the order they have been declared within the configuration.

'balance' group

The 'ordered' groups within a 'balance' group are tried at random.

Example failover configuration (JSON syntax):

[
 //1st Group
 ["rttp://primary1.example.com", "rttp://backup1.example.com"],
 //2nd Group
 ["rttp://primary2.example.com", "rttp://backup2.example.com"]
]

This configuration defines two 'ordered' groups (“1st group” and “2nd group”) within an outer 'balance'
group. This means that when StreamLink first tries to connect to a server, it randomly chooses between “
1st group” and “2nd group”.

Each 'order' group defines a primary server ("primaryN.example.com") and a backup server (
"backupN.example.com"). Within the selected group StreamLink first attempts to connect to the
primary server; if this fails, it attempts to connect to the backup server. If neither server can be reached,
StreamLink attempts to connect to the servers in the other group.

So the sequence of servers to be tried is either

primary1 > backup1 > primary2 > backup2

or

primary2 > backup2 > primary1 > backup1

In a failover scenario, StreamLink first attempts to reconnect to the next server in the current 'order' group,
followed by the servers in the other 'order' group. Once all possible connections have been tried, repeats
the sequence of connection attempts after the configured reconnect delay.

40

How to use StreamLink

42© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

Load balancing

'Balance' groups in the configuration allow you to implement server load balancing. If there are several
servers (or server groups) within a 'balance' group, each client connects at random to one of the servers,
so when there are many connected clients, the connections are distributed fairly evenly across the
available servers.

A configuration that implements server load balancing would look like this:

Example: Server load balancing configuration (JSON syntax)

//Load balance across four servers

[
 ["rttp://liberator1.example.com"],
 ["rttp://liberator2.example.com"],
 ["rttp://liberator3.example.com"],
 ["rttp://liberator4.example.com"]
]

Alternative RTTP connection types

When a client attempts to connect to a Liberator, StreamLink refers to an ordered list of RTTP connection
types . It tries each type of connection in sequence until one succeeds. If none of them succeed,
StreamLink tries to connect to another Liberator, according to the configured failover scheme.

By default, StreamLink tries to connect via its default connection types, as defined by the browser or
particular StreamLink technology. However, you can explicitly configure the connection types to try, as
shown in the following example.

Example: Configuration defining connection types (JSON syntax)

[
 ["rttp://liberator1.example.com"],
 ["poll://liberator2.example.com",
 "http://liberator2.example.com",
 "ws://liberator2.example.com"]
]

The example shows that StreamLink is configured to connect to liberator1 using the default StreamLink
connection types; the configuration specifies this using the generic connection type rttp. In contrast,
when StreamLink attempts to connect to liberator 2, it first tries a Polling connection (poll), then an HTTP
Streaming connection (http), and finally a WebSocket connection (ws).

9

Glossary of terms and acronyms

43© Caplin Systems Ltd. 2008 – 2013

Overview

StreamLink 6.0

8 Glossary of terms and acronyms

This section contains a glossary of terms, acronyms, and abbreviations used in this document.

Term Definition

Caplin Integration Suite
(CIS)

A set of APIs, and tools for creating adapters that integrate the
Caplin Platform with external systems.

Caplin Liberator A financial internet hub that delivers data and messages in real time
to and from subscribers over any network.
StreamLink communicates with Liberator servers.

Caplin Platform An integrated suite of software that supports the services and
distribution capabilities needed for web trading. It consists of Caplin
Liberator, Caplin Transformer, Caplin KeyMaster, Caplin Director,
and Caplin Management Console.

DataSource DataSource is the messaging infrastructure used by the Caplin
Platform and Integration Adapters.

In some older documents DataSource is also used as a synonym
(but non-preferred term) for DataSource application.

DataSource API An API that allows server applications (including Integration
Adapters) to communicate with the Caplin Platform.

DataSource application An application that uses the DataSource API

Caplin Liberator, Caplin Transformer, and Integration Adapters
are all DataSource applications.

Failover The transfer of operation from a hardware or software component
that has failed to an alternative copy of the component, to ensure
uninterrupted provision of service.

Integration Adapter A server application that allows an external system to communicate
with the Caplin Platform. An Integration Adapter is a DataSource
application and is created using the Caplin Integration Suite.

Snapshot A request for all the data for a subject as at a single moment.
See Obtaining data snapshots .30

© Caplin Systems Ltd. 2008 – 2013

Contact Us

Caplin Systems Ltd

www.caplin.com

Cutlers Court

115 Houndsditch

London EC3A 7BR

Telephone: +44 20 7826 9600

The information contained in this publication is subject
to UK, US and international copyright laws and treaties
and all rights are reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means without the
written authorization of an Officer of Caplin Systems
Limited.

Various Caplin technologies described in this
document are the subject of patent applications.
All trademarks, company names, logos and service
marks/names ("Marks") displayed in this publication
are the property of Caplin or other third parties and
may be registered trademarks. You are not permitted
to use any Mark without the prior written consent of
Caplin or the owner of that Mark.

This publication is provided "as is" without warranty of
any kind, either express or implied, including, but not
limited to, warranties of merchantability, fitness for a
particular purpose, or non-infringement.

This publication could include technical inaccuracies or
typographical errors and is subject to change without
notice. Changes are periodically added to the
information herein; these changes will be incorporated
in new editions of this publication. Caplin Systems
Limited may make improvements and/or changes in
the product(s) and/or the program(s) described in this
publication at any time.

This publication may contain links to third-party web
sites; Caplin Systems Limited is not responsible for the
content of such sites.

StreamLink 6.0: Overview, February 2013, Release 2

	Preface
	What this document contains
	About Caplin document formats

	Who should read this document
	Related documents
	Typographical conventions
	Feedback
	Acknowledgments

	What is Caplin StreamLink?
	Key concepts
	StreamLink and the Caplin Platform
	RTTP
	RTTP connection types

	StreamLink APIs and SDKs
	Caplin Liberator
	Subscriptions and real-time updating
	Creating, updating, and deleting data
	Caching data
	StreamLink in trading applications

	StreamLink features
	About the data
	Subjects, symbols, and fields
	Data types
	Records
	Type 1 data
	Type 2 data
	Type 3 data
	Type 1 and Type 2 data combined

	Containers
	Directories
	Pages
	News headlines and news stories
	Chat
	Permissions items

	Trade messages

	StreamLink architecture
	How to use StreamLink
	Asynchronous operation
	Subscribing to data and receiving updates
	Subscribing to more than one data item
	Obtaining data snapshots
	Sending data to the Liberator
	Persistence

	Discarding data
	Making subscriptions more specific using parameters
	Specifying fields
	Filtering data
	Record filtering
	News filtering

	Specifying container parameters

	Monitoring the connection
	Reachability on mobile devices
	Throttling
	Authentication and permissioning
	Logging
	Configuration
	Resilience, failover, and load balancing
	Configurable failover strategy
	Load balancing
	Alternative RTTP connection types

	Glossary of terms and acronyms

